
MATH 2121 — Linear algebra (Fall 2020) Lecture 10

TLDR

Quick summary of today’s notes. Lecture starts on next page.

• Let H be a subspace of Rn.

Every basis of H has the same size.

The size of any basis of H is called its dimension. This number is denoted dimH.

We always have 0 ≤ dimH ≤ n.

If dimH = d then we say that H is d-dimensional.

Dimension measures the size of a subspace.

We usually do not think of individual vectors as having dimension, since a single vector belongs to
many different subspaces at the same time, all with different dimensions.

• Only the zero subspace has dimension zero.

The only subspace of Rn with dimension n is Rn itself.

If U ⊂ V ⊂ Rn are subspaces then 0 ≤ dimU ≤ dimV ≤ n.

• If B = (v1, v2, . . . , vm) is a basis for a subspace H of Rn, then each h ∈ H can be expressed as

h =
[
v1 v2 · · · vm

]


c1
c2
...

cm

 for a unique vector


c1
c2
...

cm

 ∈ Rm.

The vector on the right is the coordinate vector of h in the basis B, sometimes denoted [h]B ∈ Rm.

• Let A be an m× n matrix.

The dimension of ColA is the number of pivot columns in A.

The dimension of NulA is the number of non-pivot columns in A.

Consequently dim ColA + dim NulA = n = the total number of columns in A.

• The rank of A is defined to be rankA = dim ColA.

A is invertible if and only if rankA = m = n.

Assume m = n. Then A is invertible if and only if NulA = {0}.

• Suppose H of Rn is a subspace and p = dimH.

Any set of p linearly independent vectors in H is a basis for H.

Any set of p vectors whose span in H is a basis for H.
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1 Last time: inverses and subspaces

To show that an n× n matrix A is invertible, all we have to do is check that (1) its columns are linearly
independent or (2) its columns span Rn. If either (1) or (2) holds, then the other property is also true.

If A is invertible then it has an inverse which is an n× n matrix A−1 with

AA−1 = A−1A = In =


1

1
. . .

1

 .

If A and B are n×n and AB = In then it automatically holds that BA = In so B = A−1 and A = B−1.

Definition. A subset H of Rn is a subspace if 0 ∈ H, u+ v ∈ H, and cv ∈ H for all u, v ∈ H and c ∈ R.

A subspace is a nonempty set that contains all linear combinations of vectors already in the set.

Example. Examples of subspaces of Rn:

• The set {0} containing just the zero vector.

• The set of all scalar multiples of a single vector.

• Rn itself.

• The span of any set of vectors in Rn.

• The range of a linear function T : Rk → Rn.

• The set of vectors v with T (v) = 0 for a linear function T : Rn → Rk.

The union of two subspaces is not necessarily a subspace. (Why?)

The intersection of two subspaces is a subspace, however. (Why?)

Definition. To any m× n matrix A there are two corresponding subspaces of interest:

1. The column space of A is the subspace ColA of Rm given by the span of the columns of A.

2. The null space of A is the subspace NulA of Rn given by the set of vectors v ∈ Rn with Av = 0.

It is not obvious from these definitions, but it will turn out that each subspace of Rm occurs as the
column space of some matrix. Likewise, each subspace of Rn occurs as the null space of some matrix.

Definition. A basis of a subspace H of Rn is a set of linearly independent vectors whose span is H.

An important basis with its own notation: the standard basis of Rn consists of the vectors e1, e2, . . . , en
where ei is the vector in Rn with 1 in row i and 0 in all other rows.

One fundamental property of subspaces and bases:

Theorem. Every subspace H of Rn has a basis of size at most n.
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Let A be an m× n matrix.

How to find a basis of NulA.

1. Find all solutions to Ax = 0 by row reducing A to echelon form. Recall that xi is a basic variable
if column i of RREF(A) contains a leading 1, and that otherwise xi is a free variable.

2. Express each basic variable in terms of the free variables, and then write

x =


x1

x2

...
xn

 = xi1b1 + xi2b2 + · · ·+ xikbk

where xi1 , xi2 ,. . . , xik are the free variables and b1, b2, . . . , bk ∈ Rn.

3. The vectors b1, b2, . . . , bk then form a basis for NulA.

Example. Suppose A =

[
1 2 5 8
2 3 7 0

]
.

1. Then A ∼
[

1 2 5 8
0 −1 −3 −16

]
∼
[

1 0 −1 −24
0 1 3 16

]
so Ax = 0 iff

{
x1 − x3 − 24x4 = 0

x2 + 3x3 + 16x4 = 0.

2. This means x1, x2 are basic variables and x3, x4 are free variables.

We have Ax = 0 if and only if x1 = x3 + 24x4 and x2 = −3x3 − 16x4, in which case

x =


x1

x2

x3

x4

 =


x3 + 24x4

−3x3 − 16x4

x3

x4

 = x3


1
−3

1
0

+ x4


24
−16

0
1

 .

3. The set of vectors




1
−3

1
0

 ,


24
−16

0
1


 is then a basis for NulA.

How to find a basis of ColA.

1. The pivot columns of A form a basis of ColA.

This looks simpler than the previous algorithm, but to find out which columns of A are pivot columns,
we have to row reduce A to echelon form, which takes just as much work as finding a basis of NulA.

Example. If A =

[
1 2 5 8
2 3 7 0

]
then columns 1, 2 have pivots so

{[
1
2

]
,

[
2
3

]}
is a basis for ColA.

This is not the only set of columns of A that forms a basis for ColA, however.

2 Coordinate systems

Suppose H is a subspace of Rn. Let b1, b2, . . . , bk be a basis of H.

Theorem. Let v ∈ H. There are unique coefficients c1, c2, . . . , ck ∈ R such that

c1b1 + c2b2 + · · ·+ ckbk = v.
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Proof. Since our basis spans H, there must be some coefficients with c1b1 + c2b2 + · · ·+ ckbk = v. If these
coefficients were not unique, so that we could write c′1b1 + c′2b2 + · · ·+ c′kbk = v for some different list of
numbers c′1, c

′
2, . . . , c

′
k ∈ R, then we would have

0 = v − v = (c1b1 + c2b2 + · · ·+ ckbk)− (c′1b1 + c′2b2 + · · ·+ c′kbk)

= (c1 − c′1)b1 + (c2 − c′2)b2 + · · ·+ (ck − c′k)bk.

In this case, since our numbers are different, at least one of the differences ci − c′i must be nonzero,
and so what we just wrote is a nontrivial linear dependence among the vectors b1, b2, . . . , bk. But this is
impossible since the elements of a basis are linearly independent.

Let B = (b1, b2, . . . , bk) be the list consisting of our basis vectors in some fixed order.

Given v ∈ H, define [v]B =


c1
c2
...

ck

 ∈ Rk as the unique vector with c1b1 + c2b2 + · · ·+ ckvk = v.

Equivalently, [v]B is the unique solution to the matrix equation
[
b1 b2 · · · bk

]
x = v.

We call [v]B the coordinate vector of v in the basis B or just v in the basis B.

Example. If H = Rn and B = (e1, e2, . . . , en) is the standard basis then [v]B = v.

Example. If H = Rn and B = (en, . . . , e2, e1) and v =


v1
v2
...

vn

 then [v]B =


vn
...

v2
v1

.

Example. Let b1 =

 3
6
2

 and b2 =

 −1
0
1

 and v =

 3
12
7

.

Then B = (b1, b2) is a basis for H = R-span{b1, b2}, which is a subspace of R3.

The unique x =

[
x1

x2

]
∈ R2 such that

 3 −1
6 0
2 1

x =

 3
12
7

 is found by row reduction:

 3 −1 3
6 0 12
2 1 7

 ∼
 1 0 2

3 −1 3
2 1 7

 ∼
 1 0 2

0 −1 −3
0 1 3

 ∼
 1 0 2

0 1 3
0 0 0

 .

The last matrix implies that x1 = 2 and x2 = 3 so [v]B =

[
2
3

]
.

Example. If b1 = e1 − e2, b2 = e2 − e3, b3 = e3 − e4, . . . , bn−1 = en−1 − en and

v =


v1
v2
...

vn−1
−v1 − v2 − · · · − vn−1


3
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then v ∈ H = R-span{b1, b2, . . . , bn−1} and

[v]B =



v1
v1 + v2

v1 + v2 + v3
v1 + v2 + v3 + v4

...
v1 + v2 + v3 + · · ·+ vn−1


∈ Rn−1.

The notation [v]B gives us an easy way to check the following important property:

Theorem. Let H be a subspace of Rn. Then all bases of H have the same number of elements.

Proof. Suppose B = (b1, b2, . . . , bk) and B′ = (b′1, b
′
2, . . . , b

′
l) are two (ordered) bases of H with k < l.

Then [b′1]B, [b′2]B, . . . , [b′l]B are l > k vectors in Rk, so they must be linearly dependent.

This means there exist coefficients c1, c2, . . . , cl ∈ R, not all zero, with

c1[b′1]B + c2[b′2]B + · · ·+ cl[b
′
l]B = 0.

But we have c1[b′1]B + c2[b′2]B + · · ·+ cl[b
′
l]B = [c1b

′
1 + c2b

′
2 + · · ·+ clb

′
l]B.

(This is the key step; why is this true? Think about how [v]B is defined.)

Thus [c1b
′
1 + c2b

′
2 + · · ·+ clb

′
l]B = 0, so

c1b
′
1 + c2b

′
2 + · · ·+ clb

′
l =

[
b1 b2 · · · bk

]
[c1b
′
1 + c2b

′
2 + · · ·+ clb

′
l]B = 0.

(The first equality holds since by definition v =
[
b1 b2 · · · bk

]
[v]B.)

Since the coefficients ci are not all zero, this contradicts the fact that b′1, b
′
2, . . . , b

′
l are linearly independent.

This means our original assumption that H has two bases of different sizes is impossible.

3 Dimension

Let B = (b1, b2, . . . , bk) be an ordered basis of a subspace H of Rn.

The function H → Rk with the formula v 7→ [v]B is linear and invertible.

Thus H “looks the same as” Rk.

For this reason we say that H is k-dimensional. More generally:

Definition. The dimension of a subspace H is the number of vectors in any basis of H.

We denote the dimension of H by dimH. This number belongs to {0, 1, 2, 3, . . . }.

If H = {0} then we define dimH = 0.

Example. We have dimRn = n.
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If H is the set of all vectors of the form



v1
v2
...

vk
0
0
...
0


∈ Rn, then H is a subspace and dimH = k.

Note that e1, e2, . . . , ek is a basis for H.

A line in R2 through the origin is a 1-dimensional subspace.

Let A be an m× n matrix.

The processes we gave to construct bases of NulA and ColA imply that:

Corollary. The dimension of NulA is the number of free variables in the linear system Ax = 0.

Corollary. The dimension of ColA is the number of pivot columns in A.

There is a special name for the dimension of the column space of a matrix:

Definition. The rank of a matrix A is rankA = dim ColA.

Putting everything together gives the following pair of important results.

Theorem (Rank-nullity theorem). If A is a matrix with n columns then rankA + dim NulA = n.

Proof. The number of free variables in the system Ax = 0 is also the number non-pivot columns in A.

Therefore rankA + dim NulA is the total number of columns in A.

Theorem (Basis theorem). If H is a subspace of Rn with dimH = p then

1. Any set of p linearly independent vectors in H is a basis for H.

2. Any set of p vectors in H whose span is H is a basis for H.

Proof. Suppose we have p linearly independent vectors in H. If these vectors do not span H, then adding
a vector which is in H but not in their span gives a set of p + 1 linearly independent vectors in H.

If this larger set still does not span H, then adding a vector from H that is not in the span gives an even
larger linearly independent set of p + 2 vectors.

Continuing in this way must eventually produce a basis for H, but this basis will have more than p
elements, contradicting dimH = p.

Suppose we instead have p vectors whose span is H. If these vectors are linearly dependent, then one of
the vectors is a linear combination of the others. Remove this vector to get p− 1 vectors that span H.

If these vectors are still not linearly independent, then one is a linear combination of the others and
removing this vector gives a set of p− 2 vectors that span H.

Continuing in this way must eventually produce a basis for H, but this basis will have fewer than p
elements, contradicting dimH = p.
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Corollary. If H is an n-dimensional subspace of Rn then H = Rn.

Proof. If H has a basis with n elements then these elements are linearly independent, so form a basis for
Rn. Then every vector in Rn is a linear combination of the basis vectors, so belongs to H.

If U and V are two sets then we write “U ⊂ V ” or “ U ⊆ V ” to mean that every element of U is also an
element of V . Both notations mean the same thing. If U ⊂ V then it could be true that U = V .

Sometimes people write “U ( V ” to mean “U ⊂ V but U 6= V .”

It holds that U = V if and only if we have both U ⊂ V and V ⊂ U .

Corollary. If U, V ⊂ Rn are subspaces with U ⊂ V but U 6= V , then dimU < dimV ≤ n.

Proof. If j = dimV ≤ dimU = k and u1, u2, . . . , uk is a basis for U , then u1, u2, . . . , uj would be linearly
independent and therefore a basis for V . But then V ⊂ U which would imply U = V if also U ⊂ V .

Corollary. Let A be an n× n matrix. The following are equivalent:

(a) A is invertible.

(b) The columns of A form a basis for Rn.

(c) rankA = dim ColA = n.

(d) dim NulA = 0.

Proof. We have already seen that (a) and (b) are equivalent.

(c) holds if and only if the columns of A span Rn which is equivalent to (a).

(d) holds if and only if the columns of A are linearly independent which is equivalent to (a).
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4 Vocabulary

Keywords from today’s lecture:

1. Coordinate vector of a vector v ∈ H with respect to an ordered basis B = (b1, b2, . . . , bk).

The unique vector of coefficients [v]B =


c1
c2
...

ck

 ∈ Rk with c1b1 + c2b2 + · · ·+ ckbk = v.

Example: If H = R2 and B =

([
1
0

]
,

[
1
1

])
and v =

[
x
y

]
then [v]B =

[
x− y

y

]
.

2. Dimension of a subspace H ⊂ Rn

The number dimH of vectors in any basis for H.

3. Rank of an m× n matrix A.

The dimension of the column space ColA. This is also the number of pivot columns in A.

This is denoted rankA.

4. Rank-nullity theorem.

If A is an m× n matrix then dim ColA + dim NulA = rankA + dim NulA = n.

5. Basis theorem.

If H ⊂ Rn is a subspace with dimH = p then (1) any set of p linearly independent vectors in H is
a basis for H and (2) any set of p vectors whose span is H is a basis for H.
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