Anti-derivatives.

If f is a function with domain an interval \mathcal{I} , an antiderivative is a function F so that

$$F' = f$$

Examples.

- The functions x^2 , x^2+1 , x^2+2 , and more generally x^2+C (C a constant) are antiderivatives to the function f(x)
- If F is an antiderivative of f, then the function G(x) = F(x) + C (C a constant) is also an antiderivative.
- Conversely, suppose F, G are both antiderivatives to a function f on an interval (a, b). Then

(F - G)' = f - f = 0 zero function on the interval (a, b).

But recall we used the Mean Value Theorem to say if the derivative of a function is zero on an interval (a, b), then the function is constant. Therefore (F - G) is a constant function. So,

 $\begin{array}{ccc} F, \ G \ \text{antiderivatives} \\ \text{for } f \ \text{on an interval } (a,b) \end{array} \iff \begin{array}{ccc} (F-G) \ \text{is a} \\ \text{constant function on } (a,b) \end{array} .$

Examples

• The function $f(x) = \sin(2x)$ has domain $(-\infty, \infty)$. Find all antiderivatives of f on the interval $(-\infty, \infty)$.

We have $(\cos(2x))' = (-\sin(2x)) \cdot 2$, so

$$\left(-\frac{1}{2}\cos(2x)\right)' = -\frac{1}{2}(-\sin(2x)) = \sin(2x)$$

So, $F(x) = -\frac{1}{2}\cos(2x)$ is one anti-derivative to f on the interval $(-\infty, \infty)$. All other anti-derivatives hav the form

$$-\frac{1}{2}\cos(2x) + C$$
 (*C* a constant).

• The function $f(x) = \ln(x)$ has domain $(0, \infty)$. Find all antiderivatives of f on the interval $(0, \infty)$.

We have $(x \ln (x) - x)' = (1 \cdot \ln (x) + x \frac{1}{x} - 1) = \ln (x)$, so $(x \ln (x) - x)$ is an anti-derivative. Any other anti-derivative has the form:

$$(x \ln (x) - x) + C$$
 (C a constant).

• Not all functions have anti-derivatives. The discontinuous function with domain (-1, 1):

$$f(x) = \begin{cases} -1 & \text{for } -1 < x < 0\\ 0 & \text{for } x = 0\\ 1 & \text{for } 0 < x \end{cases}$$

does not have an anti-derivative on the entire interval (-1, 1).

Notation for the family of anti-derivatives

The anti-derivatives of a function f (on an interval) form a family. The difference of any two members of the family is a constant function. Soon we will see that the Fundamental Theorem of Calculus connects anti-derivatives with things called integrals. Integrals of a function f use the notation:

$$\int f(x) \ dx$$

to denote the family of anti-derivatives (when such anti-derivatives exist). The symbol, and the family of anti-derivative is called the **indefinite integral** of the function f.

Examples

• Find the indefinite integral $\int (e^{2t} + 2t^{\frac{1}{2}}) dt$. This means find the family of anti-derivatives of the function $f(t) = e^{2t} + 2t^{\frac{1}{2}}$. We have

$$\left(\frac{1}{2}e^{2t} + t^{\frac{3}{2}}\frac{4}{3}\right)' = e^{2t} + 2t^{\frac{1}{2}};$$

so, the general anti-derivative of f is

$$\int \left(e^{2t} + 2t^{\frac{1}{2}} \right) dt = \frac{1}{2}e^{2t} + t^{\frac{3}{2}}\frac{4}{3} + C$$

• Find the indefinite integral $\int \frac{t+1}{t} dt = \int 1 + \frac{1}{t} dt$. We have

$$(t)' = 1$$
 and $(\ln(t))' = \frac{1}{t};$

so,

$$\int 1 \, + \, \frac{1}{t} \, dt \; = \; t \; + \; \ln(t) \; + \; C$$

• Find the indefinite integral $\int (\sec(x))^2 - 1 dx$. We have

$$(\tan(x))' = (\sec(x))^2$$
 and $(x)' = 1;$

 $\mathrm{so},$

$$\int (\sec(x))^2 - 1 \, dx = t + \tan(x) - x + C \, .$$

Anti-derivative as a solution of a differential equation.

Recall, a differential equation is an equation for an unknown function G which involves the derivatives G' (and possibly higher derivatives). The equation that defines G' = f is therefore a differential equation for the unknown function G. A solution to G' = f is an anti-derivative of f.

Examples

• Let p(t) be the position of an object on an axis, and suppose the speed p'(t) equals $6t^2 + 4t - 10$. We have the differential equation

$$p'(t) = 6t^2 + 4t - 10 ,$$

which is the assertion the function p is an anti-derivative of $6t^2 + 4t - 10$. So,

$$p(t) = 2t^3 + 2t^2 - 10t + C$$

There is a family of solutions.

Initial value. If we specify the value of p at a specific time, say p(0), there will be precisely one function in the family which satisfies the condition. The condition is called an **initial value condition**.

Find the anti-derivative p so that p(0) = 0. We have

$$0 = p(0) = 2 \cdot 0^3 + 2 \cdot 0^2 - 10 \cdot 0 + C;$$

so, C = 0, and $p(t) = 2t^3 + 2t^2 - 10t$.

• A car at speed s_0 , and position p(0) = 0 breaks with constant deceleration of 5 meters/sec and produces skid marks of 60 meters before coming to a stop. Determine s_0 , and how long T it takes the car to stop.

Let p(t) be the position of the the car at time t, so

$$p(0) = 0$$
, and $p(T) = 60$ (meters)
 $p'(t) =$ speed, and $p'(0) = s_0$, and $p'(T) = 0$
 $p''(t) =$ acceleration, and $p''(t) = -5$ (meters/sec)

The speed function p'(t) is an anti-derivative of the acceleration p''(t), which is given as the function -5. Therefore,

 $p'(t) = -5t + C_s$ where the constant C_s needs to be determined

In turn, p(t) is an anti-derivative of the speed p'(t), so

$$p(t) = -\frac{5}{2}t^2 + C_s t + C_p$$
 with the constant C_s to be determined

We use our initial conditions to get

$$0 = p(0) = -\frac{5}{2} \cdot 0^2 + C_s \cdot 0 + C_p \implies C_p = 0$$

$$0 = p'(T) = -5T + C_s \implies T = \frac{C_s}{5}$$

$$60 = p(T) = -\frac{5}{2} \cdot T^2 + C_s \cdot T \implies 60 = -\frac{5}{2} \cdot \frac{C_s^2}{5^2} + \frac{C_s^2}{5} = \frac{C_s^2}{10}.$$

So, $C_s^2 = 600 \implies C_s = 10\sqrt{6} = 24.49$ meters/sec, and $C_s = -\frac{10}{6}$

$$T = \frac{C_s}{5} = 2\sqrt{6} = 4.89 \text{ seconds}$$

$$p'(t) = -5t + 10\sqrt{6}$$

$$p'(0) = -5 \cdot 0 + 10\sqrt{6} = 24.49 \text{ meters/sec}$$

The initial speed was $10\sqrt{6} = 24.49$ meters/sec.