L'Hôpital's rule for a limit.

L'Hôpital's rule for a limit allow one to sometimes find an indeterminant limit. An indeterminant limit is a limit of a ratio

$$
\frac{f(x)}{g(x)}
$$

where both functions have either limit 0 or limit ∞.
Example. Consider

$$
\lim _{x \rightarrow 1} \frac{\ln (x)}{(x-1)(x-3)} .
$$

The two functions $\ln (x)$, and $g(x)=(x-1)(x-3)$ are both continuous on the interval $(0, \infty)$. Their limits as $x \rightarrow 1$, are $\ln (1)=0$, and $g(1)=(1-1)(1-3)=0$. Therefore, the limit of the ratio $\frac{f(x)}{g(x)}$ is indeterminant as $x \rightarrow 1$. The adjective indeterminant just refers to the fact that both the top and both function have limit 0 .
The derivatives (tangent slopes) of $\ln (x)$ and $g(x)$ at input 1 are 1 and -2 . These derivative values can be used to find the limit $\lim _{x \rightarrow 1} \frac{\ln (x)}{(x-1)(x-3)}$.

Since $\ln (1)=0$ and $g(1)=0$, we can write the ratio $\frac{\ln (x)}{g(x)}$ as:

$$
\frac{\ln (x)}{g(x)}=\frac{\ln (x)-\ln (1)}{g(x)-g(1)}=\frac{\frac{\ln (x)-\ln (1)}{x-1}}{\frac{g(x)-g(1)}{x-1}}
$$

Now, as $x \rightarrow 1$, we know:

$$
\begin{aligned}
\lim _{x \rightarrow 1} \frac{\ln (x)-\ln (1)}{x-1} & =(\ln)^{\prime}(1)=\frac{1}{x \mid x=1}=1 \\
\lim _{x \rightarrow 1} \frac{g(x)-g(1)}{x-1} & =(g)^{\prime}(1)=(2 x-4)_{\mid x=1}=-2 .
\end{aligned}
$$

By the quotient rule for limits:

$$
\lim _{x \rightarrow 1} \frac{\frac{\ln (x)-\ln (1)}{x-1}}{\frac{g(x)-g(1)}{x-1}}=\frac{1}{-2} \quad \text { so } \quad \lim _{x \rightarrow 1} \frac{\ln (x)}{g(x)}=\frac{1}{-2} .
$$

L'Hôpital's rule for a limit.

Assume f and g are two differentiable functions on an interval, and a is an interior point, and:
(i) The limit $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}$ is indeterminant, that is,

$$
\lim _{x \rightarrow a} f(x)=0 \text { and } \lim _{x \rightarrow a} g(x)=0 .
$$

(ii) $\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}=L$.

Then, $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=L$ exists.

Examples.

- Suppose $a, b>0$. Find $\lim _{x \rightarrow 0} \frac{a^{x}-b^{x}}{x}$.

We check the individual limits.

$$
\lim _{x \rightarrow 0}\left(a^{x}-b^{x}\right)=1-1=0 \quad \text { and } \quad \lim _{x \rightarrow 0} x=0
$$

so the original limit is indeterminant $\frac{0}{0}$.
We take derivatives:

$$
\begin{aligned}
\left(a^{x}-b^{x}\right)^{\prime}=a^{x} \ln (a)-b^{x} \ln (b) & \Longrightarrow \lim _{x \rightarrow 0}\left(a^{x}-b^{x}\right)^{\prime}=\ln (a)-\ln (b) \\
(x)^{\prime}=1 & \Longrightarrow \lim _{x \rightarrow 0}(x)^{\prime}=1
\end{aligned}
$$

So:

$$
\lim _{x \rightarrow 0} \frac{\left(a^{x}-b^{x}\right)^{\prime}}{(x)^{\prime}}=\frac{\ln (a)-\ln (b)}{1}
$$

Therefore,

$$
\lim _{x \rightarrow 0} \frac{a^{x}-b^{x}}{x}=\ln (a)-\ln (b)
$$

- Find $\lim _{x \rightarrow \frac{\pi}{2}}\left(\frac{\pi}{2}-x\right) \tan (x)$.

As $x \rightarrow \frac{\pi}{2}$, we have $\left(\frac{\pi}{2}-x\right) \rightarrow 0$, and $\tan (x) \rightarrow \infty$, which is the indeterminant form $0 \cdot \infty$. We rewrite as:

$$
\left(\frac{\pi}{2}-x\right) \tan (x)=\left(\frac{\pi}{2}-x\right) \frac{\sin (x)}{\cos (x)}=\frac{\left(\frac{\pi}{2}-x\right) \sin (x)}{\cos (x)}=\frac{f(x)}{g(x)}
$$

and $\lim _{x \rightarrow \frac{\pi}{2}} f(x)=0$ and $\lim _{x \rightarrow \frac{\pi}{2}} g(x)=0$; so we get the standard indetermine form $\frac{0}{0}$. We check the 2nd hypotheses of L'Hôpital's rule.

$$
\begin{aligned}
(f(x))^{\prime}=(0-1) \sin (x)+\left(\frac{\pi}{2}-x\right) \cos (x) & \Longrightarrow \quad \lim _{x \rightarrow \frac{\pi}{2}}(f(x))^{\prime}=-1 \\
(g(x))^{\prime}=-\sin (x) & \Longrightarrow \quad \lim _{x \rightarrow \frac{\pi}{2}}(g(x))^{\prime}=-1
\end{aligned}
$$

So, $\lim _{x \rightarrow \frac{\pi}{2}} \frac{f^{\prime}(x)}{g^{\prime}(x)}=\frac{-1}{-1}=1$, and therefore $\left(\frac{\pi}{2}-x\right) \tan (x)=\frac{f(x)}{g(x)}$ has limit 1 , as $x \rightarrow \frac{\pi}{2}$.

Other forms of L'Hôpital's rule for a limit.

$\frac{\infty}{\infty}$ form. Hypotheses

- $\lim _{x \rightarrow a} f(x)=\infty$ and $\lim _{x \rightarrow a} g(x)=\infty$.
- $\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}=L$ exists.

Then, $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=L$ exists.
input approaching ∞ form. Hypotheses

- $\lim _{x \rightarrow \infty} f(x)=0$ and $\lim _{x \rightarrow \infty} g(x)=0$.
- $\lim _{x \rightarrow \infty} \frac{f^{\prime}(x)}{g^{\prime}(x)}=L$ exists.

Then, $\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=L$ exists.

Caution. One must properly check both hypotheses of L'Hôpital's rule.
Example. What is wrong with

$$
\lim _{x \rightarrow \frac{\pi}{3}} \frac{\frac{1}{2}-\cos (x)}{\sin (x)}=\lim _{x \rightarrow \frac{\pi}{3}} \frac{\sin (x)}{\cos (x)}=\frac{\frac{\sqrt{3}}{2}}{\frac{1}{2}}=\sqrt{3} ?
$$

The calculation is wrong because $\lim _{x \rightarrow \frac{\pi}{3}}\left(\frac{1}{2}-\cos (x)\right)=0$, and $\lim _{x \rightarrow \frac{\pi}{3}}(\sin (x))=\frac{1}{2}$, so the ratio does not have an indeterminant $\frac{0}{0}$ form. By the 'regular' quotient rule for limits,

$$
\lim _{x \rightarrow \frac{\pi}{3}} \frac{\frac{1}{2}-\cos (x)}{\sin (x)}=\frac{\lim _{x \rightarrow \frac{\pi}{3}}\left(\frac{1}{2}-\cos (x)\right)}{\lim _{x \rightarrow \frac{\pi}{3}}(\sin (x))}=\frac{0}{\frac{1}{2}}=0
$$

Some idea why L'Hôpital's rule is true

The Mean Value Theorem, says if a function f is continuous on the interval $[a, b]$, and differentiable on the interval (a, b), then the secant slope

$$
\frac{f(b)-f(a)}{b-a}
$$

will be the value derivative at some interior point c. So there is a interior c with $f^{\prime}(c)$ equal to the secant slope. There is a two function version of the Mean Value Theorem which says if f and g are two functions continuous on $[a, b]$, and differentiable on (a, b), then there is an interior point c so:

$$
\frac{f^{\prime}(c)}{g^{\prime}(c)}=\frac{f(b)-f(a)}{g(b)-g(a)}
$$

Suppose $\lim _{x \rightarrow d} \frac{f(x)}{g(x)}=\frac{0}{0}$ is indeterminant. This means $f(d)=0$ and $g(d)=0$; therefore, applying the two function Mean Value Theorem to f and g on the interval $[d, x]$

$$
\frac{f(x)}{g(x)}=\frac{f(x)-f(d)}{g(x)-g(d)}=\frac{f(c)}{g(c)} \quad \text { for some } c \in(d, x) .
$$

As $x \rightarrow d$, the interior point c is squeezed between d and x and so $c \rightarrow d$. But, then $\frac{g^{\prime}(c)}{f^{\prime}(c)} \rightarrow L$, so $\frac{g(x)}{f(x)} \rightarrow L$ too.

