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Problem 1. (10 points) Find all solutions to the linear system

x1 − x2 − 6x3 = 10

2x2 + 7x3 = −10
x1 + x2 + x3 = 0

Solution:

The linear system has augmented matrix A =

 1 −1 −6 10
0 2 7 −10
1 1 1 0

.

We can convert this to reduced echelon form by the row operations

A =

 1 −1 −6 10
0 2 7 −10
1 1 1 0

 subtract row 1 from row 3−−−−−−−−−−−−−−→

 1 −1 −6 10
0 2 7 −10
0 2 7 −10


subtract row 2 from row 3−−−−−−−−−−−−−−→

 1 −1 −6 10
0 2 7 −10
0 0 0 0


multiple row 2 by 1/2−−−−−−−−−−−−→

 1 −1 −6 10
0 1 7/2 −5
0 0 0 0


add row 2 to row 1−−−−−−−−−−→

 1 0 −5/2 5
0 1 7/2 −5
0 0 0 0

 = RREF(A).

The last matrix does not have a pivot in the last column, so our original system
has at least one solution. Since only columns 1 and 2 contain pivots, we conclude
that x1 and x2 are basic variables while x3 is a free variable. The two nontrivial
equations in the linear system whose augmented matrix in RREF(A) expresses the
basic variables in terms of the free variables:

x1 − 5
2x3 = 5 and x2 +

7
2x3 = −5.

We can choose any value a for x3 and this determines x1 and x2 via these equa-
tions. Thus the solutions to the original system are given by all triples

(x1, x2, x3) = (5 + 5
2a,−5−

7
2a, a)

where a ∈ R ranges over all real numbers.
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Problem 2. (10 points)

Find all values of a such that
{[

1
a

]
,

[
a+ 2
a+ 6

]}
is linearly independent in R2.

Solution:

The vectors are linearly independent if the matrix A =

[
1 a+ 2
a a+ 6

]
has a pivot in

every column, which occurs only if RREF(A) =

[
1 0
0 1

]
since A is square.

But if try to row reduce A we get

A =

[
1 a+ 2
a a+ 6

]
add−a times row 1 to row 2−−−−−−−−−−−−−−−−→

[
1 a+ 2
0 a+ 6− a(a+ 2)

]
=

[
1 a+ 2
0 6− a− a2

]
.

If 6− a− a2 6= 0 then two further row operations (first rescale row 2 and then sub-
tract a multiple of row 2 from row 1) will transform the last matrix to the identity
matrix. Therefore if 6− a− a2 6= 0 then the vectors are linearly independent.

On the other hand, if 6 − a − a2 = 0 then A evidently has only one pivot column
so the vectors must be linearly dependent.

Since 6− a− a2 = (3 + a)(2− a), we have 6− a− a2 = 0 if and only if a = −3 or
a = 2. We conclude that the vectors are linearly independent for

all values of a with a 6= −3 and a 6= 2.

Another way to solve the problem: the vectors are linearly independent if and
only if detA 6= 0. Since detA = (a + 6) − a(a + 2) = 6 − a − a2 = (3 + a)(2 − a),
we reach the same answer as before.
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Problem 3. (20 points) Indicate which of the following is TRUE or FALSE.

(1) An invertible matrix can have more than one echelon form.
(2) Suppose U and V are subspaces of R2. If dimU < dimV then U ⊂ V .
(3) Suppose U and V are subspaces of R3. If dimU < dimV then U ⊂ V .
(4) If T : Rn → Rm is linear and onto then n ≥ m.
(5) Four vectors in R3 can be linearly independent if they are all nonzero.
(6) If detA = ±1, then A must be a permutation matrix.

(7) If a+ d+ g = b+ e+ h = c+ f + i = 0 then

 a b c
d e f
g h i

 is not invertible.

(8) Suppose A and B are matrices such that AB is defined. If AB is invertible
then A and B are either both invertible or both not invertible.

(9) The inverse of a permutation matrix is the same as its transpose.
(10) If two rows of a square matrix A are the same then detA = 0.

Each part will be graded as follows: 0 points for a wrong or missing answer, 2
points for the correct answer. Explanations are not required for answers.

Solution:

(1) TRUE FALSE

(2) TRUE FALSE

(3) TRUE FALSE

(4) TRUE FALSE

(5) TRUE FALSE

(6) TRUE FALSE

(7) TRUE FALSE

(8) TRUE FALSE

(9) TRUE FALSE

(10) TRUE FALSE
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Solution:

(1) TRUE FALSE[
a b
0 c

]
is an echelon form of

[
1 0
0 1

]
for all a, c 6= 0.

(2) TRUE FALSE

All subspaces of R2 have dimensions 0, 1, or 2. Only {0} has dimension 0
and only R2 has dimension 2. Any subspace of dimension 1 contains {0}
and is contained in R2.

(3) TRUE FALSE

Then line U =


 x

0
0

 : x ∈ R

 is not contained in the plane V


 0

y
z

 : y, z ∈ R

.

But U, V are subspaces of R3 with dimU = 1 < 2 = dimV .

(4) TRUE FALSE

We proved in class that if n ≤ m then T cannot be onto and linear.

(5) TRUE FALSE

If p > n then any p vectors in Rn act linearly dependent.

(6) TRUE FALSE

The triangular matrix
[

1 2
0 1

]
also determinant ±1.

(7) TRUE FALSE

The matrix A =

 a b c
d e f
g h i

 is invertible if and only if AT is invertible.

But if a + d + g = b + e + h = c + f + i = 0 then AT

 1
1
1

 = 0, so the

columns of AT are not linearly independent so AT is not invertible.
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(8) TRUE FALSE

If X and Y are n × n matrices then XY = In implies Y X = In. This does
not hold if the matrices are not square. Since AB is defined, we know that
A is m× n and B and n× p and AB is m× p for some numbers m,n, p.

If AB and A are invertible then AB and A are both square, so m = n = p
and B is also square, so B is invertible with inverse B−1 = (AB)−1A, as

(AB)−1A ·B = (AB)−1(AB) = In.

If AB and B are invertible then AB and B are both square, so m = n = p
and A is also square, so A is invertible with inverse A−1 = B(AB)−1, as

A ·B(AB)−1 = (AB)(AB)−1 = In.

Therefore, if AB is invertible, then it is not possible for A but not B to be
invertible, or for B but not A to be invertible.

(9) TRUE FALSE

If e1, e2, . . . , en is the standard basis of Rn then eTi ej =

{
1 if i = j

0 if i 6= j.

Suppose X is an n×n permutation matrix. Then X =
[
ei1 ei2 . . . ein

]
where i1, i2, . . . , in are the numbers 1, 2, . . . , n arranged in some order.

The entry in position (j, k) of

XTX =


eTi1
eTi2

...
eTin

 [ ei1 ei2 . . . ein
]

is therefore eTijeik which is 1 if j = k and 0 if j 6= k. Thus XTX = In.

(10) TRUE FALSE

If two rows of a square matrix A are the same, then two columns of AT are
the same, so 0 = detAT = detA.



MIDTERM SOLUTIONS - MATH 2121, FALL 2019. 7

Problem 4. (10 points)

Suppose T : R2 → R2 is a linear transformation with

T

([
2
3

])
=

[
1
2

]
and T

([
5
8

])
=

[
4
9

]
.

Find the standard matrix of T .
In other words, find a 2× 2 matrix A such that T (v) = Av for all v ∈ R2.

Solution:

If a, b, c, d are any numbers with ad− bc 6= 0 then

1

ad− bc

(
d

[
a
b

]
− b

[
c
d

])
=

[
1
0

]
and

1

ad− bc

(
−c
[

a
b

]
+ a

[
c
d

])
=

[
0
1

]
.

Things are a little simpler in the problem at hand, since can just write

8

[
2
3

]
− 3

[
5
8

]
=

[
1
0

]
and 2

[
5
8

]
− 5

[
2
3

]
=

[
0
1

]
.

By linearity, we have

T

([
1
0

])
= 8T

([
2
3

])
− 3T

([
5
8

])
= 8

[
1
2

]
− 3

[
4
9

]
=

[
−4
−11

]
and

T

([
0
1

])
= −5T

([
2
3

])
+ 2T

([
5
8

])
= −5

[
1
2

]
+ 2

[
4
9

]
=

[
3
8

]
.

The standard matrix of T is therefore[
T

([
1
0

])
T

([
0
1

]) ]
=

[
−4 3
−11 8

]
.
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Problem 5. (10 points) Consider the matrix

A =


5 5 6 6 7
4 0 4 4 0
3 0 0 3 0
0 0 0 2 0
5 6 7 1 8

 .

(a) Compute A−1 or explain why A is not invertible.

(b) Compute detA.

Solution:

This was a difficult problem requiring many careful computations. To determine
if A is invertible and at the same time compute A−1, we can try to row reduce

B =


5 5 6 6 7 1 . . . .
4 . 4 4 . . 1 . . .
3 . . 3 . . . 1 . .
. . . 2 . . . . 1 .
5 6 7 1 8 . . . . 1

 .

I have drawn · instead of 0 to reduce the amount of writing necessary. Here is
one possible sequence of matrices that are row equivalent to B:

(1)


3 . . 3 . . . 1 . .
5 6 7 1 8 . . . . 1
4 . 4 4 . . 1 . . .
. . . 2 . . . . 1 .
5 5 6 6 7 1 . . . .

 .

(2)


3 . . 3 . . . 1 . .
. 1 1 −5 1 −1 . . . 1
4 . 4 4 . . 1 . . .
. . . 2 . . . . 1 .
5 5 6 6 7 1 . . . .

 .

(3)


3 . . 3 . . . 1 . .
. 1 1 1 1 −1 . . 3 1
4 . 4 4 . . 1 . . .
. . . 2 . . . . 1 .
5 5 6 6 7 1 . . . .

 .

(4)


3 . . 3 . . . 1 . .
. 1 1 1 1 −1 . . 3 1
4 . 4 4 . . 1 . . .
. . . 2 . . . . 1 .
5 . 1 1 2 6 . . −15 −5

 .
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(5)


3 . . . . . . 1 −3/2 .
. 1 1 . 1 −1 . . 5/2 1
4 . 4 . . . 1 . −2 .
. . . 1 . . . . 1/2 .
5 . 1 . 2 6 . . −31/2 −5

 .

(6)


1 . . . . . . 1/3 −1/2 .
. 1 1 . 1 −1 . . 5/2 1
. . 4 . . . 1 −4/3 . .
. . . 1 . . . . 1/2 .
. . 1 . 2 6 . −5/3 −13 −5

 .

(7)


1 . . . . . . 1/3 −1/2 .
. 1 . . 1 −1 −1/4 1/3 5/2 1
. . 1 . . . 1/4 −1/3 . .
. . . 1 . . . . 1/2 .
. . . . 2 6 −1/4 −4/3 −13 −5

 .

(8)


1 . . . . . . 1/3 −1/2 .
. 1 . . . −4 −1/8 1 9 7/2
. . 1 . . . 1/4 −1/3 . .
. . . 1 . . . . 1/2 .
. . . . 1 3 −1/8 −2/3 −13/2 −5/2

 .

Since the first five columns are I5, we conclude that A is invertible with

A−1 =


0 0 1/3 −1/2 0
−4 −1/8 1 9 7/2
0 1/4 −1/3 0 0
0 0 0 1/2 0
3 −1/8 −2/3 −13/2 −5/2

 .

The determinant of A is easier to compute.

There are only two permutation matrices X with prod(X,A) 6= 0:
0 1 0 0 0
0 0 1 0 0
1 0 0 0 0
0 0 0 1 0
0 0 0 0 1

 and


0 0 0 0 1
0 0 1 0 0
1 0 0 0 0
0 0 0 1 0
0 1 0 0 0

 .

The first permutation matrix X has inv(X) = 2 while the second has inv(X) = 7.
The values of prod(X,A) are respectively 2 · 3 · 4 · 5 · 8 and 2 · 3 · 4 · 6 · 7, so

detA =
∑
X∈S5

prod(X,A)(−1)inv(X) = 2·3·4·5·8−2·3·4·6·7 = 24(40−42) = −48 .
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Problem 6. (10 points) Let m and n be positive integers.

Suppose T : Rn → Rm is a linear transformation with standard matrix A.
Recall that this means that A is a matrix such that T (v) = Av for all v ∈ Rn.

(a) How many rows does A have? How many columns does A have?

A has m rows and n columns.

(b) If T is one-to-one, then what is the dimension of the column space of A?
Explain your answer to receive full credit.

If T is one-to-one then the columns of A are linearly independent, so these
n columns are a basis for the column space of A which has dimension n:

dimColA = n .

(c) If T is onto, then what is the dimension of the null space of A? Explain
your answer to receive full credit.

If T is onto then the column space of A is equal to Rm so has dimension m.
By the Rank-Nullity theorem, we know that n = dimColA + dimNulA so
it follows that the null space of A has dimension n−m:

dimNulA = n−m .
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Problem 7. (10 points)

Find a basis for R4 that includes the vectors u =


1
1
1
2

 and v =


2
0
1
2

.

In other words, find vectors w, x ∈ R4 such that u, v, w, x is a basis for R4.
Justify your answer to receive full credit.

Solution:

Consider the matrix

A =


1 2 1 0 0 0
1 0 0 1 0 0
1 1 0 0 1 0
2 2 0 0 0 1

 .

Since the last four columns are the standard basis of R4, we have Col = R4. The
pivot columns of A therefore be a basis for R4. Moreover, if the vectors u and v
are linearly indepenedent they will be among the pivot columns of A, so this basis
will include u and v.

We row reduce A to find its pivot columns as follows:
1 2 1 0 0 0
1 0 0 1 0 0
1 1 0 0 1 0
2 2 0 0 0 1

→


1 2 1 0 0 0
1 0 0 1 0 0
1 1 0 0 1 0
0 0 0 0 −2 1

→


1 2 1 0 0 0
0 −2 −1 1 0 0
0 −1 −1 0 1 0
0 0 0 0 −2 1



→


1 0 0 1 0 0
0 −2 −1 1 0 0
0 −1 −1 0 1 0
0 0 0 0 −2 1

→


1 0 0 1 0 0
0 0 1 1 −2 0
0 1 1 0 −1 0
0 0 0 0 −2 1



→


1 0 0 1 0 0
0 1 1 0 −1 0
0 0 1 1 −2 0
0 0 0 0 −2 1

 .

The last matrix is in echelon form (though not reduced); its pivot positions are in
columns 1, 2, 3, and 5. Therefore one basis for R4 containing u and v is

1
1
1
2

 ,


2
0
1
2

 ,


1
0
0
0

 ,


0
0
1
0

 .


