
Riemann sums and existence of the definite integral.
In the calculation of the area of the region X bounded by the graph of g(x) = x2, the x-axis

and 0 ≤ x ≤ b, two sums appeared:

( n∑

k=1

(k − 1)2
) b3

n3
≤ area(X) ≤

( n∑

k=1

k2
) b3

n3

These sums are examples of what are called Riemann sums.

Equal length subintervals Riemann sum.
Suppose f is a function with domain a ≤ x ≤ b. We create a (equal length subintervals

Riemann sum as follow:

• Take a positive integer and divide the interval [a, b] in n equal length subintervals of length

∆xn =
(
b− a
n

)
. Clearly the endpoints of the various subintervals are:

x0 = a , · · · , xk = x0 + k∆xn , · · · , xn = x0 + n∆xn = b .
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• For each subinterval Ik = [xk−1, xk] we choose a point x∗k in Ik.

Image a rectangle with base the interval Ik and height f (x∗k). The sum

n∑

k=1

f (x∗k) ∆xn , (where ∆xn =
( b − a

n

)
)

is called a Riemann sum.
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We are free to choose the points x∗k to be any point we want in the interval Jk, so there are many

Riemann sums.

Examples

· Left endpoint Riemann sum. Here, we always take the point x∗k to be the left

endpoint xk−1 = a + (k− 1)∆xn in the subinterval Ik = [xk−1, xk]. The Riemann sum is

n∑

k=1

f (xk−1) ∆xn =

n∑

k=1

f ( a + (k − 1)∆xn) ∆xn , (where ∆xn =
( b − a

n

)
)

· Right endpoint Riemann sum. Here, we take x∗k to always be the right endpoint of

Ik. The Riemann sum is

n∑

k=1

f (xk) ∆xn =

n∑

k=1

f ( a + k∆xn) ∆xn

· Midpoint Riemann sum. We take x∗k to always be the midpoint
xk−1+xk

2 of Ik. The

midpoint is a + (k − 1
2)∆xn), and the Riemann sum is

n∑

k=1

f (
xk−1 + xk

2
) ∆xn =

n∑

k=1

f ( a + (k − 1

2
)∆xn) ∆xn

Nice property. Suppose the function f has domain [a, b], and
on any subinterval [c, d], the function achieves a minimum and a
maximum value.
Examples of functions which satisfy the nice property are:

· Any continuous function.

· An ‘increasing’ function – meaning x1 < x2 =⇒ f (x1) ≤ f (x2).

· A ‘decreasing’ function – meaning x1 < x2 =⇒ f (x1) ≥ f (x2).

If the function f satisfies the nice property, for each positive integer n, we can create two Riemann

sums by taking xmin
k to be an input which provides the minimum value of f on Ik, and xmax

k to

be an input which provides the maximum value of f on Ik. We call the sums:

n∑

k=1

f (xmin
k ) ∆xn an under-estimate Riemann sum

n∑

k=1

f (xmax
k ) ∆xn an over-estimate Riemann sum



For any other x∗k in Ik, we have f (x
min
k ) ≤ f (x∗k ) ≤ f (xmax

k ), so

n∑

k=1

f (xmin
k ) ∆xn ≤

n∑

k=1

f (x∗k ) ∆xn ≤
n∑

k=1

f (xmax
k ) ∆xn

which says any Riemann sum for the partition into n equal length subintervals of length ∆xn =

(b−a
n ) is between the under and the over estimate Riemann sums.

A function f satisfying the nice property is integrable if the under and over estimate Riemann

sums have equal limits as n → ∞.

lim
n→∞

n∑

k=1

f (xmin
k ) ∆xn equals lim

n→∞

n∑

k=1

f (xmax
k ) ∆xn .

The common limit value is called the definite integral of the function, and denoted as:
∫ b

a

f (x) dx

Note. For the example g(x) = x2 with domain [0, b], the left endpoints of the intervals Ik’s give

the under-estimate Riemann sum:

n∑

k=1

f (xmin
k ) ∆xn =

n−1∑

ℓ=0

ℓ2
( b3
n3

)
→ b3

3
as n → ∞

The right endpoints of the intervals Ik give the over-estimate Riemann sum:

n∑

k=1

f (xmax
k ) ∆xn =

n∑

k=1

k2
( b3
n3

)
→ b3

3
as n → ∞



Existence of definite integral for increasing functions
Suppose a function f with domain [a, b] is increasing (or decreasing) on the interval. Then,

the under and over estimate Riemann sums have limits which are the same. So, the function is

integrable.

These pictures give the reason why the assertion is true when f is an increasing function.

Since f is an increasing function on each subinterval Ik, the the function f has minimum value

at the left endpoint and maximum value at the right endpoint. This means:

· The under estimate Riemann sum is the left endpoint Riemann sum
∑n

k=1 f (xk−1) ∆xn.

· The over estimate Riemann sum is the right endpoint Riemann sum
∑n

k=1 f (xk) ∆xn.

The difference of the over estimate and under estimate Riemann sums (for n equal length subin-

tervals) are the shaded rectangles in the left figure. These rectangles all have base length ∆xn.

They can be slided to produce a vertical column of base ∆xn and height f (b) − f (a).

The difference is: (
f (b) − f (a)

)
∆xn =

(
f (b) − f (a)

) b − a

n
As n → ∞, the factor b− a

n in the right hand side has limit zero, so the difference of the over and

under estimate has limit zero. This means the limits of the under and over estimates must exist

and have the same value.

The logic in changing notation from Riemann sum to definite integral is:

n∑

k=1

f (xk) ∆xn is converted to

∫ b

a

f (x) dx



Basic properties of definite integrals.

• If the function f is has domain [a, c], and the function is integrable on the subintervals [a, b]

and [b, c], then the function is integrable on the entire interval [a, c], and
∫ b

a

f (x) dx +

∫ c

b

f (x) dx =

∫ c

a

f (x) dx

This property is quite useful. A function which is increasing (or decreasing) on an interval

is integrable. If the domain [r, s] of a function f can be partitioned into (a finite number

of) subintervals on which the function is either increasing or decreasing, then the function is

integrable on each subinterval, and therefore integrable on the entire interval [r, s].

In the figure, the interval has been partition into 6 subintervals on which the function is

decreasing or increasing. On each subinterval, the function is integrable, so the function is

integrable on the entire interval.

Most common functions such as polynomials, exponential, trignometric, rational, power and

their combinations and composites satisfy the above property, and are therefore integrable on

any intevral [a, b] on which they are defined (meaning no undefined points such as an infinite

limit).

• If f and g are two functions integrable on the domain [a, b], then:

· Their sum f + g is integrable, and
∫ b

a

( f (x) + g(x) ) dx =

∫ b

a

f (x) dx +

∫ b

a

g(x) dx .

· If we multiply by a constant C, we have
∫ b

a

C f (x) dx = C

∫ b

a

f (x) dx .

• If f and g are two functions integrable on the domain [a, b], and f (x) ≤ g(x) throughout

the interval, then ∫ b

a

f (x) dx ≤
∫ b

a

g(x) dx .

• f (x) dx = −
∫ a

b f (x) dx, and
∫ a

a f (x) dx = 0.

• If the function values are ≤ 0, then
∫ b

a

f (x) dx = minus area between graph of f and x-axis (on interval [a, b]).



• If a function f , with domain [a, b], is integrable, then it is also integrable on any inside

subinterval [c, d].

• If a function f , with domain [a, b], is continuous, then it is integrable. For common

continuous functions, with domain [a, b], we can decompose the interval into a finite sumber

of subintervals on which the function is increasing or decreasing and the 1st property applies

to show f is integrable.

But there are continuous function on an interval [a, b] for which it is not possible to divide

the interval in a fincite number of subintervals of increase and decrease. An example is the

function f (0) = 0, and f (x) = x sin(1/x) for 0 < x < 1. It is continuous on [0, 1], but [0, 1]

can be divided into a finite number of subintervals where the function is only increasing or

decreasing.
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x*sin(1/x) is continuous

Example of a function which is not integrable.

Take the following function with domain [0, 1]:

f (x) =

{
0 when x is an irrational number

1 when x is an rational number

On any subinterval, the minimum value of the function is 0 and the maximum value is 1. This

means any over estimate Riemann summ equal 1 and any under estimate Riemann sum equals 0.

For equal length subintervals, the over estimate Riemann sums has limit 1 and the under estimate

Riemann sums has limit 0. So, the function is not integrable.


