Anti-derivatives.

If f is a function with domain an interval \mathcal{I}, an antiderivative is a function F so that

$$
F^{\prime}=f
$$

Examples.

- The functions $x^{2}, x^{2}+1, x^{2}+2$, and more generally $x^{2}+C(C$ a constant) are antiderivatives to the function $f(x)$
- If F is an antiderivative of f, then the function $G(x)=F(x)+C(C$ a constant $)$ is also an antiderivative.
- Conversely, suppose F, G are both antiderivatives to a function f on an interval (a, b). Then

$$
(F-G)^{\prime}=f-f=0 \text { zero function on the interval }(a, b) \text {. }
$$

But recall we used the Mean Value Theorem to say if the derivative of a function is zero on an interval (a, b), then the function is constant. Therefore $(F-G)$ is a constant function. So,

$$
\begin{gathered}
F, G \text { antiderivatves } \\
\text { for } f \text { on an interval }(a, b)
\end{gathered} \Longleftrightarrow \begin{gathered}
(F-G) \text { is a } \\
\text { constant function on }(a, b)
\end{gathered} \text {. }
$$

Examples

- The function $f(x)=\sin (2 x)$ has domain $(-\infty, \infty)$. Find all antiderivatives of f on the interval $(-\infty, \infty)$.
We have $(\cos (2 x))^{\prime}=(-\sin (2 x)) \cdot 2$, so

$$
\left(-\frac{1}{2} \cos (2 x)\right)^{\prime}=-\frac{1}{2}(-\sin (2 x))=\sin (2 x)
$$

So, $F(x)=-\frac{1}{2} \cos (2 x)$ is one anti-derivative to f on the interval $(-\infty, \infty)$. All other anti-derivatives hav the form

$$
-\frac{1}{2} \cos (2 x)+C(C \text { a constant }) .
$$

- The function $f(x)=\ln (x)$ has domain $(0, \infty)$. Find all antiderivatives of f on the interval $(0, \infty)$.
We have $(x \ln (x)-x)^{\prime}=\left(1 \cdot \ln (x)+x \frac{1}{x}-1\right)=\ln (x)$, so $(x \ln (x)-x)$ is an anti-derivative. Any other anti-derivative has the form:

$$
(x \ln (x)-x)+C(C \text { a constant }) .
$$

- Not all functions have anti-derivatives. The discontinuous function with domain $(-1,1)$:

$$
f(x)= \begin{cases}-1 & \text { for }-1<x<0 \\ 0 & \text { for } x=0 \\ 1 & \text { for } 0<x\end{cases}
$$

does not have an anti-derivative on the entire interval $(-1,1)$.

Notation for the family of anti-derivatives

The anti-derivatives of a function f (on an interval) form a family. The difference of any two members of the family is a constant function. Soon we will see that the Fundamental Theorem of Calculus connects anti-derivatives with things called integrals. Integrals of a function f use the notation:

$$
\int f(x) d x
$$

to denote the family of anti-derivatives (when such anti-derivatives exist). The symbol, and the family of anti-derivative is called the indefinite integral of the function f.

Examples

- Find the indefinite integral $\int\left(e^{2 t}+2 t^{\frac{1}{2}}\right) d t$. This means find the family of anti-derivatives of the function $f(t)=e^{2 t}+2 t^{\frac{1}{2}}$. We have

$$
\left(\frac{1}{2} e^{2 t}+t^{\frac{3}{2}} \frac{4}{3}\right)^{\prime}=e^{2 t}+2 t^{\frac{1}{2}}
$$

so, the general anti-derivative of f is

$$
\int\left(e^{2 t}+2 t^{\frac{1}{2}}\right) d t=\frac{1}{2} e^{2 t}+t^{\frac{3}{2}} \frac{4}{3}+C
$$

- Find the indefinite integral $\int \frac{t+1}{t} d t=\int 1+\frac{1}{t} d t$. We have

$$
(t)^{\prime}=1 \quad \text { and } \quad(\ln (t))^{\prime}=\frac{1}{t}
$$

so,

$$
\int 1+\frac{1}{t} d t=t+\ln (t)+C
$$

- Find the indefinite integral $\int(\sec (x))^{2}-1 d x$. We have

$$
(\tan (x))^{\prime}=(\sec (x))^{2} \quad \text { and } \quad(x)^{\prime}=1 ;
$$

so,

$$
\int(\sec (x))^{2}-1 d x=t+\tan (x)-x+C
$$

Anti-derivative as a solution of a differential equation.

Recall, a differential equation is an equation for an unknown function G which involves the derivatives G^{\prime} (and possibly higher derivatives). The equation that defines $G^{\prime}=f$ is therefore a differential equation for the unknown function G. A solution to $G^{\prime}=f$ is an anti-derivative of f.
Examples

- Let $p(t)$ be the position of an object on an axis, and suppose the speed $p^{\prime}(t)$ equals $6 t^{2}+4 t-10$. We have the differential equation

$$
p^{\prime}(t)=6 t^{2}+4 t-10
$$

which is the assertion the function p is an anti-derivative of $6 t^{2}+4 t-10$. So,

$$
p(t)=2 t^{3}+2 t^{2}-10 t+C
$$

There is a family of solutions.
Initial value. If we specify the value of p at a specific time, say $p(0)$, there will be precisely one function in the family which satisfies the condition. The condition is called an initial value condition.

Find the anti-derivative p so that $p(0)=0$. We have

$$
0=p(0)=2 \cdot 0^{3}+2 \cdot 0^{2}-10 \cdot 0+C ;
$$

so, $C=0$, and $p(t)=2 t^{3}+2 t^{2}-10 t$.

- A car at speed s_{0}, and position $p(0)=0$ breaks with constant deceleration of 5 meters $/ \mathrm{sec}$ and produces skid marks of 60 meters before coming to a stop. Determine s_{0}, and how long T it takes the car to stop.

Let $p(t)$ be the position of the the car at time t, so

$$
\begin{aligned}
p(0) & =0, \text { and } p(T)=60(\text { meters }) \\
p^{\prime}(t) & =\text { speed, and } p^{\prime}(0)=s_{0}, \text { and } p^{\prime}(T)=0 \\
p^{\prime \prime}(t) & =\text { acceleration, and } p^{\prime \prime}(t)=-5(\text { meters } / \text { sec })
\end{aligned}
$$

The speed function $p^{\prime}(t)$ is an anti-derivative of the acceleration $p^{\prime \prime}(t)$, which is given as the function -5 . Therefore,

$$
p^{\prime}(t)=-5 t+C_{s} \text { where the constant } C_{s} \text { needs to be determined }
$$

In turn, $p(t)$ is an anti-derivative of the speed $p^{\prime}(t)$, so

$$
p(t)=-\frac{5}{2} t^{2}+C_{s} t+C_{p} \quad \text { with the constant } C_{s} \text { to be determined }
$$

We use our initial conditions to get

$$
\begin{aligned}
0=p(0)=-\frac{5}{2} \cdot 0^{2}+C_{s} \cdot 0+C_{p} & \Longrightarrow C_{p}=0 \\
0=p^{\prime}(T)=-5 T+C_{s} & \Longrightarrow T=\frac{C_{s}}{5} \\
60=p(T)=-\frac{5}{2} \cdot T^{2}+C_{s} \cdot T & \Longrightarrow 60=-\frac{5}{2} \cdot \frac{C_{s}^{2}}{5^{2}}+\frac{C_{s}^{2}}{5}=\frac{C_{s}^{2}}{10} .
\end{aligned}
$$

So, $C_{s}^{2}=600 \Longrightarrow C_{s}=10 \sqrt{6}=24.49$ meters $/ \mathrm{sec}$, and

$$
\begin{aligned}
T & =\frac{C_{s}}{5}=2 \sqrt{6}=4.89 \text { seconds } \\
p^{\prime}(t) & =-5 t+10 \sqrt{6} \\
p^{\prime}(0) & =-5 \cdot 0+10 \sqrt{6}=24.49 \text { meters } / \mathrm{sec}
\end{aligned}
$$

The initial speed was $10 \sqrt{6}=24.49$ meters $/ \mathrm{sec}$.

