Techniques of integration - substitution.

The powerful statement of the fundamental theorems of calculus is that we can compute the definite integral of a function f over an interval $[a, b]$ by finding an anti-derivative F of f. Using the rules for derivatives in 'reverse' we can obtain ways (techniques) to find anti-derivatives. The two most used derivative rules are the chain rule and the product rule. In 'reverse' these two rules give two techniques to find anti-derivatives.

- reversing chain rule gives substitution method for finding anti-derivatives.
- reversing product rule gives integration by parts method.

Chain rule: If g and h are two differentiable functions and we compose them to get $F(x)=$ $h(g(x))$, then:

$$
F(x)=h(g(x)) \quad \Longrightarrow \quad F^{\prime}(x)=h^{\prime}(g(x)) g^{\prime}(x)
$$

Therefore, if we can write a function $f(x)$ in the form

$$
f(x)=h^{\prime}(g(x)) g^{\prime}(x) \text { then } F(x)=h(g(x)) \text { is an anti-derivative }
$$

In terms of differentials, if $u=g(x)$, then $d u=g^{\prime}(x) d x$, and so for any $h(u)$, we have

$$
\int h(u) g^{\prime}(x) d x=\int h(u) d u
$$

Examples.

- Find anti-derivatives of $\frac{x}{1+x^{2}}$.

Solution 1. We know $h(u)=\ln (u)$ has derivative $\frac{1}{u}$. To match with $\frac{x}{1+x^{2}}$, we take $u=1+x^{2}$ (so $g(x)=1+x^{2}$). Then, $h(g(x))$ has derivative

$$
\left(\ln \left(1+x^{2}\right)\right)^{\prime}=\frac{1}{1+x^{2}} 2 x=\frac{2 x}{1+x^{2}}
$$

so, $\frac{1}{2} \ln \left(1+x^{2}\right)$ is a anti-derivative of $\frac{x}{1+x^{2}}$, and thereforee, the general anti-derivative is $\frac{1}{2} \ln \left(1+x^{2}\right)+C$.

Solution 2. We wish to find $\int \frac{x}{1+x^{2}} d x$. We take $u=\left(1+x^{2}\right)$, so $d u=2 x d x$, then

$$
\begin{aligned}
\int \frac{x}{1+x^{2}} d x & =\int \frac{1}{1+x^{2}} x d x=\int \frac{1}{u} \frac{1}{2} d u \\
& =\frac{1}{2} \int \frac{1}{u}=\frac{1}{2} \ln (u)+C \\
& =\frac{1}{2} \ln \left(1+x^{2}\right)+C
\end{aligned}
$$

- Find $\int e^{x} \sqrt{3+e^{x}} d x$. We take $u=\left(3+e^{x}\right)$, so $d u=e^{x} d x$. Then

$$
\begin{aligned}
\int e^{x} \sqrt{3+e^{x}} d x & =\int \sqrt{3+e^{x}} e^{x} d x=\int \sqrt{u} d u \\
& =\int u^{\frac{1}{2}} d u=\frac{2}{3} u^{\frac{3}{2}}+C=\frac{2}{3}\left(3+e^{x}\right)^{\frac{3}{2}}+C .
\end{aligned}
$$

Limits of integration and substitution.
In a definite integral $\int_{a}^{b} f(x) d x$, the endpoints a and b of the interval are sometimes called the limits of the integration. Under subsitution, the limits of the inetgration change.
Examples.

- Evaluate $\int_{0}^{\frac{\pi}{4}} \frac{\sin (x)}{(\cos (x))^{2}} d x$. Take $u=\cos (x)$, so that $d u=-\sin (x) d x$. Then,

$$
x=0 \quad \Longrightarrow u=\cos (0)=1 \quad \text { and } \quad x=\frac{\pi}{4} \quad \Longrightarrow u=\cos \left(\frac{\pi}{4}\right)=\frac{1}{\sqrt{2}}
$$

so,

$$
\begin{aligned}
\int_{0}^{\frac{\pi}{4}} \frac{\sin (x)}{(\cos (x))^{2}} d x & =\int_{0}^{\frac{\pi}{4}} \frac{\sin (x) d x}{(\cos (x))^{2}}=\int_{1}^{\frac{1}{\sqrt{2}}} \frac{-d u}{u^{2}} \\
& =\int_{\frac{1}{\sqrt{2}}}^{1} \frac{d u}{u^{2}}=\left.\left(-\frac{1}{u}\right)\right|_{\frac{1}{\sqrt{2}}} ^{1} \\
& =-\frac{1}{1}-\left(-\frac{1}{\frac{1}{\sqrt{2}}}\right)=-1+\sqrt{2}
\end{aligned}
$$

- Evaluate $\int_{\frac{2}{5 \sqrt{3}}}^{\frac{2}{5}} \frac{d x}{x \sqrt{25 x^{2}-1}}$. We use two subsititutions to determine the definite. 1st substituion. Take $u=25 x^{2}-1$, so $d u=50 x d x$. Then,

$$
\begin{aligned}
u+1=25 x^{2} & \Longrightarrow \frac{d x}{x}=\frac{50 x d x}{50 x^{2}}=\frac{d u}{2(u+1)} \\
& \Longrightarrow \frac{d x}{x \sqrt{25 x^{2}-1}}=\frac{d u}{2(u+1) u^{\frac{1}{2}}}
\end{aligned}
$$

and

$$
\begin{gathered}
x=\frac{2}{5 \sqrt{3}} \Longrightarrow u=25\left(\frac{2}{5 \sqrt{3}}\right)^{2}-1=\frac{4}{3}-1=\frac{1}{3}, \quad \text { and } \\
x=\frac{2}{5} \Longrightarrow u=25\left(\frac{2}{5}\right)^{2}-1=4-1=3 ;
\end{gathered}
$$

so,

$$
\int_{\frac{2}{5 \sqrt{3}}}^{\frac{2}{5}} \frac{d x}{x \sqrt{25 x^{2}-1}} d x=\frac{1}{2} \int_{\frac{1}{3}}^{3} \frac{d u}{(u+1) u^{\frac{1}{2}}} .
$$

2nd substitution. Take $u=v^{2}$, so $d u=2 v d v$. Then,

$$
\frac{d u}{u^{\frac{1}{2}}}=\frac{2 v d v}{v}=2 d v \quad \Longrightarrow \quad \frac{d u}{(u+1) u^{\frac{1}{2}}}=\frac{2 d v}{v^{2}+1}
$$

so,

$$
\begin{aligned}
\frac{1}{2} \int_{\frac{1}{3}}^{3} \frac{d u}{(u+1) u^{\frac{1}{2}}} & =\frac{1}{2} \int_{\frac{1}{\sqrt{3}}}^{\sqrt{3}} \frac{2 d v}{v^{2}+1}=\int_{\frac{1}{\sqrt{3}}}^{\sqrt{3}} \frac{d v}{v^{2}+1}=\left.\arctan (v)\right|_{\frac{1}{\sqrt{3}}} ^{\sqrt{3}} \\
& =\arctan (\sqrt{3})-\arctan \left(\frac{1}{\sqrt{3}}\right)=\frac{\pi}{3}=\frac{\pi}{6}=\frac{\pi}{6}
\end{aligned}
$$

so,

$$
\int_{\frac{2}{5 \sqrt{3}}}^{\frac{2}{5}} \frac{d x}{x \sqrt{25 x^{2}-1}}=\frac{1}{2} \int_{\frac{1}{3}}^{3} \frac{d u}{(u+1) u^{\frac{1}{2}}}=\frac{\pi}{6} .
$$

Applications of integrals.

If f is a integrable function with domain $[a, b]$, the number

$$
\frac{1}{b-a} \int_{a}^{b} f(x) d x
$$

is the average value of the function on the interval.
Examples.

- A hiking trail has elevation in feet given by

$$
f(x)=60 x^{3}-650 x^{2}+1200 x+4500 \text { for } 0 \leq x \leq 5 \text { (miles). }
$$

Find the average elevation of the trail. The integral is

$$
\begin{aligned}
\int_{0}^{5} f(x) d x & =15 x^{4}-\frac{650}{3} x^{3}+600 x^{2}+\left.4500 x\right|_{0} ^{5} \\
& =15 \cdot 5^{4}-\frac{650}{3} \cdot 5^{3}+600 \cdot 5^{2}+4500 \cdot 5 \\
& =19791 \frac{2}{3} \text { (feet) }
\end{aligned}
$$

Therefore, the average elevation is $\frac{19791 \frac{2}{3}}{5}=3958 \frac{1}{3}$ (feet).

- Find the average value of the function $\sin (x)$ on the interval $[0, \pi]$.

In a previous example, we computed $\int_{0}^{\pi} \sin (x) d x=2$; therefore, the average value of \sin on $[0, \pi]$ is:

$$
\frac{1}{\pi} \int_{0}^{\pi} \sin (x) d x=\frac{2}{\pi}
$$

- Integral Mean Value Theorem. The term mean is often used in place of the term average. We apply the derivative mean value to the area function of a continuous function f :
Suppose f is continuous on the interval $[a, b]$ and $A(s)=\int_{a}^{s} f(x) d x$; so,

$$
A(a)=0, \quad A(b)=\int_{a}^{b} f(x) d x, \quad A^{\prime}(s)=f(x)
$$

The derivative Mean Value Theorem says the slope of the secant line from $P=(a, A(a))$ to $Q=(b, A(b))$ is equal to the value of $A^{\prime}=f$ at some interior point c, So

$$
\begin{aligned}
\frac{A(b)-A(a)}{b-a} & =A^{\prime}(c) \quad \text { some interior point } c \\
\frac{1}{b-a} \int_{a}^{b} f(x) d x & =f(c) .
\end{aligned}
$$

So the average value of a continuous function f on an interval $[a, b]$ will equals its value at some point in the interior of the interval.

Application of integrals to finding volume - solids of revolutions.

Examples.

- Consider an inverted cone with height h and top radius r. The function $x=(r / h) y$ gives the radius of a circular cross section at height y. The volume of an infinitesimal cylinder of height dy and base radius x is

$$
d V=\pi x^{2} d y=\pi\left(\frac{r}{h} y\right)^{2} d y
$$

so,

$$
\begin{aligned}
\text { Volume of cone } & =\int_{0}^{h} \pi\left(\frac{r}{h} y\right)^{2} d y=\pi\left(\frac{r}{h}\right)^{2} \int_{0}^{h} y^{2} d y \\
& =\left.\pi\left(\frac{r}{h}\right)^{2}\left(\frac{y^{3}}{3}\right)\right|_{0} ^{h}=\pi\left(\frac{r}{h}\right)^{2}\left(\frac{h^{3}}{3}-0\right)=\pi r^{2} h \frac{1}{3} \\
& =\frac{1}{3} \cdot \text { area of base } \cdot \text { height } .
\end{aligned}
$$

- The volume of a sphere of radius r can be calculated as follows: Tkae the graph of the function $f(x)=\sqrt{r^{2}-x^{2}}$ with domain $[-r, r]$ and revolve the graph around the x -axis to poduce a sphere. The volume of a infinitesimal cyclinder of 'horizontal height' $d x$ and radius $f(x)$ is

$$
d V=\pi f(x)^{2} d x=\pi\left(r^{2}-x^{2}\right) d x
$$

so,

$$
\begin{aligned}
\text { Volume of cone } & =\int_{-r}^{r} \pi\left(r^{2}-x^{2}\right) d x=\left.\pi\left(r^{2} x-\frac{x^{3}}{3}\right)\right|_{-r} ^{r} \\
& =\pi\left(\left(r^{2} r-\frac{r^{3}}{3}\right)-\left(r^{2}(-r)-\frac{(-r)^{3}}{3}\right)\right) \\
& =\frac{4}{3} \pi r^{3} .
\end{aligned}
$$

