MATH 2121 — Linear algebra (Fall 2020) Lecture 22

TLDR

Quick summary of today’s notes. Lecture starts on next page.

e A line of best fit through data points (a1, b1), (a2,b2),..., (an,b,) is an equation of the form

y = Bo+ Bix
1 ay bl
60 2 . . 1 a b
where 3 € R? is a least-squares solution to Ax = b where A = . .| and b=
1 . .
1 Ay bn

o A matrix A is symmetric if AT = A. This can only hold if A is square. For example:

0 -1 0
-1 ) 8
0 8 -7

If A is symmetric then so is 42, A3, A%, etc.

If A is symmetric and invertible then so is A=!, A=2, A~3, etc.

If A is symmetric and v and v are eigenvectors for A with different eigenvalues, then v e v = 0.
o A list of vectors ui,ug,...,u, is orthonormal if u; e u; = 1 and u; @ u; = 0 for all ¢ # j.

A square matrix P is invertible with P~! = PT if and only if its columns are orthonormal.

An n x n matrix A is orthogonally diagonalizable if there is a diagonal matrix D and an invertible
matrix P with P~! = PT such that A = PDP~!.

e When we have such a decomposition A = PDP~! where D is diagonal and P~! = PT the diagonal
entries of D are the eigenvalues of A, and the columns of P are an orthonormal basis of R™ consisting
of eigenvectors for A.

Conversely, an n x n matrix A is orthogonally diagonalizable if and only if there exists an orthonor-
mal basis of R™ consisting of eigenvectors for A.

e Surprising fact: all (complex) eigenvalues of a symmetric matrix belong to R.
Surprising fact: an n x n matrix A is orthogonally diagonalizable if and only if A = AT.
Much of this lecture is spent proving these facts.

e To orthogonally diagonalize a given n x n symmetric matrix A, you need to find an orthogonal basis
of R™ consisting of eigenvectors vy, vs, ..., v, for A.

Once you find this, let u; = mW and U = [ Up Uz ... Up ]
Then A = UDUT where D is the diagonal matrix whose ith diagonal entry is the eigenvalue of v;.
To find the orthogonal basis of eigenvectors vy, va, ..., Uy,:

1. Factor the characteristic polynomial of A to compute its eigenvalues.

2. For each eigenvalue A, do the usual row reduce procedure to find a basis for Nul(A — \I).

3. Apply the Gram-Schmidt process to convert your basis of Nul(A — AI) to an orthogonal basis.

4. Finally combine these orthogonal bases — the combined list of vectors will still be orthogonal.
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1 Last time: least-squares problems

Definition. Suppose A is an m X n matrix and b € R™.
The linear system A7 Az = ATb is always consistent, i.e., has at least one solution.

A solution to AT Az = ATb is called a least-squares solution to Az =b.

Let [|v]| = /v +v3 + -+ +v2 >0 for v € R™. Recall that ||v|| = 0 if and only if v = 0.

Fact. A vector s € R™ is a least-squares solution to Az = b if and only if ||b — As|| < ||b — Az|| for all .
The linear system Az = b is consistent if and only if ||b — Ax|| = 0 for some z € R™.
This means that if Az = b is consistent then all least-squares solutions s satisfy ||b — As|| =0 so As = b.

If Az = b is inconsistent, there is still at least one least-squares solution s (but in this case ||b— As|| > 0).

Theorem. Let A be an m x n matrix. The following properties are equivalent:
(a) Az = b has a unique least-squares solution for each b € R™.
(b) The columns of A are linearly independent.

(c) AT A is invertible.

Example (Lines of best fit). Suppose we have n data points (a1,b1), (az,b2), ..., (an, by).

We want to find parameters fy, 81 € R such that y = By + S1x describes the line of best fit for this data.
Bo
B

bi=po+pPia; fori=1,2,... n,

If our points are all on the same line, then for some € R? we would have

meaning that z = [ go } is an exact solution to the linear system Axz = b where
1
1 ay bl
1 as bo
A= . . and b=
1 Ay, bn

If the given points are not on the same line, then no exact solution to Ax = b exists, and we should
instead try to find a least-squares solution to this linear system.

To be concrete, suppose we have four points (2, 1), (5,2), (7,3), and (8,3) so that

and b=

— = =
o J Ut N
W W N

The least-squares solutions to Az = b are the exact solutions to AT Az = ATbh. We have

[ 4 22
“ 22 142

[ 0
EN
o =

1
Tg—
AA_[2
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o J Ot N
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and

w N =
|
—
(@)
~N ©
[

w1111
ATh = [ 2 5 7 8
The matrix AT A is invertible. (Why?) It follows that a least-squares solution is provided by

()= 2] [ 2]-41 28 ][ 2)- )
2+ o

Thus our line of best fit for the data is y = £

w

2 Symmetric matrices

A matrix A is symmetric if AT = A. This happens if A is square and A;; = Aj; for all i, j.

1 0 0 —1 0 a b ¢
Example. { }and -1 ) 8 | and | b d e | are symmetric matrices.
0 -3
0 8 -7 c e f
1 -4 0
b=3 and | —6 1 —4 | and 123 are not symmetric.
3 0 6 —6 1 2 3 5

Proposition. If A is a symmetric matrix and k is a positive integer then A* is also symmetric.

Proof. It A= AT then (A*)T = (AA--- A)T = AT ... ATAT = (AT)k = A*. O

Proposition. If A is an invertible symmetric matrix then A~! is also symmetric.
Proof. This is because (A71)T = (AT)~L. O

Recall how we can diagonalize a matrix.

6 —2 -1
Example. Let A= | -2 6 —1
-1 -1 )

Then det(A — xI) = (8 —z)(6 — x)(3 — z) so the eigenvalues of A are 8, 6, and 3. By constructing bases
for the null spaces of A — 81, A —5I, and A — 31, we find that the following are eigenvectors of A:

-1

v = 1 | with eigenvalue 8.
0
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-1
vg = | —1 | with eigenvalue 6.
| 2
[ 1
vg = | 1 | with eigenvalue 3.
1

These eigenvectors are actually an orthogonal basis for R3.

Converting these vectors to unit vectors gives an orthonormal basis of eigenvectors:

—1/V/2 ~1/V6 1/V3
Uy = 1/\/§ 5 U = —1/\/6 5 us = 1/\/§
0 2//6 1/V3

We then have A = PDP~! where

P:[ul Uo Ug] and D=

o O oo
o OO
w o o

(Why does this hold? It is enough to check that PDP~'v = Av for v € {uy, us,us}.)

Since the columns of P are orthonormal, we actually have PT = P~! so A = PDPT.

The special properties in this example will turn out to hold for all symmetric matrices.

Theorem. Suppose A is a symmetric matrix. Then any two eigenvectors from different eigenspaces of
A are orthogonal. In other words, if A = AT is n x n and u,v € R™ are such that Au = au and Av = bv
for numbers a,b € R with a # b, then v e v = 0.

Proof. Let u and v be eigenvectors of A with eigenvalues a and b, where a # b.

Then auev = Auev = (Au)Tv =uTATv =uT Av = u e Av = u e bu.

But auev = a(uev) and uebv = b(uev), so this means a(uev) = b(uev) and therefore (a —b)(uev) = 0.

Since a — b # 0, it follows that v e v = 0. O

Recall that a matrix P is orthogonal if P is invertible and P~! = PT.

Definition. A matrix A is orthogonally diagonalizable if there is an orthogonal matrix P and a diagonal
matrix D such that A = PDP~! = PDPT.

When A is orthogonally diagonalizable and A = PDP~! = PDPT, the diagonal entries of D are the
eigenvalues of A, and the columns of P are the corresponding eigenvectors; moreover, these eigenvectors
form an orthonormal basis of R".

In fact, it follows by the arguments in our earlier lectures about diagonalizable matrices that an n x n
matrix A is orthogonally diagonalizable if and only if there is an orthonormal basis for R™ consisting of
eigenvectors for A.

Surprisingly, there is a much more direct characterization of orthogonally diagonalizable matrices:

Theorem. A square matrix is orthogonally diagonalizable if and only if it is symmetric.

We prove this after a sequence of lemmas.

Lemma. If A is orthogonally diagonalizable then A is symmetric.
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Proof. 1f X,Y, Z are n x n matrices then (XY Z)T = ZT(XY)T = ZTyTXT.
Suppose A = PDPT where D is diagonal. Then D = DT and (PT)T = P, so

AT = (pDPTT = (PTYTDTPT = PDPT = A.

Lemma. All (complex) eigenvalues of an n x n symmetric matrix A with real entries belong to R.

Proof. Suppose A is a symmetric n X n matrix with real entries, so that A = AT = A.

Let v € C". Then 7' Av is some complex number.

L 12 REEY
Forexample,1fA—[2 l}andv—[l_i]then
_ ) . 1 2 141 ) . 1414 . . . .
vTAv:[l—z 1+z][2 1}{1_2.}[34—1 3—2][1_2.](3+z)(1+z)+(31)(11)4_

In fact, the number 77 Av belongs to R since 77 Av = v AT = (@TAU)T =77 Av.
(The last equality holds since both sides are 1 X 1 matrices, i.e., scalars.)

Now suppose v € C" is an eigenvector for A with eigenvalue A € C. Then 77 Av = 77 (M) = A(7Tv) € R.
The complex number 57 v always belongs to R (why?) so it must also hold that A € R. O

Lemma. An n x n matrix A with all real eigenvalues can be written as A = URUT where U is an n x n
orthogonal matrix (i.e., has orthonormal columns) and R is an n X n upper-triangular matrix.

One calls A = URUT with U and R of this form a Schur factorization of A.

Proof. Suppose A is an n x n matrix with all real eigenvalues.
Let u; € R™ be a unit eigenvector for A with eigenvalue A € R.
Let ug,...,u, € R™ be any vectors such that uj,us, ..., u, is an orthonormal basis for R™.

(One way to construct these vectors: let w3 = x1,x9,...,x, be any basis, apply the Gram-Schmidt
process to get u; = v1,vs,...,v,, and then convert each v; to a unit vector.)

Define U= [ uy wug ... wup | sothat UM =U"".
By considering the product U7 AUe; for i = 1,2,...,n, one finds that U7 AU has the form

A%

T ATT —

a-[} 5]
for some (n — 1) x (n — 1) matrix B. Here, * stands for n — 1 arbitrary entries.

The matrix UT AU = U~ AU has the same characteristic polynomial as A.

This polynomial is just (A — ) det(B — xI), which is A — x times the characteristic polynomial of B.

Since the characteristic polynomial of A has all real roots, the same must be true of the characteristic
polynomial of B. Thus B must also have all real eigenvalues.

By repeating the argument above, we deduce that there is an eigenvalue p € R for B, an (n—1) X (n—1)
orthogonal matrix V, and an (n — 2) x (n — 2) matrix C with all real eigenvalues such that

T I Y T
VBV—{O C]'
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The matrix [ (1) ‘9 ] is also orthogonal, and the product of orthogonal matrices is orthogonal. (Why?)
1 0 Aok %

It follows for the orthogonal matrix W = U that WIAW = | 0 pu =
oV 00 C

By continuing in this way, we will eventually construct an orthogonal matrix X and an upper-triangular
matrix R such that X7 AX = R, in which case A = XXTAXXT = XRXT. O

Now we can prove the theorem.

Proof of theorem. The first lemma shows that if A is orthogonally diagonalizable then A is symmetric.

Suppose conversely that A is symmetric. Then A has all real eigenvalues, so there exists a Schur factor-
ization A = URUT. We then have AT = (URUT)T = URTUT but also AT = A=URUT.

Since UT = U™, it follows that R = R”. Since R is upper-triangular, this can only hold if R is diagonal.
But if R is diagonal then A = URU” is orthogonally diagonalizable. O

To orthogonally diagonalize an n x n symmetric matrix A, we just need to find an orthogonal basis of
eigenvectors vy, v, ..., v, for R®. Then A = UDUT with U = [ U Uy ... Uy ] where u; = mvi
and D is the diagonal matrix of the corresponding eigenvalues.

If all eigenspaces of A are 1-dimensional, then any basis of eigenvectors will be orthogonal. If A has an
eigenspace of dimension greater than one, then after finding a basis for this eigenspace, it is necessary to
apply the Gram-Schmidt process to convert this basis to one that is orthogonal.

Corollary. If A=U DUT where U = [ UL Uy ... Up ] has orthonormal columns and

A

An

is diagonal, then A = A\juju? + Xougud + -+ + Nupul.
T

Each product w;u; is an n x n matrix of rank 1. One calls this expression a spectral decomposition of A.

7 2

Example. Let A = [ 9 4

} . A spectral decomposition of A is given by
v e[
A= 0

0 2/V/5 1/\/5
1/vV5  2/V/5 H ]

3]0 -1/v6 2/Vh
—s[WVE ] Tes s Tes] R 1-vE o]

=[5 o |+ o 12 )
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3 Vocabulary

Keywords from today’s lecture:

1. Symmetric matriz.
A matrix A that is equal to its transpose, so that A = A”. Such a matrix is square.

Symmetric matrices are precisely the square matrices A that are orthogonally diagonalizable, in
other words, the matrices that can be expressed as

A=pPDPT

where D is a diagonal matrix and P is an invertible matrix with P~! = PT.

Example: { ; g } or any diagonal matrix.

2. Schur factorization of an n x n matrix A.

A decomposition A = URUT where R is an n x n upper triangular matrix and U is an orthogonal
matrix (i.e., U is invertible with U=1 = UT).
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