Summary

Quick summary of today's notes. Lecture starts on next page.

- The characteristic equation of an $n \times n$ matrix A is a degree n polynomial in one variable.

We can always factor this polynomial as

$$
\operatorname{det}(A-x I)=\left(\lambda_{1}-x\right)\left(\lambda_{2}-x\right) \cdots\left(\lambda_{n}-x\right)
$$

for some $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n} \in \mathbb{C}$. These complex numbers are the (complex) eigenvalues of A.

- Define \mathbb{C}^{n} to be the set of vectors $v=\left[\begin{array}{r}v_{1} \\ v_{2} \\ \vdots \\ v_{n}\end{array}\right]$ with n rows and entries $v_{1}, v_{2}, \ldots, v_{n} \in \mathbb{C}$.

The sum $u+v$ and scalar multiple $c v$ for $u, v \in \mathbb{C}^{n}, c \in \mathbb{C}$ are defined just as for vectors in \mathbb{R}^{n}, except we use the addition and multiplication operations from \mathbb{C} instead of \mathbb{R}.
If A is an $n \times n$ matrix and $v \in \mathbb{C}^{n}$ then we define $A v$ in the same way as when $v \in \mathbb{R}^{n}$.
A complex number $\lambda \in \mathbb{C}$ an eigenvalue of A if and only if there exists $0 \neq v \in \mathbb{C}^{n}$ with $A v=\lambda v$.

- The trace of a square matrix A, denoted $\operatorname{tr} A$, is the sum of the diagonal entries of A.

If A and B are both $n \times n$ then $\operatorname{tr}(A+B)=\operatorname{tr}(A)+\operatorname{tr}(B)$ and $\operatorname{tr}(A B)=\operatorname{tr}(B A)$.
But usually $\operatorname{tr}(A B) \neq \operatorname{tr}(A) \operatorname{tr}(B)$.

- Let A be an $n \times n$ matrix.

Suppose the roots of the characteristic polynomial $\operatorname{det}(A-x I)$ are $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n} \in \mathbb{C}$.
These are the eigenvalues of A, repeated accordingly to their multiplicity.
Then $\operatorname{det} A=\lambda_{1} \lambda_{2} \cdots \lambda_{n}$ and $\operatorname{tr} A=\lambda_{1}+\lambda_{2}+\ldots \lambda_{n}$.

- Let A be an $n \times n$ matrix.

The matrices A and A^{T} have the same characteristic polynomial and same eigenvalues.
If A is invertible, then A and A^{-1} have the same eigenvectors.
However, λ is an eigenvalue of A if and only if λ^{-1} is an eigenvalue for A^{-1}.
If A is diagonalizable then so is A^{T} and A^{-1} (when A is invertible).

1 Last time: complex numbers

Given $a, b \in \mathbb{R}$, we interpret $a+b i$ as the matrix $\left[\begin{array}{rr}a & -b \\ b & a\end{array}\right]$, so $1=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ and $i=\left[\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right]$.
Write \mathbb{C} for the set of complex numbers $\{a+b i: a, b \in \mathbb{R}\}$.
We view $\mathbb{R}=\{a+0 i: a \in \mathbb{R}\}$ as a subset of \mathbb{C}.
According to our definition, every complex number is a 2×2 matrix. It can also be helpful to think of a complex number $a+b i$ as a polynomial with real coefficient in a variable i that satisfies $i^{2}=-1$.

We can add, subtract, multiply, and invert complex numbers. These operations correspond to the usual ways of adding, subtracting, multiplying, and inverting matrices.

Let $a, b, c, d \in \mathbb{R}$. We add complex numbers in the following way:

$$
(a+b i)+(c+d i)=(a+c)=(b+d) i \in \mathbb{C}
$$

We multiply complex numbers like polynomials, but substituting -1 for i^{2} :

$$
(a+b i)(c+d i)=a c+(a d+b c) i+b d\left(i^{2}\right)=(a c-b d)+(a d+b c) i \in \mathbb{C}
$$

The order of multiplication does not matter since $(a+b i)(c+d i)=(c+d i)(a+b i)$.
Given $a, b \in \mathbb{R}$, we define the complex conjugate of the complex number $a+b i \in \mathbb{C}$ to be

$$
\overline{a+b i}=a-b i \in \mathbb{C}
$$

If $z=a+b i \in \mathbb{C}$. Then $\bar{z}=z$ if and only if $b=0$ and $z \in \mathbb{R}$.
If $y, z \in \mathbb{C}$ then $\overline{y+z}=\bar{y}+\bar{z}$ and $\overline{y z}=\bar{y} \cdot \bar{z}$.
If $z=a+b i \in \mathbb{C}$ then $z \bar{z}=(a+b i)(a-b i)=a^{2}+b^{2} \in \mathbb{R}$.
This indicates how to invert complex numbers $0 \neq a+b i$:
$\left[\begin{array}{rr}a & -b \\ b & a\end{array}\right]^{-1}=(a+b i)^{-1}=\frac{a-b i}{(a+b i)(a-b i)}=\frac{a-b i}{a^{2}+b^{2}}=\frac{a}{a^{2}+b^{2}}-\frac{b}{a^{2}+b^{2}} i=\frac{1}{a^{2}+b^{2}}\left[\begin{array}{rr}a & b \\ -b & a\end{array}\right]$.
Finally, complex division is defined by

$$
\frac{a+b i}{c+d i}=(a+b i)(c+d i)^{-1}=(c+d i)^{-1}(a+b i)
$$

Example. We have $\frac{3-4 i}{2+i}=\frac{(3-4 i)(2-i)}{(2+i)(2-i)}=\frac{6-3 i-8 i+4 i^{2}}{4-i^{2}}=\frac{6-11 i-4}{5}=\frac{2-11 i}{5}=\frac{2}{5}-\frac{11}{5} i$.
Theorem (Fundamental theorem of algebra). Suppose

$$
p(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots a_{1} x+a_{0}
$$

is a polynomial of degree n (meaning $a_{n} \neq 0$) with coefficients $a_{0}, a_{1}, \ldots, a_{n} \in \mathbb{C}$.
There are n (not necessarily distinct) numbers $r_{1}, r_{2}, \ldots, r_{n} \in \mathbb{C}$ such that

$$
p(x)=a_{n}\left(x-r_{1}\right)\left(x-r_{2}\right) \cdots\left(x-r_{n}\right)
$$

One calls the numbers $r_{1}, r_{2}, \ldots, r_{n}$ the roots of $p(x)$.
A root r has multiplicity m if exactly m of the numbers $r_{1}, r_{2}, \ldots, r_{n}$ are equal to r.
Example. We have $9 x^{2}+36=9(x-2 i)(x+2 i)$.

2 Complex eigenvalues

Define \mathbb{C}^{n} to be the set of vectors $v=\left[\begin{array}{r}v_{1} \\ v_{2} \\ \vdots \\ v_{n}\end{array}\right]$ with n rows and entries $v_{1}, v_{2}, \ldots, v_{n} \in \mathbb{C}$.
We have $\mathbb{R}^{n} \subset \mathbb{C}^{n}$ since $\mathbb{R}=\{a \in \mathbb{R}\} \subset \mathbb{C}=\{a+b i: a, b \in \mathbb{R}\}$.
The sum $u+v$ and scalar multiple $c v$ for $u, v \in \mathbb{C}^{n}$ and $c \in \mathbb{C}$ are defined exactly as for vectors in \mathbb{R}^{n}, except we use the addition and multiplication operations from \mathbb{C} instead of \mathbb{R}.
If A is an $n \times n$ matrix and $v \in \mathbb{C}^{n}$ then we define $A v$ in the same way as when $v \in \mathbb{R}^{n}$. For example:

$$
\left[\begin{array}{rr}
i & 1 \\
3 & 2 i
\end{array}\right]\left[\begin{array}{r}
1 \\
1-i
\end{array}\right]=\left[\begin{array}{r}
i+(1-i) \\
3+2 i(1-i)
\end{array}\right]=\left[\begin{array}{r}
1 \\
3+2 i-2 i^{2}
\end{array}\right]=\left[\begin{array}{r}
1 \\
5+2 i
\end{array}\right] .
$$

Definition. Let A be an $n \times n$ matrix with entries in \mathbb{R} or \mathbb{C}.
Let $\lambda \in \mathbb{C}$. The following statements are equivalent:

- λ is an eigenvalue of A.
- $A v=\lambda v$ for some nonzero vector $v \in \mathbb{C}^{n}$
- $\operatorname{det}(A-\lambda I)=0$.

This is no different from our first definition of an eigenvalue, except that now we permit λ to be in \mathbb{C}.
Example. The eigenvalues of $A=\left[\begin{array}{cc}i & 1 \\ 3 & 2 i\end{array}\right]$ are the solutions to

$$
0=\operatorname{det}(A-x I)=\operatorname{det}\left[\begin{array}{rr}
i-x & 1 \\
3 & 2 i-x
\end{array}\right]=(i-x)(2 i-x)-3=2 i^{2}-3 i x+x^{2}-3=-5-3 i x+x^{2}
$$

By the quadratic formula these solutions are

$$
\lambda=\frac{3 i \pm \sqrt{(-3 i)^{2}-4(-5)}}{2}=\frac{3 i \pm \sqrt{-9+20}}{2}= \pm \frac{\sqrt{11}}{2}+\frac{3}{2} i
$$

The fundamental theorem of algebra implies the following essential property:
Fact. If A is an $n \times n$ matrix then A has n (not necessarily real or distinct) eigenvalues $\lambda \in \mathbb{C}$, counting repeated eigenvalues with their respective multiplicities.

If A is a matrix and $v \in \mathbb{C}^{n}$ then we define \bar{A} and \bar{v} to be the matrix and vector given by replacing all entries of A and v by their complex conjugates.

Proposition. Suppose A is an $n \times n$ matrix with real entries, so that $A=\bar{A}$. If A has a complex eigenvalue $\lambda \in \mathbb{C}$ with eigenvector $v \in \mathbb{C}^{n}$ then $\bar{v} \in \mathbb{C}^{n}$ is an eigenvector for A with eigenvalue $\bar{\lambda}$.

This proposition does not apply to $A=\left[\begin{array}{rr}i & 1 \\ 3 & 2 i\end{array}\right]$ from above since A does not have all real entries.

3 Some final properties of eigenvalues of eigenvectors

We discuss a few more properties of eigenvalues and eigenvectors.
Lemma. Suppose we can write a polynomial in x in two ways as

$$
\left(\lambda_{1}-x\right)\left(\lambda_{2}-x\right) \cdots\left(\lambda_{n}-x\right)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}
$$

for some complex numbers $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}, a_{0}, a_{1}, \ldots, a_{n} \in \mathbb{C}$. Then

$$
a_{n}=(-1)^{n} \quad \text { and } \quad a_{n-1}=(-1)^{n-1}\left(\lambda_{1}+\lambda_{2}+\cdots+\lambda_{n}\right) \quad \text { and } \quad a_{0}=\lambda_{1} \lambda_{2} \cdots \lambda_{n} .
$$

Proof. The product $\left(\lambda_{1}-x\right)\left(\lambda_{2}-x\right) \cdots\left(\lambda_{n}-x\right)$ is a sum of 2^{n} monomials corresponding to a choice of either λ_{i} or $-x$ for each of the n factors, multiplied together.
The only such monomial of degree n is $(-x)^{n}=(-1)^{n} x^{n}=a_{n} x^{n}$ so $a_{n}=(-1)^{n}$.
The only such monomial of degree 0 is $\lambda_{1} \lambda_{2} \cdots \lambda_{n}=a_{0}$.
Finally, there are n monomials of degree $n-1$ that arise:

$$
\lambda_{1}(-x)^{n-1}+(-x) \lambda_{2}(-x)^{n-2}+(-x)^{2} \lambda_{3}(-x)^{n-3}+\cdots+(-x)^{n-1} \lambda_{n}=(-1)^{n-1}\left(\lambda_{1}+\cdots+\lambda_{n}\right) x^{n-1} .
$$

This sum must be equal to $a_{n-1} x^{n-1}$ so $a_{n-1}=(-1)^{n-1}\left(\lambda_{1}+\lambda_{2}+\cdots+\lambda_{n}\right)$.
Let A be an $n \times n$ matrix.
Define $\operatorname{tr}(A)$ to be the sum of the diagonal entries of A. Call $\operatorname{tr}(A)$ the trace of A.
Example. $\operatorname{tr}\left(\left[\begin{array}{rrr}1 & 0 & 7 \\ -1 & 2 & 8 \\ 2 & 4 & 3\end{array}\right]\right)=1+2+3=6$.
Proposition. If A, B are $n \times n$ matrices then $\operatorname{tr}(A+B)=\operatorname{tr}(A)+\operatorname{tr}(B)$ and $\operatorname{tr}(A B)=\operatorname{tr}(B A)$.
However, usually $\operatorname{tr}(A B) \neq \operatorname{tr}(A) \operatorname{tr}(B)$, unlike for the determinant.
Proof. The diagonal entries of $A+B$ are given by adding together the diagonal entries of A with those of B in corresponding positions, so it follows that $\operatorname{tr}(A+B)=\operatorname{tr}(A)+\operatorname{tr}(B)$.
Let $E_{i j}$ be the $n \times n$ matrix with 1 in position (i, j) and 0 in all other positions.
(In this proof, we use the symbol i to mean an integer index rather than a complex number.)
You can check that $E_{i j} E_{k l}$ is the zero matrix if $j \neq k$ and that $E_{i j} E_{j k}=E_{i k}$.
Moreover, $\operatorname{tr}\left(E_{i j}\right)=0$ if $i \neq j$ and $\operatorname{tr}\left(E_{i i}\right)=1$.
We conclude that $\operatorname{tr}\left(E_{i j} E_{k l}\right)$ is 1 if $i=l$ and $j=k$ and is 0 otherwise.
This formula is symmetric so $\operatorname{tr}\left(E_{i j} E_{k l}\right)=\operatorname{tr}\left(E_{k l} E_{i j}\right)$.
It follows that $\operatorname{tr}(A B)=\operatorname{tr}(B A)$ since if $A_{i j}$ and $B_{i j}$ are the entries of A and B in positions (i, j), then

$$
A=\sum_{i=1}^{n} \sum_{j=1}^{n} A_{i j} E_{i j} \quad \text { and } \quad B=\sum_{k=1}^{n} \sum_{l=1}^{n} B_{k l} E_{k l} .
$$

Theorem. Let A be an $n \times n$ matrix (with entries in \mathbb{R} or \mathbb{C}).
Suppose the characteristic polynomial of A factors as

$$
\operatorname{det}(A-x I)=\left(\lambda_{1}-x\right)\left(\lambda_{2}-x\right) \cdots\left(\lambda_{n}-x\right)
$$

Then $\operatorname{det} A=\lambda_{1} \lambda_{2} \cdots \lambda_{n}$ and $\operatorname{tr} A=\lambda_{1}+\lambda_{2}+\cdots+\lambda_{n}$. In other words:
(a) The product of the (complex) eigenvalues of A, counted with multiplicity, is $\operatorname{det}(A)$.
(b) The sum of the (complex) eigenvalues of A, counted with multiplicity if $\operatorname{tr}(A)$.

Remark. The theorem is true for all matrices, but is much easier to prove for diagonalizable matrices. If $A=P D P^{-1}$ where D is a diagonal matrix, then $\operatorname{det}(A)=\operatorname{det}\left(P D P^{-1}\right)=\operatorname{det}(D)=\lambda_{1} \lambda_{2} \cdots \lambda_{n}$ and

$$
\operatorname{tr}(A)=\operatorname{tr}\left(P D P^{-1}\right)=\operatorname{tr}\left(D P^{-1} P\right)=\operatorname{tr}(D)=\lambda_{1}+\lambda_{2}+\cdots+\lambda_{n}
$$

Before proving the theorem let's see an example.
Example. If $A=\left[\begin{array}{rrr}0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & i\end{array}\right]$ then $\left[\begin{array}{r}-i \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$, and $\left[\begin{array}{c}i \\ 1 \\ 0\end{array}\right]$ are eigenvectors of A.
The corresponding eigenvalues are i, i, and $-i$.
One can check that $\operatorname{det}(A-x I)=-x^{3}+i x^{2}-x+i=(i-x)^{2}(-i-x)$.
The theorem asserts that $(i)(i)(-i)=-i^{3}=i=\operatorname{det}(A)$ and $i+i+(-i)=i=\operatorname{tr}(A)$.

Proof of the theorem. We can write $\operatorname{det}(A-x I)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$ for some numbers $a_{0}, a_{1}, \ldots, a_{n} \in \mathbb{C}$. By the lemma it suffices to show that $a_{0}=\operatorname{det}(A)$ and $a_{n-1}=(-1)^{n-1} \operatorname{tr}(A)$.
The first claim is easy. The value of a_{0} is given by setting $x=0$ in $\operatorname{det}(A-x I)$, so $a_{0}=\operatorname{det}(A)$.
Showing that $a_{n-1}=(-1)^{n-1} \operatorname{tr}(A)$ takes a little more work.
Consider the coefficient a_{n-1} of x^{n-1} in the characteristic polynomial $\operatorname{det}(A-x I)$. Remember our formula

$$
\begin{equation*}
\operatorname{det}(A-x I)=\sum_{Z \in S_{n}}(-1)^{\operatorname{inv}(Z)} \operatorname{prod}(Z, A-x I) \tag{}
\end{equation*}
$$

where $\operatorname{prod}(Z, A-x I)$ is the product of the entries of $A-x I$ in the nonzero positions of the permutation matrix Z. The key observation to make is that if $Z \in S_{n}$ is not the identity matrix then Z has at most $n-2$ nonzero entries on the diagonal, so $\operatorname{prod}(Z, A-x I)$ is a polynomial in x degree at most $n-2$.
Therefore the formula (*) implies that

$$
\operatorname{det}(A-x I)=\operatorname{prod}(I, A-x I)+(\text { polynomial terms of degree } \leq n-2)
$$

Let d_{i} be the diagonal entry of A in position (i, i). Then $\operatorname{prod}(I, A-x I)=\left(d_{1}-x\right)\left(d_{2}-x\right) \cdots\left(d_{n}-x\right)$ and the coefficient of x^{n-1} in this polynomial must be equal to the coefficient of x^{n-1} in $\operatorname{det}(A-x I)$.
By the lemma, the coefficient of x^{n-1} in $\left(d_{1}-x\right)\left(d_{2}-x\right) \cdots\left(d_{n}-x\right)$ is

$$
(-1)^{n-1}\left(d_{1}+d_{2}+\cdots+d_{n}\right)=(-1)^{n-1} \operatorname{tr}(A)
$$

and so $a_{n-1}=(-1)^{n-1} \operatorname{tr}(A)$.

Corollary. Suppose A is a 2×2 matrix. Let $p=\operatorname{det} A$ and $q=\operatorname{tr} A$.
Then A has distinct eigenvalues if and only if $q^{2} \neq 4 p$.
Proof. Suppose $a, b \in \mathbb{C}$ are the eigenvalues of A (repeated with multiplicity).
Then $a b=p$ and $a+b=q$ so $a(q-a)=q a-a^{2}=p$ and therefore $a^{2}-q a+p=0$.
The quadratic formula implies that $a=\frac{q \pm \sqrt{q^{2}-4 p}}{2}$ and $b=\frac{q \mp \sqrt{q^{2}-4 p}}{2}$ so $a \neq b$ if and only if $q^{2}-4 p \neq 0$.

Proposition. If A is a square matrix then A and A^{T} have the same eigenvalues.
Proof. This follows since $\operatorname{det}(A-x I)=\operatorname{det}\left((A-x I)^{T}\right)=\operatorname{det}\left(A^{T}-x I^{T}\right)=\operatorname{det}\left(A^{T}-x I\right)$.

Proposition. Let A be a square matrix. Then A is invertible if and only if 0 is not one of its eigenvalues. Assume A is invertible. Then A and A^{-1} have the same eigenvectors, but v is an eigenvector of A with eigenvalue λ if and only if v is an eigenvector of A^{-1} with eigenvalue $1 / \lambda$.

Proof. 0 is an eigenvalue of A if and only if $\operatorname{det} A=0$ which occurs precisely when A is not invertible.
If A is invertible and $A v=\lambda v$ then $v=A^{-1} A v=A^{-1} \lambda v=\lambda A^{-1} v$ so $A^{-1} v=\lambda^{-1} v$.

Corollary. If A is invertible and diagonalizable then A^{-1} is diagonalizable.
Proof. If A is invertible and diagonalizable, then \mathbb{R}^{n} has a basis consisting of eigenvectors of A, but this basis is then also made up of eigenvectors of A^{-1}, so A^{-1} is diagonalizable.

Corollary. If A is diagonalizable then A^{T} is diagonalizable.
Proof. If $A=P D P^{-1}$ then $A^{T}=\left(P D P^{-1}\right)^{T}=\left(P^{-1}\right)^{T} D^{T} P^{T}=Q E Q^{-1}$ for the invertible matrix $Q=\left(P^{-1}\right)^{T}=\left(P^{T}\right)^{-1}$ and the diagonal matrix $E=D^{T}$.

4 Vocabulary

Keywords from today's lecture:

1. (Complex) eigenvalues and eigenvectors.

Let \mathbb{C}^{n} be the set of vectors with n rows with entries in \mathbb{C}. Since $\mathbb{R} \subset \mathbb{C}$, we have $\mathbb{R}^{n} \subset \mathbb{C}^{n}$.
If A is an $n \times n$ matrix and there exists a nonzero vector $v \in \mathbb{C}^{n}$ with $A v=\lambda v$ for some $\lambda \in \mathbb{C}$, then λ is an eigenvalue for A. The vector v is called an eigenvector.

Example: The matrix $A=\left[\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right]$ has eigenvalues i and $-i$.
We have $\left[\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right]\left[\begin{array}{l}1 \\ i\end{array}\right]=\left[\begin{array}{r}-i \\ 1\end{array}\right]=-i\left[\begin{array}{l}1 \\ i\end{array}\right]$ and $\left[\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right]\left[\begin{array}{r}1 \\ -i\end{array}\right]=\left[\begin{array}{r}i \\ -1\end{array}\right]=i\left[\begin{array}{r}1 \\ -i\end{array}\right]$.
2. Trace of a square matrix.

The sum of the diagonal entries of a square matrix A, denote $\operatorname{tr}(A)$.
The value of $\operatorname{tr}(A)$ is also the sum of the complex eigenvalues of A, counted with multiplicity.
Example: $\operatorname{tr}\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]=1+4=5$.

