L'Hôpital's rule for a limit.

L'Hôpital's rule for a limit allow one to sometimes find an indeterminant limit. An indeterminant limit is a limit of a ratio

$$\frac{f(x)}{g(x)}$$

where both functions have either limit 0 or limit ∞ .

Example. Consider

$$\lim_{x \to 1} \frac{\ln(x)}{(x-1)(x-3)}$$

The two functions $\ln(x)$, and g(x) = (x-1)(x-3) are both continuous on the interval $(0, \infty)$. Their limits as $x \to 1$, are $\ln(1) = 0$, and g(1) = (1-1)(1-3) = 0. Therefore, the limit of the ratio $\frac{f(x)}{g(x)}$ is indeterminant as $x \to 1$. The adjective indeterminant just refers to the fact that both the top and both function have limit 0.

The derivatives (tangent slopes) of $\ln(x)$ and g(x) at input 1 are 1 and -2. These derivative values can be used to find the limit $\lim_{x\to 1} \frac{\ln(x)}{(x-1)(x-3)}$.

Since $\ln(1) = 0$ and g(1) = 0, we can write the ratio $\frac{\ln(x)}{g(x)}$ as:

$$\frac{\ln(x)}{g(x)} = \frac{\ln(x) - \ln(1)}{g(x) - g(1)} = \frac{\frac{\ln(x) - \ln(1)}{x - 1}}{\frac{g(x) - g(1)}{x - 1}}$$

Now, as $x \to 1$, we know:

$$\lim_{x \to 1} \frac{\ln(x) - \ln(1)}{x - 1} = (\ln)'(1) = \frac{1}{x}_{|x=1} = 1$$
$$\lim_{x \to 1} \frac{g(x) - g(1)}{x - 1} = (g)'(1) = (2x - 4)_{|x=1} = -2$$

By the quotient rule for limits:

$$\lim_{x \to 1} \frac{\frac{\ln(x) - \ln(1)}{x - 1}}{\frac{g(x) - g(1)}{x - 1}} = \frac{1}{-2} \quad \text{so} \quad \lim_{x \to 1} \frac{\ln(x)}{g(x)} = \frac{1}{-2}.$$

L'Hôpital's rule for a limit.

Assume f and g are two differentiable functions on an interval, and a is an interior point, and:

(i) The limit $\lim_{x \to a} \frac{f(x)}{g(x)}$ is indeterminant, that is, $\lim_{x \to a} f(x) = 0$ and $\lim_{x \to a} g(x) = 0$. (ii) $\lim_{x \to a} \frac{f'(x)}{g'(x)} = L$. Then, $\lim_{x \to a} \frac{f(x)}{g(x)} = L$ exists. Examples.

• Suppose a, b > 0. Find $\lim_{x \to 0} \frac{a^x - b^x}{x}$. We check the individual limits.

$$\lim_{x \to 0} (a^x - b^x) = 1 - 1 = 0 \quad \text{and} \quad \lim_{x \to 0} x = 0.$$

so the original limit is indeterminant $\frac{0}{0}$.

We take derivatives:

$$(a^{x} - b^{x})' = a^{x} \ln(a) - b^{x} \ln(b) \implies \lim_{x \to 0} (a^{x} - b^{x})' = \ln(a) - \ln(b)$$

 $(x)' = 1 \implies \lim_{x \to 0} (x)' = 1.$

So:

$$\lim_{x \to 0} \frac{(a^x - b^x)'}{(x)'} = \frac{\ln(a) - \ln(b)}{1} \,.$$

Therefore,

$$\lim_{x \to 0} \frac{a^x - b^x}{x} = \ln(a) - \ln(b)$$

• Find $\lim_{x \to \frac{\pi}{2}} (\frac{\pi}{2} - x) \tan(x)$. As $x \to \frac{\pi}{2}$, we have $(\frac{\pi}{2} - x) \to 0$, and $\tan(x) \to \infty$, which is the indeterminant form $0 \cdot \infty$. We rewrite as:

$$\left(\frac{\pi}{2} - x\right) \tan(x) = \left(\frac{\pi}{2} - x\right) \frac{\sin(x)}{\cos(x)} = \frac{\left(\frac{\pi}{2} - x\right) \sin(x)}{\cos(x)} = \frac{f(x)}{g(x)}$$

and $\lim_{x \to \frac{\pi}{2}} f(x) = 0$ and $\lim_{x \to \frac{\pi}{2}} g(x) = 0$; so we get the standard indetermine form $\frac{0}{0}$. We check the 2nd hum etheses of L'Hônitel's rule.

check the 2nd hypotheses of L'Hôpital's rule.

$$(f(x))' = (0-1)\sin(x) + (\frac{\pi}{2} - x)\cos(x) \implies \lim_{x \to \frac{\pi}{2}} (f(x))' = -1$$
$$(g(x))' = -\sin(x) \implies \lim_{x \to \frac{\pi}{2}} (g(x))' = -1.$$

So, $\lim_{x \to \frac{\pi}{2}} \frac{f'(x)}{g'(x)} = \frac{-1}{-1} = 1$, and therefore $(\frac{\pi}{2} - x) \tan(x) = \frac{f(x)}{g(x)}$ has limit 1, as $x \to \frac{\pi}{2}$.

Other forms of L'Hôpital's rule for a limit.

$$\frac{\infty}{\infty} \text{ form. Hypotheses}
\bullet \lim_{x \to a} f(x) = \infty \text{ and } \lim_{x \to a} g(x) = \infty.
\bullet \lim_{x \to a} \frac{f'(x)}{g'(x)} = L \text{ exists.}
\text{Then, } \lim_{x \to a} \frac{f(x)}{g(x)} = L \text{ exists.}$$

input approaching ∞ form.

Hypotheses

•
$$\lim_{x \to \infty} f(x) = 0$$
 and $\lim_{x \to \infty} g(x) = 0$.
• $\lim_{x \to \infty} \frac{f'(x)}{g'(x)} = L$ exists.
Then, $\lim_{x \to \infty} \frac{f(x)}{g(x)} = L$ exists.

Caution. One must properly check **both** hypotheses of L'Hôpital's rule. Example. What is wrong with

$$\lim_{x \to \frac{\pi}{3}} \frac{\frac{1}{2} - \cos(x)}{\sin(x)} = \lim_{x \to \frac{\pi}{3}} \frac{\sin(x)}{\cos(x)} = \frac{\frac{\sqrt{3}}{2}}{\frac{1}{2}} = \sqrt{3}?$$

The calculation is wrong because $\lim_{x \to \frac{\pi}{3}} (\frac{1}{2} - \cos(x)) = 0$, and $\lim_{x \to \frac{\pi}{3}} (\sin(x)) = \frac{1}{2}$, so the ratio does not have an indeterminant $\frac{0}{0}$ form. By the 'regular' quotient rule for limits,

$$\lim_{x \to \frac{\pi}{3}} \frac{\frac{1}{2} - \cos(x)}{\sin(x)} = \frac{\lim_{x \to \frac{\pi}{3}} \left(\frac{1}{2} - \cos(x)\right)}{\lim_{x \to \frac{\pi}{3}} \left(\sin(x)\right)} = \frac{0}{\frac{1}{2}} = 0$$

Some idea why L'Hôpital's rule is true

The Mean Value Theorem, says if a function f is continuous on the interval [a, b], and differentiable on the interval (a, b), then the secant slope

$$\frac{f(b) - f(a)}{b - a}$$

will be the value derivative at some interior point c. So there is a interior c with f'(c) equal to the secant slope. There is a two function version of the Mean Value Theorem which says if fand g are two functions continuous on [a, b], and differentiable on (a, b), then there is an interior point c so:

$$\frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) - g(a)}$$

Suppose $\lim_{x \to d} \frac{f(x)}{g(x)} = \frac{0}{0}$ is indeterminant. This means f(d) = 0 and g(d) = 0; therefore, applying the two function Mean Value Theorem to f and g on the interval [d, x]

$$\frac{f(x)}{g(x)} = \frac{f(x) - f(d)}{g(x) - g(d)} = \frac{f(c)}{g(c)} \text{ for some } c \in (d, x) .$$

As $x \to d$, the interior point c is squeezed between d and x and so $c \to d$. But, then $\frac{g'(c)}{f'(c)} \to L$, so $\frac{g(x)}{f(x)} \to L$ too.