MIDTERM SOLUTIONS - MATH 2121, FALL 2017.

Name: \square

Problem \#	Max points possible	Actual score
1	15	
2	20	
3	15	
4	20	
5	20	
6	10	
Total	100	

You have $\mathbf{1 2 0}$ minutes to complete this exam.
No books, notes, or electronic devices can be used on the test.
Clearly label your answers by putting them in a box.
Partial credit can be given on some problems if you show your work. Good luck!

Problem 1. $(2+9+4=15$ points $)$
(a) Write down the augmented matrix of the linear system

$$
\begin{aligned}
2 x_{1}+x_{3}+21 x_{4} & =5 \\
x_{1}+9 x_{2}+8 x_{3}+3 x_{4} & =6 \\
3 x_{1}-12 x_{4} & =0 .
\end{aligned}
$$

Solution.
$\left[\begin{array}{rrrrr}2 & 0 & 1 & 21 & 5 \\ 1 & 9 & 8 & 3 & 6 \\ 3 & 0 & 0 & -12 & 0\end{array}\right]$
(b) Compute the reduced echelon form of the matrix in (a).

Solution.

We will need the fact that

$$
7-8 \cdot 29=7-8(30-1)=7-240+8=15-240=-225
$$

Also observe that

$$
-225=9(-25)
$$

We now compute

$$
\begin{aligned}
& {\left[\begin{array}{rrrrr}
2 & 0 & 1 & 21 & 5 \\
1 & 9 & 8 & 3 & 6 \\
3 & 0 & 0 & -12 & 0
\end{array}\right] \rightarrow\left[\begin{array}{rrrrr}
3 & 0 & 0 & -12 & 0 \\
2 & 0 & 1 & 21 & 5 \\
1 & 9 & 8 & 3 & 6
\end{array}\right]} \\
& \rightarrow\left[\begin{array}{rrrrr}
1 & 0 & 0 & -4 & 0 \\
2 & 0 & 1 & 21 & 5 \\
1 & 9 & 8 & 3 & 6
\end{array}\right] \\
& \rightarrow\left[\begin{array}{rrrrr}
1 & 0 & 0 & -4 & 0 \\
0 & 0 & 1 & 29 & 5 \\
0 & 9 & 8 & 7 & 6
\end{array}\right] \\
& \rightarrow\left[\begin{array}{rrrrr}
1 & 0 & 0 & -4 & 0 \\
0 & 0 & 1 & 29 & 5 \\
0 & 9 & 0 & 7-8 \cdot 29 & 6-8 \cdot 5
\end{array}\right] \\
& =\left[\begin{array}{rrrrr}
1 & 0 & 0 & -4 & 0 \\
0 & 0 & 1 & 29 & 5 \\
0 & 9 & 0 & -225 & -34
\end{array}\right] \\
& \rightarrow\left[\begin{array}{rrrrr}
1 & 0 & 0 & -4 & 0 \\
0 & 0 & 1 & 29 & 5 \\
0 & 1 & 0 & -25 & -34 / 9
\end{array}\right] \\
& \rightarrow\left[\begin{array}{rrrrr}
1 & 0 & 0 & -4 & 0 \\
0 & 1 & 0 & -25 & -34 / 9 \\
0 & 0 & 1 & 29 & 5
\end{array}\right] .
\end{aligned}
$$

The last matrix is in reduced echelon form so the answer is

$$
\left.\begin{array}{|rrrrr}
\hline 1 & 0 & 0 & -4 & 0 \\
0 & 1 & 0 & -25 & -34 / 9 \\
0 & 0 & 1 & 29 & 5
\end{array}\right]
$$

(c) How many solutions does our linear system

$$
\begin{aligned}
2 x_{1}+x_{3}+21 x_{4} & =5 \\
x_{1}+9 x_{2}+8 x_{3}+3 x_{3} & =6 \\
3 x_{1}-12 x_{4} & =0
\end{aligned}
$$

have? To receive full credit, explain how you derive your answer.

Solution.

The previous part shows that the pivot positions of the augmented matrix of this linear system are $(1,1),(2,2)$, and $(3,3)$.

No pivot positions occur in the last column, so the linear system is consistent.
Since the fourth column is not a pivot column, x_{4} is a free variable, so the linear system has infinitely many solutions.

Problem 2. $(2+2+\ldots+2=20$ points $)$ Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a function. Let A be a matrix. Indicate which of the following is TRUE or FALSE.
(1) If T is linear then its range is equal to its codomain.
(2) If T is linear and one-to-one then $n \geq m$.
(3) If T is linear and onto then $n \geq m$.
(4) If T is linear and invertible then $n \geq m$.
(5) If T is linear and invertible, then its inverse is linear and invertible.
(6) If T is linear, and A is its standard matrix, then A has size $n \times m$.
(7) If T is linear, and A is its standard matrix, and $T(v)=0$ for a nonzero vector $v \in \mathbb{R}^{n}$, then the columns of A are not linearly independent.
(8) If B is a matrix with the same size as A and $A v=B v$ whenever v is a vector such that the products $A v$ and $B v$ are both defined, then $A=B$.
(9) If A is not invertible, then $A B$ is not the identity matrix for any matrix B.
(10) If T is linear, and A is its standard matrix, and the range of T is not all of \mathbb{R}^{m}, then not every column of A is a pivot column.

Each part will be graded as follows: 0 points for a wrong answer, 1 point for no answer, 2 points for the correct answer. Explanations are not required for answers.

Solution:

(1)

FALSE
Suppose $T(v)=0$ for all v.
Then T is linear but its range is $\{0\}$ and its codomain is \mathbb{R}^{m}.
(2) FALSE

If T is linear and one-to-one then $n \leq m$.

TRUE

TRUE
If T is linear and invertible then $n=m$ which also means that $n \geq m$.

TRUE
(6)

FALSE
If T is linear and invertible then its standard matrix has size $m \times n$.

TRUE
(8) TRUE

We can conclude that $A=B$ if just $A e_{i}=B e_{i}$ for $i=1,2, \ldots, n$ since this implies that the two matrices have the same columns. FALSE

Consider $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 0 & 0\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$.
Neither of the matrices on the left are invertible since they are not square.
(10)

FALSE

The correct statement would be "If T is linear, and A is its standard matrix, and the range of T is not all of \mathbb{R}^{m}, then not every ROW of A CONTAINS A PIVOT POSITION."

If $n=1$ and $m=2$ and $A=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ then the range of T would not be all of \mathbb{R}^{m}, but every column of A is a pivot column.

Problem 3. $(5+10=15$ points $)$
(a) For what values of x is the matrix

$$
A=\left[\begin{array}{rrrr}
1 & 0 & 2 & 0 \\
0 & 3 & x & 0 \\
-1 & 5 & 0 & 8 \\
1 & 2 & 2 & 4
\end{array}\right]
$$

invertible?

Solution.

One solution uses the determinant.
We have

$$
\operatorname{det} A=\operatorname{det}\left[\begin{array}{lll}
3 & x & 0 \\
5 & 0 & 8 \\
2 & 2 & 4
\end{array}\right]+2 \operatorname{det}\left[\begin{array}{rrr}
0 & 3 & 0 \\
-1 & 5 & 8 \\
1 & 2 & 4
\end{array}\right]
$$

The first determinant is

$$
\operatorname{det}\left[\begin{array}{lll}
3 & x & 0 \\
5 & 0 & 8 \\
2 & 2 & 4
\end{array}\right]=3(0-16)-x(20-16)+0=-48-4 x
$$

The second determinant is

$$
\operatorname{det}\left[\begin{array}{rrr}
0 & 3 & 0 \\
-1 & 5 & 8 \\
1 & 2 & 4
\end{array}\right]=0-3(-4-8)+0=36
$$

So $\operatorname{det} A=-48-4 x+2(36)=(72-48)-4 x=24-4 x$.
A is invertible if and only if $\operatorname{det} A \neq 0$
We have $24-4 x \neq 0$ if and only if $x \neq 6$.
So the answer is: A is invertible if $x \neq 6$.
(b) Assuming x is such that

$$
A=\left[\begin{array}{rrrr}
1 & 0 & 2 & 0 \\
0 & 3 & x & 0 \\
-1 & 5 & 0 & 8 \\
1 & 2 & 2 & 4
\end{array}\right]
$$

is invertible, derive a formula for A^{-1}.

Solution.

$$
\text { Let } y=\frac{1}{x-6} \text {. }
$$

To compute A^{-1} we row reduce

$$
\begin{aligned}
& {\left[\begin{array}{rlll|rrrr}
1 & 0 & 2 & 0 & 1 & 0 & 0 & 0 \\
0 & 3 & x & 0 & 0 & 1 & 0 & 0 \\
-1 & 5 & 0 & 8 & 0 & 0 & 1 & 0 \\
1 & 2 & 2 & 4 & 0 & 0 & 0 & 1
\end{array}\right] \rightarrow\left[\begin{array}{rrrr|rrrr}
1 & 0 & 2 & 0 & 1 & 0 & 0 & 0 \\
-1 & 5 & 0 & 8 & 0 & 0 & 1 & 0 \\
1 & 2 & 2 & 4 & 0 & 0 & 0 & 1 \\
0 & 3 & x & 0 & 0 & 1 & 0 & 0
\end{array}\right]} \\
& \rightarrow\left[\begin{array}{llll|rlll}
1 & 0 & 2 & 0 & 1 & 0 & 0 & 0 \\
0 & 5 & 2 & 8 & 1 & 0 & 1 & 0 \\
0 & 2 & 0 & 4 & -1 & 0 & 0 & 1 \\
0 & 3 & x & 0 & 0 & 1 & 0 & 0
\end{array}\right] \\
& \rightarrow\left[\begin{array}{llll|rrrr}
1 & 0 & 2 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 2 & 0 & 3 & 0 & 1 & -2 \\
0 & 2 & 0 & 4 & -1 & 0 & 0 & 1 \\
0 & 3 & x & 0 & 0 & 1 & 0 & 0
\end{array}\right] \\
& \rightarrow\left[\begin{array}{rrrr|rrrr}
1 & 0 & 2 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 2 & 0 & 3 & 0 & 1 & -2 \\
0 & 0 & -4 & 4 & -7 & 0 & -2 & 5 \\
0 & 0 & x-6 & 0 & -9 & 1 & -3 & 6
\end{array}\right] \\
& \rightarrow\left[\begin{array}{rrrr|rrrr}
1 & 0 & 0 & 0 & 1+18 y & -2 y & 6 y & -12 y \\
0 & 1 & 0 & 0 & 3+18 y & -2 y & 1+6 y & -2-12 y \\
0 & 0 & 0 & 4 & -7-36 y & 4 y & -2-12 y & 5+24 y \\
0 & 0 & x-6 & 0 & -9 & 1 & -3 & 6
\end{array}\right] \\
& \rightarrow\left[\begin{array}{rrrr|rrrr}
1 & 0 & 0 & 0 & 1+18 y & -2 y & 6 y & -12 y \\
0 & 1 & 0 & 0 & 3+18 y & -2 y & 1+6 y & -2-12 y \\
0 & 0 & x-6 & 0 & -9 & 1 & -3 & 6 \\
0 & 0 & 0 & 4 & -7-36 y & 4 y & -2-12 y & 5+24 y
\end{array}\right] \\
& \rightarrow\left[\begin{array}{rrrr|rrrr}
1 & 0 & 0 & 0 & 1+18 y & -2 y & 6 y & -12 y \\
0 & 1 & 0 & 0 & 3+18 y & -2 y & 1+6 y & -2-12 y \\
0 & 0 & 1 & 0 & -9 y & y & -3 y & 6 y \\
0 & 0 & 0 & 1 & -7 / 4-9 y & y & -1 / 2-3 y & 5 / 4+6 y
\end{array}\right] .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
A^{-1} & =\left[\begin{array}{rrrr}
1+18 y & -2 y & 6 y & -12 y \\
3+18 y & -2 y & 1+6 y & -2-12 y \\
-9 y & y & -3 y & 6 y \\
-7 / 4-9 y & y & -1 / 2-3 y & 5 / 4+6 y
\end{array}\right] \\
& =\frac{1}{4 y}\left[\begin{array}{rrrr}
4 / y+72 & -8 & 24 & -48 \\
12 / y+72 & -8 & 4 / y+24 & -8 / y-48 \\
-36 & 4 & -12 & 24 \\
-7 / y-36 & 4 & -2 / y-12 & 5 / y+24
\end{array}\right] \\
& =\frac{1}{4(x-6)}\left[\begin{array}{rrrr}
4 x-24+72 & -8 & 24 & -48 \\
12 x-72+72 & -8 & 4 x-24+24 & -8 x+48-48 \\
-7 x+42-36 & 4 & -2 x+12-12 & 5 x-30+24
\end{array}\right] \\
& =\frac{1}{4(x-6)}\left[\begin{array}{rrrr}
24 \\
4 x+48 & -8 & 24 & -48 \\
12 x & -8 & 4 x & -8 x \\
-36 & 4 & -12 & 24 \\
-7 x+6 & 4 & -2 x & 5 x-6
\end{array}\right]
\end{aligned}
$$

Our final answer is

$$
A^{-1}=\frac{1}{4(x-6)}\left[\begin{array}{rrrr}
4 x+48 & -8 & 24 & -48 \\
12 x & -8 & 4 x & -8 x \\
-36 & 4 & -12 & 24 \\
-7 x+6 & 4 & -2 x & 5 x-6
\end{array}\right]
$$

Problem 4. $(1+9+4+4+2=20$ points) Consider the matrix

$$
A=\left[\begin{array}{rrrr}
5 & -1 & 6 & -4 \\
2 & 3 & 16 & -5 \\
0 & 2 & 8 & -2
\end{array}\right]
$$

Remember that

- The column space of A is the span of its columns.
- The null space of A is the set of vectors v with $A v=0$.
(a) What are the values of m and n such that $\operatorname{Col} A \subset \mathbb{R}^{m}$ and $\operatorname{Nul} A \subset \mathbb{R}^{n}$?

Solution.

$$
m=3 \text { and } n=4
$$

(b) Compute the reduced echelon form of

$$
A=\left[\begin{array}{rrrr}
5 & -1 & 6 & -4 \\
2 & 3 & 16 & -5 \\
0 & 2 & 8 & -2
\end{array}\right]
$$

Solution.

$$
\begin{aligned}
{\left[\begin{array}{rrrr}
5 & -1 & 6 & -4 \\
2 & 3 & 16 & -5 \\
0 & 2 & 8 & -2
\end{array}\right] } & \rightarrow\left[\begin{array}{rrrr}
5 & -1 & 6 & -4 \\
2 & 3 & 16 & -5 \\
0 & 1 & 4 & -1
\end{array}\right] \\
& \rightarrow\left[\begin{array}{rrrr}
5 & 0 & 10 & -5 \\
2 & 3 & 16 & -5 \\
0 & 1 & 4 & -1
\end{array}\right] \\
& \rightarrow\left[\begin{array}{rrrr}
1 & 0 & 2 & -1 \\
2 & 3 & 16 & -5 \\
0 & 1 & 4 & -1
\end{array}\right] \\
& \rightarrow\left[\begin{array}{rrrr}
1 & 0 & 2 & -1 \\
0 & 3 & 12 & -3 \\
0 & 1 & 4 & -1
\end{array}\right] \\
& \rightarrow\left[\begin{array}{rrrr}
1 & 0 & 2 & -1 \\
0 & 1 & 4 & -1 \\
0 & 1 & 4 & -1
\end{array}\right] \rightarrow\left[\begin{array}{rrrr}
1 & 0 & 2 & -1 \\
0 & 1 & 4 & -1 \\
0 & 0 & 0 & 0
\end{array}\right]=\operatorname{RREF}(A)
\end{aligned}
$$

(c) Find a basis for the column space of

$$
A=\left[\begin{array}{rrrr}
5 & -1 & 6 & -4 \\
2 & 3 & 16 & -5 \\
0 & 2 & 8 & -2
\end{array}\right]
$$

Solution.

The previous part shows that the pivot columns of A are the first and second columns.

These columns are therefore a basis $\left\{\left[\begin{array}{l}5 \\ 2 \\ 0\end{array}\right],\left[\begin{array}{r}-1 \\ 3 \\ 2\end{array}\right]\right\}$.
(d) Find a basis for the null space of

$$
A=\left[\begin{array}{rrrr}
5 & -1 & 6 & -4 \\
2 & 3 & 16 & -5 \\
0 & 2 & 8 & -2
\end{array}\right]
$$

Solution.

Since

$$
\operatorname{RREF}(A)=\left[\begin{array}{rrrr}
1 & 0 & 2 & -1 \\
0 & 1 & 4 & -1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

it follows that $A x=0$ if and only if

$$
x=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]
$$

where

$$
x_{1}+2 x_{3}-x_{4}=x_{2}+4 x_{3}-x_{4}=0
$$

This means x belongs to the null space of A if and only if x has the form

$$
x=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{r}
-2 x_{3}+x_{4} \\
-4 x_{3}+x_{4} \\
x_{3} \\
x_{4}
\end{array}\right]=x_{3}\left[\begin{array}{r}
-2 \\
-4 \\
1 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{l}
1 \\
1 \\
0 \\
1
\end{array}\right] .
$$

The vectors $\left\{\left[\begin{array}{r}-2 \\ -4 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 0 \\ 1\end{array}\right]\right\}$ are therefore a basis for the null space.
(e) What are the dimensions of the column space and null space of A ?

Solution.

Both subspaces have dimension 2.

Problem 5. $(5+5+5+5=20$ points $)$
(a) Does there exist a 3×3 matrix whose column space contains

$$
\left[\begin{array}{r}
1 \\
2 \\
-3
\end{array}\right] \text { and }\left[\begin{array}{r}
1 \\
0 \\
-1
\end{array}\right] \text { but not }\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] ?
$$

If there is, give an example. If there isn't, explain why not.

Solution.

The third vector is not a linear combination of the first two since the first two both belong to the null space of the 1-by- 3 matrix

$$
\left[\begin{array}{lll}
1 & 1 & 1
\end{array}\right]
$$

while the third does not. The matrix
$\left[\begin{array}{rrr}1 & 1 & 0 \\ 2 & 0 & 0 \\ -3 & -1 & 0\end{array}\right]$
is therefore a solution: its column space is exactly the span of the first two vectors, which does not contain the third.
(b) Does there exist a 3×3 matrix whose null space contains

$$
\left[\begin{array}{r}
1 \\
2 \\
-3
\end{array}\right] \text { and }\left[\begin{array}{r}
1 \\
0 \\
-1
\end{array}\right] \text { but not }\left[\begin{array}{r}
1 \\
-2 \\
1
\end{array}\right] ?
$$

If there is, give an example. If there isn't, explain why not.

Solution.

Label the vectors as u, v, w respectively. Then

$$
u+w=\left[\begin{array}{r}
2 \\
0 \\
-2
\end{array}\right]=2 v
$$

so $w=-u+2 v$ is a linear combination of the first two vectors. Therefore any subspace containing the first two vectors must also contain the third. Since the null space of a matrix is a subspace, no 3-by-3 matrix exists which contains the first two vectors but not the third.
(c) Does there exist a 3×3 matrix whose null space and column space contains

$$
\left[\begin{array}{r}
1 \\
2 \\
-3
\end{array}\right] ?
$$

If there is, give an example. If there isn't, explain why not.

Solution.

The null space and column space of the matrix
$\left[\begin{array}{rrr}1 & 1 & 1 \\ 2 & 2 & 2 \\ -3 & -3 & -3\end{array}\right]$
contains the given vector.
(d) Does there exist a 3×3 matrix whose null space and column space contains

$$
\left[\begin{array}{r}
1 \\
2 \\
-3
\end{array}\right] \text { and }\left[\begin{array}{r}
1 \\
0 \\
-1
\end{array}\right] ?
$$

If there is, give an example. If there isn't, explain why not.

Solution.

These vectors are linearly independent since neither is a scalar multiple of the other. Therefore, if the null space and column space of a 3-by-3 matrix contained both vectors, then the dimensions of both subspaces would be at least 2 . But this is impossible since the sum of these dimensions is 3 by the Rank Theorem. Therefore no such matrix exists.

Problem 6. (10 points) Find all 2×2 matrices

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

such that $2 a$ is a positive integer, b, c, d are real numbers, and $A^{T}=A^{-1}$.
Hint: for any square matrix B, recall that $\operatorname{det}\left(B B^{T}\right)=\operatorname{det}(B) \operatorname{det}\left(B^{T}\right)=\operatorname{det}(B)^{2}$.

Solution.

Suppose A is invertible and $A^{-1}=A^{T}$. Then, by the hint, we have

$$
\operatorname{det}(A)^{2}=\operatorname{det}\left(A A^{T}\right)=\operatorname{det}\left(A A^{-1}\right)=\operatorname{det}(I)=1
$$

so $\operatorname{det}(A)=a d-b c= \pm 1$. By assumption

$$
A^{T}=\left[\begin{array}{cc}
a & c \tag{*}\\
b & d
\end{array}\right]=\frac{1}{\operatorname{det} A}\left[\begin{array}{rr}
d & -b \\
-c & a
\end{array}\right]=A^{-1}
$$

There are two cases, according to whether $\operatorname{det} A=1$ or $\operatorname{det} A=-1$.
First suppose $\operatorname{det} A=1$. Then $\left(^{*}\right)$ implies $a=d$ and $b=-c$, so

$$
a d-b c=a^{2}+b^{2}=1
$$

and

$$
A=\left[\begin{array}{rr}
a & b \\
-b & a
\end{array}\right]
$$

Thus (a, b) is a point of the unit circle, so $-1 \leq a \leq 1$ and if $2 a$ is to be a positive integer then either $2 a=1$ or $2 a=2$. In the first case $a=1 / 2$ and $b= \pm \sqrt{3} / 2$, while in the second case $a=1$ and $b=0$. Thus, when $\operatorname{det} A=1$, there are exactly three matrices with the given properties:

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], \quad \frac{1}{2}\left[\begin{array}{rr}
1 & \sqrt{3} \\
-\sqrt{3} & 1
\end{array}\right], \quad \frac{1}{2}\left[\begin{array}{rr}
1 & -\sqrt{3} \\
\sqrt{3} & 1
\end{array}\right] .
$$

Next suppose $\operatorname{det} A=-1$. Then $\left(^{*}\right)$ implies that $a=-d$ and $b=c$, so

$$
a d-b c=-a^{2}-b^{2}=-1
$$

and

$$
A=\left[\begin{array}{rr}
a & b \\
b & -a
\end{array}\right]
$$

In this case (a, b) is again a point of the unit circle, so either $2 a=1$ or $2 a=2$. As before, if $2 a=1$ then $a=1 / 2$ and $b= \pm \sqrt{3} / 2$ while if $2 a=2$ then $a=1$ and $b=0$. Thus, when $\operatorname{det} A=-1$, there are three more matrices with the given properties:

$$
\begin{array}{|rr}
\hline\left[\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right], & \frac{1}{2}\left[\begin{array}{rr}
1 & \sqrt{3} \\
\sqrt{3} & -1
\end{array}\right], \quad \frac{1}{2}\left[\begin{array}{rr}
1 & -\sqrt{3} \\
-\sqrt{3} & -1
\end{array}\right] .
\end{array}
$$

These 6 matrices give all the ones with the given properties.

