
MATH 2121 — Linear algebra (Fall 2020) Lecture 13

TLDR

Quick summary of today’s notes. Lecture starts on next page.

• The determinant has a geometric interpretation in terms of volumes. This is the reason why
determinants appear when you do substitutions in multivariable integrals.

The columns of a 2× 2 matrix A are the sides of a unique parallelogram in R2.

The absolute value of detA is the area of this parallelogram.

This fact generalizes to n dimensions if we replace “parallelogram” by its n-dimensional analogue.

• We introduce the concept of a vector space to generalize the idea of a subspace of Rn.

Formally, an (abstract) vector space is a nonempty set with a “zero vector” and two operations that
can be thought of a “vector addition” and “scalar multiplication.”

These operations are subject to several conditions.

All subspaces of Rn, including Rn itself, are examples of vector spaces.

The set of polynomials in one variable is another example of a vector space.

• There are notions of linear combinations, span, linear independence, subspaces, bases, and dimen-
sion for vector spaces. The definitions are the same as the ones we already used for Rn.

• If X and Y are sets, then let Fun(X,Y ) be the set of functions f : X → Y .

The sets Fun(X,R) and Fun(X,Rn) are naturally vector spaces.

More generally, if V is a vector space, then Fun(X,V ) is naturally a vector space.

The corresponding vector operations and zero vector are

f + g = ( the function that maps x 7→ f(x) + g(x) for x ∈ X ),

cf = ( the function that maps x 7→ c · f(x) for x ∈ X ),

0 = ( the function that maps x 7→ 0 ∈ V for x ∈ X ),

for f, g ∈ Fun(X,V ) and c ∈ R.

Most abstract vector spaces of interest arise as subspaces of Fun(X,V ) for some V .

• If U and V are vector spaces then a function f : U → V is linear if

f(u+ v) = f(u) + f(v) and f(cv) = c · f(v)

for all u, v ∈ U and c ∈ R.
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1 Last time: determinants

Let n be a positive integer.

Theorem. The determinant is the unique function det : { n× n matrices } → R such that

(1) det In = 1.

(2) Switching two columns reverses the sign of the determinant.

(3) detA is linear as a function of a single column A if all other columns are fixed.

For 1× 1 and 2× 2 matrices, we have det
[
a
]

= a and det

[
a b
c d

]
= ad− bc.

The diagonal (positions) of an n× n matrix are the positions (1, 1), (2, 2), . . . , (n, n).

The diagonal entries of a matrix are the entries in these positions.

A matrix is upper triangular if all of its nonzero entries are in positions on or above the diagonal.

A matrix is lower triangular if all of its nonzero entries are in positions on or below the diagonal.

A triangular matrix is a square matrix which is either upper or lower triangular.

A diagonal matrix is a matrix which is both upper and lower triangular: in other words, all of its nonzero
entries appear in diagonal positions.

Theorem. If A is triangular square matrix then detA is the product of the diagonal entries of A.

Theorem. A square matrix A is invertible if and only if detA 6= 0.

Theorem. If A and B are n× n matrices then det(AB) = (detA)(detB) and det(AT ) = detA.

Algorithm to compute detA.

Input: an n× n matrix A.

1. Start by setting denom = 1.

2. Row reduce A to an echelon form E, while doing the following:

(a) When you switch two rows, multiply denom by −1.

(b) When you rescale a row by a nonzero factor λ, multiply denom by λ.

(c) When you add a multiple of a row to another row, don’t do anything to denom.

The determinant of A is then given by

detA =
detE

denom
=

the product of the diagonal entries of E

denom
.

Another way to compute detA, which can be useful if there are many zero entries:

Theorem. Consider a matrix

A =


a11 a12 a13 . . . a1n
a21 a22 a23 . . . a2n
a31 a32 a33 . . . a2n
...

...
...

. . .
...

an1 an2 an3 . . . ann

 .
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Define A(i,j) as the submatrix formed by deleting row i and column j. Then

detA = a11 detA(1,1) − a12 detA(1,2) + a13 detA(1,3) − · · · − (−1)na1n detA(1,n)

Each A(1,j) is a square matrix smaller than A, so detA(1,j) can be computed by the same formula.

Example. det

 a b c
d e f
g h i

 = a(ei−fh)− b(di−fg)+ c(dh−eg) = a(ei−fh)−d(bi− ch)+g(bf − ce).

As mentioned above, this recursive formula for detA is useful if A has many entries which are zero.

Example. If A =


1 0 2 0
0 3 4 5
1 6 0 0
0 1 1 1

 then detA = det

 3 4 5
6 0 0
1 1 1

− 0 + 2 det

 0 3 5
1 6 0
0 1 1

− 0 and

det

 3 4 5
6 0 0
1 1 1

 = det

 3 6 1
4 0 1
5 0 1

 = −det

 6 3 1
0 4 1
0 5 1

 = −det

 6 0 0
3 4 5
1 1 1

 = −6 det

[
4 5
1 1

]
= 6

since we taking transposes doesn’t change the determinant, and switching columns reverses the sign of
the determinant. Similarly, we have

det

 0 3 5
1 6 0
0 1 1

 = det

 0 1 0
3 6 1
5 0 1

 = − det

[
3 1
5 1

]
= −(3− 5) = 2.

Therefore detA = 6 + 2 · 2 = 10.

(Note: this derivation might be a little quicker than the row reduction method, but not by much.)

2 Interpreting the determinant geometrically

The last thing we’ll mention about determinants is something we explored in a demonstration last week:

Proposition. If A is an n× n matrix then |detA| is the volume of the n-dimensional parallelogram

P (A) = {Av : v ∈ Rn with 0 ≤ vi ≤ 1 for all i = 1, 2, . . . , n} .

See Notebook 9 on the course website for a discussion of what volume means in this context.

Proof idea for n = 2 case. Assume n = 2 and A =
[
u v

]
for some vectors u, v ∈ R2.

Make things simple by putting u and v both in the first quadrant. Draw a picture of the parallelogram
P (A) inside the rectangle R whose diagonal is u + v and whose sides are on the x- and y-axes. Then
compute the area of P (A) by subtracting the areas of an appropriate number of rectangular and triangular

regions from R. One finds that this area is ad− bc if u =

[
a
c

]
and v =

[
b
d

]
.

Corollary. Suppose T : Rn → Rn is a linear transformation with standard matrix A. If S is any region
in Rn with finite volume then the volume of T (S) is the volume of S times |detA|.
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Proof idea. If T is not invertible that T (S) has zero volume (why?) while detA = 0, so the result holds.

Assume T is invertible. Given a vector u ∈ Rn and a scalar c > 0, let u+ cS = {u+ cv : v ∈ S}.

Define Q = {v ∈ Rn : 0 ≤ vi ≤ 1 for all i}. Then P (A) = T (Q), so T (u+ cQ) = Au+ cP (A).

The volume of u+ cQ is cn and the volume of T (u+ cQ) is cn|detA|.

It follows that if R ⊆ S is any disjoint union of translated rescaled cubes of the form u+ cQ, then

vol(R)|detA| = vol(T (R)) ≤ vol(T (S)).

But vol(S) is the limit superior of all such estimated volumes vol(R), so vol(S)|detA| ≤ vol(T (S)).

The same argument with S replaced by T (S) and T replaced by T−1 shows vol(T (S))|detA−1| ≤ vol(S).

Since |detA−1| = 1/|detA|, it follows that vol(S)|detA| ≥ vol(T (S)) so vol(S)|detA| = vol(T (S)).

3 Vector spaces

This course focuses on Rn and its subspaces.

These objects are examples of (real) vector spaces.

There is also a notion of a complex vector space where our scalars can be complex numbers from C rather
than just R. Essentially all of the theory is the same, so for now we stick to real vector spaces which are
more closely aligned with applications.

The general definition of a vector space is given as follows:

Definition. A vector space is a nonempty set V with two operations called vector addition and scalar
multiplication satisfying several conditions. We refer to the elements of V as vectors.

The vector addition operation for V must be a rule that takes two input vectors u, v ∈ V and produces
an output vector u+ v ∈ V such that

(a) u+ v = v + u.

(b) (u+ v) + w = u+ (v + w).

(c) There exists a unique zero vector 0 ∈ V with the property that 0 + v = v for all v ∈ V .

The scalar multiplication operation for V must be a rule that takes a scalar input c ∈ R and an input
vector v ∈ V and produces an output vector cv ∈ V such that

(a) If c = −1 then v + (−1)v = 0.

(b) c(u+ v) = cu+ cv.

(c) (c+ d)v = cv + dv for c, d ∈ R.

(d) c(dv) = (cd)v for c, d ∈ R.

(e) If c = 1 then 1v = v.

Notation: If V is a vector space and v ∈ V then we define −v = (−1)v and u− v = u+ (−v).

Example. Rn and any subspace of Rn is a vector space, with the usual operations of vector addition
and scalar multiplication.

Example. Let R∞ be the set of infinite sequences a = (a1, a2, a3, . . . ) of real numbers ai ∈ R. Define

a+ b = (a1 + b1, a2 + b2, a3 + b3, . . . ) and ca = (ca1, ca2, ca3, . . . )
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for a, b ∈ R∞ and c ∈ R.

These operations make R∞ into a vector space.

The zero vector in this space is the sequence 0 = (0, 0, 0, . . . ) ∈ R∞.

It is rarely necessary to check the axioms of a vector space in detail, and there is not much need to
memorize the abstract definition. If we have a set with operations that look like vector addition and
scalar multiplication for Rn, then we usually have a vector space. Moreover, it’s usually easy to identify
every vector space we encounter as a special case of a few general constructions like the following:

Example. Let X be any set. Define Fun(X,R) to be the set of functions f : X → R.

Given f, g ∈ Fun(X,R) define f + g to be the function with the formula

(f + g)(x) = f(x) + g(x) for x ∈ X.

Given c ∈ R and f ∈ Fun(X,R), define cf to be the function with the formula

(cf)(x) = cf(x) for x ∈ X.

The set Fun(X,R) is a vector space relative to these operations.

The corresponding zero vector in Fun(X,R) is the function with the formula f(x) = 0 for all x ∈ X.

In a sense which can be made precise, we have

Rn = Fun({1, 2, 3, . . . , n},R).

R∞ = Fun({1, 2, 3, . . . },R).

More generally, if V is any vector space then the set of functions Fun(X,V ) = {f : X → V } is a vector
space for similar definitions of vector addition and scalar multiplication.

As an example of how one can use the axioms to prove properties of a general vector space, consider the
following identities which are obvious for subspaces of Rn.

Proposition. If V is a vector space then 0v = 0 and c0 = 0 for all c ∈ R and v ∈ V .

Proof. We have 0v = (0 + 0)v = 0v+ 0v so 0 = 0v− 0v = (0v+ 0v)− 0v = 0v+ (0v− 0v) = 0v+ 0 = 0v.

Similarly, c0 = c(0 + 0) = c0 + c0 so 0 = c0− c0 = (c0 + c0)− c0 = c0 + (c0− c0) = c0 + 0 = c0.

We will not focus very much in this course on the art of coming up with these sorts of algebraic derivations.
Mostly, we can just rely on our intuition from subspaces of Rn when working with more general spaces.

4 Subspaces, bases, and dimension

Notions of subspaces, bases, and dimension for vector spaces are essentially the same as for Rn.

Definition. A subspace of a vector space V is a subset H containing the zero vector of V , such that if
u, v ∈ H and c ∈ R then u+ v ∈ H and cv ∈ H.

If H ⊂ V is a subspace then H is itself a vector space with the same operations of scalar multiplication
and vector addition.

Example. V is a subspace of itself and {0} ⊂ V is a subspace.

Example. R2 is technically not a subspace of R3 since R2 is not a subset of R3.
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Example. Let X be any set. Let Y ⊂ X be a subset. Define H as the subset of Fun(X,R) consists of
the functions f : X → R with f(y) = 0 for all y ∈ Y . Then H is a subspace.

Example. The set of all functions Fun(Rn,Rm) is a vector space since Rm is a vector space. The subset
of linear functions f : Rn → Rm is a subspace of this vector space.

Let V be a vector space.

Definition. A linear combination of a finite list of vectors v1, v2, . . . , vk ∈ V is a vector of the form

c1v1 + c2v2 + · · ·+ ckvk

for some scalars c1, c2, . . . , ck ∈ R. A linear combination of an infinite set of vectors is a linear combination
of some finite subset. A linear combination by definition only involves finitely many vectors.

Definition. The span of a set of vectors is the set of all linear combinations that can be formed from the
vectors. It is important to note that each such linear combination can only involve finitely many vectors
at a time. The span of a set of vectors in V is a subspace of V .

Example. Let V = Fun(R,R). The span of the infinite set of functions 1, x, x2, x3, · · · ∈ V is the subspace
of polynomial functions. Note that each polynomial function is a linear combination of a finite number
of monomials cnx

n + cn−1x
n−1 + · · ·+ c1x+ c0. The infinite sum 1 + x+ x2 + . . . is not a polynomial.

Definition. A finite list of vectors v1, v2, . . . , vk ∈ V is linearly independent if it is impossible to express
0 = c1v1 + c2v2 + · · · + ckvk except when c1 = c2 = · · · = ck = 0. An infinite list of vectors is linearly
independent if every finite subset is linearly independent.

Definition. A basis of a vector space V is a subset of linearly independent vectors whose span is V .
Saying that b1, b2, b3, . . . is a basis for V is the same thing as saying that each v ∈ V can be expressed as
a uniquely linear combination of basis elements.

Theorem. Let V be a vector space.

1. V has at least one basis.

2. Every basis of V has the same size.

3. If A is a subset of linearly independent vectors in V then V has a basis B with A ⊂ B.

4. If C is a subset of vectors in V whose span is V then V has a basis B with B ⊂ C.

When V has a basis that is finite in size, the proof of the previous theorem is the same as for the case
when V is a subspace Rn (which was shown in earlier lectures). When V has no finite basis, the properties
in the theorem still hold, but their proofs are slightly beyond the scope of this course.

Definition. As for subspaces of Rn, we define the dimension of a vector space V to be the common
number of elements in any of its bases. Denote the dimension of V by dimV .

Corollary. If H ⊂ V is a subspace then dimH ≤ dimV .

Moreover, if H ⊂ V is a subspace with dimH = dimV then H = V .

Proof. This follows from the last two parts of the previous theorem.

Example. If X is a finite set then dimFun(X,R) = |X| where |X| is the size of X. A basis is given by

5



MATH 2121 — Linear algebra (Fall 2020) Lecture 13

the functions δy : X → R for y ∈ X, defined by the formulas

δy(x) =

{
1 if x = y

0 if x 6= y
for x ∈ X.

The following is a more interesting example involving the space of solutions of a differential equation.
The problem of describing all solutions to a differential equation is an important motivation to consider
more general kinds of vector spaces (rather than just subspaces of Rn).

Example. Let V be the subset of Fun(R,R) of twice-differentiable functions f : R→ R with

f ′′ + f = 0.

Here f ′′ denotes the second derivative of f . The subset V is a subspace of Fun(R,R) (check this!).

The vector space V contains the functions cosx and sinx since (cosx)′ = − sinx and (sinx)′ = cosx.

These functions are linearly independent since if we could express

a cosx+ b sinx = 0 for all x ∈ R

then setting x = 0 would imply a = 0 and setting x = π/2 would imply b = 0.

We conclude that dimV ≥ 2. What is dimV ? Is it finite? We’ll answer this question in a moment.

Suppose U and V are vector spaces.

Definition. A function f : U → V is linear if

f(u+ v) = f(u) + f(v) and f(cv) = cf(v) for all c ∈ R and u, v ∈ U .

Define range(f) = {f(x) : x ∈ U} and kernel(f) = {x ∈ U : f(x) = 0}.

Proposition. If f : U → V is linear then range(f) and kernel(f) are subspaces.

These subspaces are generalisations of the column space and null space of a matrix.

Proposition. If U, V,W are vector spaces and f : V → W and g : U → V are linear functions then
f ◦ g : U → V →W is linear, where f ◦ g(x) = f(g(x)).

Check this yourself!

If D is the subspace of twice-differentiable functions in Fun(R,R) and L : D → Fun(R,R) is the function
L(f) = f ′′ + f , then L is a linear map and the subspace

V = {f ∈ D : f ′′ + f = 0}

in our previous example is precisely kernel(L).

To compute the dimension of this subspace, some notation is useful.

Recall that there are n! different n× n permutation matrices, where

0! = 1 and n! = n(n− 1)(n− 2) · · · 3 · 2 · 1 for integers n > 0.

In general n! (pronounced “n factorial”) is the product of all positive integers at most n.

Now suppose we could write f ∈ V as

f(x) = a0/0! + a1x/1! + a2x
2/2! + a3x

3/3! + a4x
4/4! + . . .
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for some real numbers a0, a1, a2, a3, a4, · · · ∈ R. Then

f ′(x) = a1/0! + a2x/1! + a3x
2/2! + a4x

3/3! + a5x
4/4! + . . .

and
f ′′(x) = a2/0! + a3x/1! + a4x

2/2! + a5x
3/3! + a6x

4/4! + . . .

Since f ′′ + f = 0 we have

0 = (a0 + a2)/0! + (a1 + a3)x/1! + (a2 + a4)x2/2! + (a3 + a5)x3/3! + (a4 + a6)x4/4! + . . .

this means

a0 + a2 = 0 and a1 + a3 = 0 and a2 + a4 = 0 and a3 + a5 = 0 etc.

Therefore a0 = −a2 = a4 = −a6 = a8 = . . . and a1 = −a3 = a5 = −a7 = a9 = . . . so

f(x) = a0(1− x2/2! + x4/4!− x6/6! + . . . ) + a1(x/1!− x3/3! + x5/5!− x7/7! + . . . ).

Remembering our Taylor series from calculus, this shows that

f(x) = a0 cosx+ a1 sinx.

Thus, the linearly independent functions cosx and sinx span the vector space V .

These functions are therefore a basis and dimV = 2.
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5 Vocabulary

Keywords from today’s lecture:

1. Vector spaces.

A vector space is a nonempty set V with two operations called vector addition and scalar mul-
tiplication that formally resemble the operations of vector addition and scalar multiplication for
elements of Rn. The precise definition involves a long list of axioms governing these operations, but
in practice it’s rarely necessary to remember the axioms.

Example: Any subspace of Rn.

Example: Given a set X, the set Fun(X,R) of functions f : X → R, provided we define f + g as
the function with the formula

(f + g)(x) = f(x) + g(x) for x ∈ X

and define cf as the function with the formula

(cf)(x) = cf(x) for x ∈ X

whenever f, g : X → R and c ∈ R.

2. Subspace of a vector space.

A nonempty subset closed under linear combinations.

3. Linearly combination and span of elements in a vector space.

A linear combination of a finite set of vectors v1, v2, . . . vp ∈ V is a vector of the form

c1v1 + c2v2 + · · ·+ cpvp

where c1, c2, . . . , cp ∈ R. A linear combination of an infinite set of vectors is a linear combination of
some finite subset. The set of all linear combinations of a set of vectors is the span of the vectors.

4. Linearly independent elements in a vector space.

A list of elements in a vector space is linearly dependent if one vector can be expressed as a
linear combination of a finite subset of the other vectors. If this is impossible, then the vectors are
linearly independent.

Example: cos(x) and sin(x) are linearly independently in Fun(R,R).

Example: the infinite list of functions 1, x, x2, x3, x4, . . . are linearly independent in Fun(R,R).

5. Basis and dimension of a vector space.

A set of linearly independent elements whose span is the entire vector space.

Every basis in a vector space has the same number of elements. This number is defined to be the
dimension of the vector space.

6. Linear functions.

If U and V are vector spaces, then a function f : U → V is linear when

f(u+ v) = f(u) + f(v) and f(cv) = cf(v)

for all u, v ∈ U and c ∈ R.
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