Math 5143 - Lecture 7

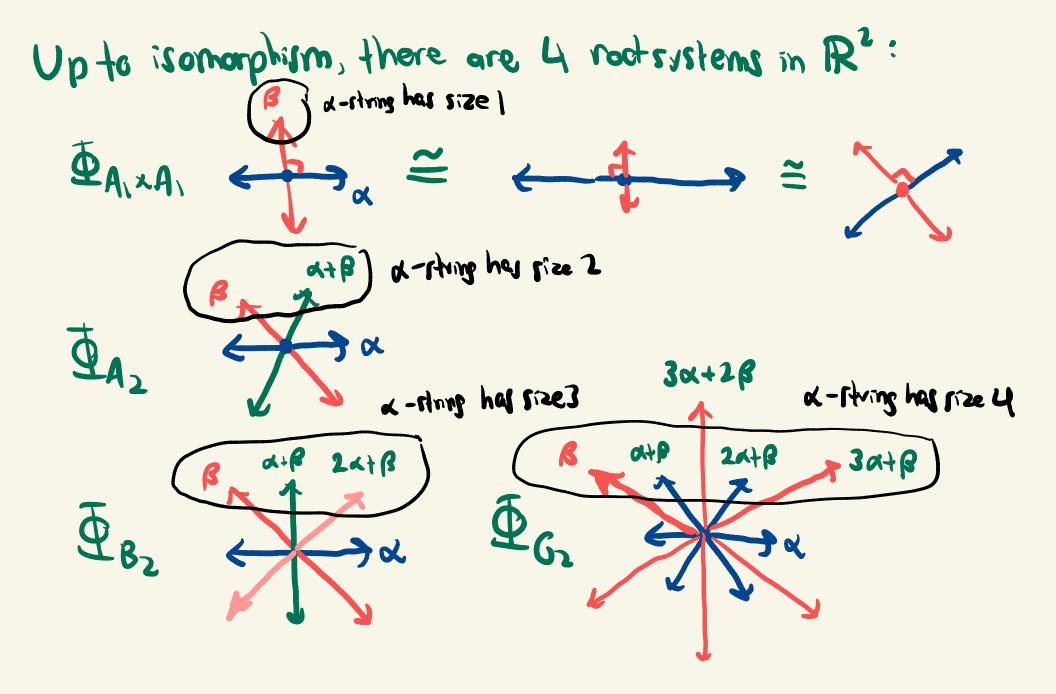
Math 5143 - Lecture 7

Last time: (abstract) root systems Fix a finite. dim. real vector space E with a bilinear form (-, -) that is symmetric, positive definite [B1 appropriately choosing bases, can identity E with R" with standard inner product, but this may be inconvenient] For $0 \neq \alpha \in E$, let $H_{\alpha} = \{v \in E \mid (v, \alpha) = 0\}$ Then the reflection across Hy is the linear map $r_{\alpha}: E \rightarrow E$ with formula $r_{\alpha}(v) = v - \frac{1}{(\alpha, \alpha)} \alpha$

The elems of Φ are called roots The subgrap of GL(E) generated by $\{r_{\alpha} \mid x \in \Phi\}$ is called the Weyl group of $\overline{\Phi}$, often denoted W

Notation: Set $\langle \beta, \alpha \rangle = \frac{2(\beta, \alpha)}{(\alpha, \alpha)}$ for $\alpha, \beta \in \overline{\Phi}$ If $\overline{\Phi} \leq \overline{\epsilon}$ and $\overline{\Phi}' \leq \overline{\epsilon}'$ are root systems, then an isomorphism $\overline{\Phi} - \overline{\Phi}'$ is a linear bijection $f: \overline{\epsilon} + \overline{\epsilon}'$ such that $\langle f(\beta), \overline{\epsilon}(\alpha) \rangle = \langle \beta, \alpha \rangle \forall \alpha, \beta \in \overline{\Phi}$.

Motivation: Suppose L is a semisimple Lie algebra, over C, finite din and nonzero. Choose a maximal toral subalgebra H SL and let H* = { linear maps H -> C? (all elements are semisimple) (if L is classical, can take H to be subalgebra of diagonal matrices in L) For each x EH* define Lx = { X EL | [h, X] = x(h) X Y h EH ?. Set $\Phi = \{ \alpha \in H^* \setminus 0 \mid L_{\alpha} \neq 0 \}$, We showed $H = L_0$ is abelian. So we have a decomposition L = HO Daco La Here, I is a root system in $E = \mathbb{R} - \mathbb{E} \left\{ \alpha \in \Phi \right\}$, where the relovant form (:,) is the killing form of L, restricted to H, and then transferred to H* by nondegeneracy. Also: [La, LR) = Lat & Va, RE &



Prop. Let $\overline{\Phi}$ be a root system with Weyl group W. If $\sigma \in GL(E)$ has $\sigma(\overline{\Phi}) = \overline{\Phi}$ then $\sigma r_{\alpha} \sigma' = r_{\sigma(\alpha)}$ and $\langle \beta, \alpha \rangle = \langle \sigma(\beta), \sigma(\alpha) \rangle \forall \alpha, \beta \in \overline{\Phi}$.

Pf Compute $\sigma r_{\alpha} \sigma' (\sigma(\beta)) = \sigma r_{\alpha}(\beta) = \sigma(\beta) - \langle \beta, \alpha \rangle \sigma(\alpha)$. Clearly oras' preserves I and send o(x) > - o(x). Also oras' fixes the hyperplane o(Ha) where Ha = [veel(v,a)=0] A priori, we don't know that $\sigma(H_d) = H\sigma(a)$. If we knew this then it would be clear by comparing formulas that $\sigma r_{\alpha} \sigma' = r_{\sigma(\alpha)}$ and also < B, x7 = < o(B), s(x)> yx, PE & So just need to show: Lemma If $\sigma \in GL(E)$ has $\sigma(\overline{e}) = \overline{e}$ and σ fixes a hyperplane $H \leq E$ while sending some $0 \neq x \in E$ to $-\infty$, then H = Ha and $\sigma = \sigma_{\alpha}$. this element must have a EH

P(idea (compare with text book)
Define
$$T = \sigma r_{\alpha}$$
. Then $T(\alpha) = \alpha$, $T(\overline{\Phi}) = \overline{\Phi}$, $T(\overline{h}, er A pt-wise$
Choose a basis $V_{1}, V_{2}, ..., V_{n-1}$ for H . Set $V_{n} = \alpha$.
Since $\alpha \notin H$, $V_{1}, V_{2}, ..., V_{n-1}$ for H . Set $V_{n} = \alpha$.
Since $\alpha \notin H$, $V_{1}, V_{2}, ..., V_{n-1}$ for H . Set $V_{n} = \alpha$.
Since $\alpha \notin H$, $V_{1}, V_{2}, ..., V_{n-1}$ for H . Set $V_{n} = \alpha$.
Since $\alpha \notin H$, $V_{1}, V_{2}, ..., V_{n-1}$ for H . Set $V_{n} = \alpha$.
Since $\alpha \notin H$, $V_{1}, V_{2}, ..., V_{n}$ is a basis for E . But the
matrix of T in this basis is the identity matrix, so $T = I$. D
Lemma Let $\alpha_{1}\beta \in \overline{\Phi}$ be non-proportional (so $\alpha \notin \pm \beta$)
(a) If $(\alpha_{1}\beta) > 0$ then $\alpha - \beta \in \overline{\Phi}$ (b) If $(\alpha_{1}\beta) < 0$ then $\alpha + \beta \in \overline{\Phi}$.
Pf (b) follows from (a), swapping β and $-\beta$. for (a): $(\alpha_{1}\beta) > 0 \Rightarrow \langle \alpha_{1}\beta \rangle > 0$,
the acute angle between α and β must be $T/3$, T/u , or $T/6$ (by conceeing the 4 root
since $\alpha_{1}\beta$ not orthogonal) and must have $\langle \alpha_{1}\beta \gamma = 1$ or $\langle \beta_{1}\alpha \gamma = 1$.
Suffering in β_{n}^{2} .

(

For a, BEE, with B = ta, the a-string through B is Prop. There are integers 2, r 20 such that the a-string through B is exactly {Btix | -r < i < 2 }. Pf If there were any gaps in the string, then we could find P.SEZ with -r < p < 5 < 2 where B+pd, B+sd & I but Prev lemma implies (B+pa, x) >0 > (B+sa, a) \Rightarrow ((s-p)a,a) = |s-p|(a,a) <0, impossible as (-,-) is possible intell

Cor. The integers r, 2 20 such that the d-string through B is $[\beta + i\alpha] - r \le i \le q]$ satisfy $r - q = <\beta_{,\alpha} \\ \in [0, \pm 1, \pm 2, \pm 7]$ So every a -string has at most 4 elements. and in fact, reverses Pf. The reflection ra preserve the d-string through B since r_d (B+ia) = B-((B, a) +i) a, Therefore 67 must have $r_{\alpha}(\beta + 2\alpha) = \beta - r_{\alpha}$. But $r_{\alpha}(\beta + q\alpha) = \beta - \langle \beta \rangle \langle \alpha \rangle - q \langle s \rangle \langle \beta \rangle \langle \alpha \rangle = r - q \cdot D$

I is a root sy stom in vectorpare E with Wayl group W "Simple roots" and the Werl group A base or simple system for $\overline{\Phi}$ is a basis Δ for E such that each d' E I can be written as d = Z Kapp where coefficients Kap are either (1) all nonnegative integers or (2) all nonparitive integers Necessarily 121 = dim E. Not clear apriori that any base exists. Ex In each root system in P2, the roots labeled [x, R] form a base. Lemma If Δ is a base of $\overline{2}$ and $\alpha, \beta \in \Delta$ have $\alpha \neq \beta$, then $\alpha - \beta \notin \overline{2}$ SO(α, β) ≤ 0 . Pf If (x,B) > 0 then our earlier lemma says ox - β ∈ € since if at # 13 then also at 4 - B (since elems of A are linearly interpendent) But if $\alpha - \beta \in \overline{\Phi}$ then Δ would not be a base. D

Given a simple system Δ for $\overline{\Phi}$, define the height of a root $\alpha = \sum_{\beta \in \Delta} k_{\alpha\beta} \beta$ to be the sum $ht(\alpha) = \sum_{\beta \in \Delta} k_{\alpha\beta} \in \mathbb{Z} \setminus \mathbb{O}$. we also define $\overline{\Phi}^{\dagger} = \{ \alpha \in \overline{\Phi} \mid h \in (\alpha) > 0 \}$ and $\overline{\Phi} = -\overline{\Phi}^{\dagger}$ so that $\overline{\Phi} = \overline{\Phi}^+ \sqcup \overline{\Phi}^-$. Call $\overline{\Phi}^+$ the set of paritive roots, I the set of negative roots. Thin I does have a base/simple system. For each $7 \in E$ define $\underline{\Phi}^{\dagger}(\underline{Y}) = [\alpha \in \underline{\Phi} | (\underline{Y}, \underline{A}) > 0]$. One can always choose y E E L U Hx and we call such y regular. If 1 is regular then $\overline{\Phi} = \overline{\Phi}^+(Y) \sqcup \overline{\Phi}^-(Y)$ where $\overline{\Phi}^-(Y) = -\overline{\Phi}^+(Y)$. Call $\alpha \in \overline{\mathbf{T}}^+(\mathbf{r})$ indecomposable if we cannot write $\alpha = \beta_1 + \beta_2$ where $\beta_i \in \overline{\mathbf{T}}^+(\mathbf{r})$. The If $\gamma \in \varepsilon$ is regular, then the set $\Delta(1)$ of indecomposable mots in $\overline{\Phi}$ is a base, and every base arises in this way.

Pf we make a series of class.
() Each
$$\alpha \in \overline{\Phi}^{+}(\gamma)$$
 is in $\mathbb{Z}_{\geq 0}$ -span $\{\beta \in A(1)\}$ that are indecomposable
Pf Otherwise, choose $\alpha \in \overline{\Phi}^{+}(\gamma)$ not in \hat{J} with (α, γ) minimal.
Then $\alpha = \beta_{1} + \beta_{2}$ for some $\beta_{1}, \beta_{2} \in \overline{\Phi}^{+}(\gamma)$ (α cannot be
indecomposable]
Thus $(\alpha, \gamma) = (\beta_{1}, \gamma) + (\beta_{2}, \gamma)$ so by minimality of (α, γ)
it must hold that $\beta_{1}, \beta_{2} \in \mathbb{Z}_{\geq 0}$ -span $\{\beta \in A(\gamma)\}$ a contradiction
 $(\alpha \in \alpha, \beta \in A(\gamma))$ and $\alpha \neq \beta$, then $(\alpha, \beta) \leq 0$.
Pf Otherwise $\alpha - \beta \in \overline{\Phi}, \beta \neq \pm \kappa$, so $\alpha - \beta$ or $\beta - \alpha$ is in $\overline{\Phi}^{+}(\gamma)$
But then $\alpha = \beta + (\alpha - \beta)$ or $\beta = \alpha + (\beta - \alpha)$ would be decomposable. D

(3) $\Delta(r)$ is linearly independent pf Suppose we can write 0 = Z cxx-ZdpB where α , β range over d:s joint subrets of $\Delta(Y)$ and $c_{\alpha}, d_{\beta} \ge 0$ Then $0 \leq (\sum_{\alpha} c_{\alpha} \alpha, \sum_{\alpha} c_{\alpha} \alpha) = (\sum_{\alpha} c_{\alpha} \alpha, \sum_{\beta} d_{\beta} \beta)$ $= \sum_{\alpha,\beta} C_{\alpha} d_{\beta} (\alpha,\beta) \leq 0$ $\approx \sum_{\alpha,\beta} \sum_{\alpha,\beta} \sum_{\alpha,\beta} (\alpha,\beta) \leq 0$ =) so all cx =0. Similarly derive that all dB=0. D (4) $\Delta(\gamma)$ is a base of $\overline{\bullet}$. Pf clear from 003

(5) Every base of
$$\overline{\Phi}$$
 arises as $\Delta(\gamma)$ for some regular $\gamma \in C$.
If Given some base Δ for $\overline{\Phi}$, we need to find γ with $\Delta = \Delta(\gamma)$.
Choose a regular γ with $(\gamma, \alpha) > 0$ for all $\alpha \in \Delta$. (It's $\alpha(HM)$)
exercise to show we can always do this]. Then $\overline{\Phi}^{+-} = \overline{\Phi}^{\vee}(\gamma)$
so every $\alpha \in \Delta$ must be indecomposable wit γ . This means
 $\Delta = \Delta(\gamma)$. As $|\Delta| = |\Delta(\gamma)| = \dim C$, must have $\Delta = \Delta(\gamma)$.
Call elems of Δ simple rods
The hyperplanes the for $\alpha \in \overline{\Phi}$ divide E into finitely many
regimes. We call the connected components of
 $E \setminus U$ the the Weyl chambers of E .

Fix a loase Δ of \oint and define $\overline{\Phi}^{t/-}$ Propertics of simple roots relative to D. Glems of It are partice roots, elems of I are negative roots. Lemme If $\alpha \in \overline{\Phi}^+$ but $\alpha \notin \Delta$ then $\alpha - \beta \in \overline{\Phi}^+$ for some $\beta \in \Delta$. Pf If $(\alpha, \beta) \leq 0$ for all $\beta \in \Delta$ then argument in proof of (3) in previous proof would show that DUERS is linearly independent. As this is impossible, multi have (x, B) >0 for some BED and then $\alpha - \beta \in \overline{\Phi}$. Since $\alpha_1 \beta$ (annot be proportional, $\alpha - \beta$ multiple in $\frac{1}{2}$ (since at least one well in $\alpha - \beta = \sum_{\delta \in \Delta} c_{\delta} \delta$ must have $c_{\delta} > 0$). D By induction: for Each $\alpha \in \overline{\Phi}^+$ can be written $\alpha = \alpha_1 + \alpha_2 + \dots + \alpha_k$ where $\alpha_i \in \Delta \forall i$ and where each partial sum $\alpha_1 + \alpha_2 + \dots + \alpha_j \in \overline{\Phi}^+$ for $1 \leq j \leq k$.

Lemma If
$$\alpha \in \Delta$$
 then $r_{\alpha}(\alpha) = -\alpha$ and $r_{\alpha}(\overline{\Phi}^{\dagger}(\alpha)) = \overline{\Phi}^{\dagger}(\alpha)$
helds by def, for any $0 \neq \alpha \in E$ nontrivial

Pf Suppose β ∈ €⁺ [α]. Write β = Σ Ky 7 where ky ∈ Z ≥0. Note: β is not proportional to α . Thus $k_1 \neq 0$ for some $\gamma \neq \alpha$. Then the coeff of y in r_k(B) = B - < B, x7x is also ky >0, so ra(B) must still be in \$the since it is a valid root. I (lemme now follows as $r_x: \in \to \in is a bijection)$ Cor Set $\delta = \frac{1}{2} \sum_{\beta \in \overline{\delta}}^{\beta}$ then $r_{\alpha}(\delta) = \delta - \alpha \quad \forall \alpha \in \Delta$.

Lemma Suppose we have a sequence or, d2, -, dm E &. Write ri = rk;
Suppose $r_1r_2\cdots r_{m-1}(\alpha_m) \in \bigoplus^{-1}$ Then $r_1r_2\cdots r_m = r_1\cdots r_{s-1}r_{s+1}\cdots r_{m-1}$
for some index 1555m-1. [The roots \$1,d2,-, \$1, don't need to be all distinct]
$Pf.$ Set $B_i = r_{i+1}r_{i+2} \cdots r_{m-1}(\alpha_m)$, with $B_{m-1} = \alpha_m$.
Then $\beta_0 \in \overline{\Phi}$ and $\beta_{m-1} \in \Delta \subset \overline{\Phi}^+$ so there is some
Smallest index s with $\beta_s \in \Phi^+$. Then $r_s(\beta_{r-1}) = \beta_r$
Since $r_s^2 = 1 \implies r_s(\beta_s) = \beta_{s-1} \in \Phi \implies \beta_s = \alpha_s$ by providen.
$\Rightarrow \mathbf{r}_{s} = \mathbf{r}_{d_{s}} = \mathbf{r}_{p_{s}} = \mathbf{r}_{s+1}\mathbf{r}_{s+2}\cdots\mathbf{r}_{m-1}(d_{m}) = (\mathbf{r}_{s+1}\cdots\mathbf{r}_{m-1})\mathbf{r}_{m}(\mathbf{r}_{m-1}\cdots\mathbf{r}_{s+1})$ [since $\sigma \mathbf{r}_{u} \sigma' = \mathbf{r}_{\sigma(u)}$]
Result follows by substituting this expr for r_s , noting that $r_i^2 = 1.23$ Ginto $r_i - r_s - r_m$

Fix a base Δ for $\overline{\Phi}$.

Recall: € is a root system with Weyl group W. Ptop Any given d ∈ € belongs to some base of €. Pf The hyperplanes HB for B ∈ € \ (tal) are distinct from Ha, so if we choose J ∈ Ha with J € HB VB ∈ € \ [tal] and then choose some regular Y' close to Y with (Y', a) = E 70 and (Y', B) > E V B ∈ € \ [tal] then we'll have a ∈ Δ(Y'). D

Cor. If
$$\sigma = \tau_{d_1} \tau_{d_2} - \tau_{d_m}$$
 is an expression for $\sigma \in W$
with m as small as passible and $d_i \in \Delta$, then $\sigma(d_m) \in \overline{\Phi}$.

Thin If &' is any base for I then there exists a unique element $\sigma \in W$ with $\sigma(\Delta') = \Delta$. Moreover, it holds that $W = \langle r_{\alpha} \mid \alpha \in \Delta \rangle$ [Recall : $W \stackrel{\text{def}}{=} \langle r_{\alpha} \mid \alpha \in \Phi \rangle$] Pf Let $\tilde{W} = \langle r_{\alpha} | \alpha \in \Delta \rangle \subseteq W$ we'll show below that $\tilde{W} = W$. Let 8 = 2 Z & and choose a regular rEE along with $\sigma \in \widetilde{W}$ such that $(\sigma(r), \delta)$ is maximal. If α is simple not then $r_{\alpha}\sigma\in\widetilde{W}$ so our maximality assumption \Rightarrow ($\sigma(r), \delta$) \geq ($r_{\alpha}\sigma(r), \delta$) $= (\sigma(x), r_{\alpha}(\delta)) = (\sigma(x), \delta - \alpha) = (\epsilon(x), \delta) - (\sigma(x), \alpha) \forall \alpha \in \Delta$ (ra(4),1) = (x, ra(1)) Vx, 1EE, a E (check this by comparing formulap) Thus ($\sigma(r), \alpha) \ge 0$ VacA. Equality never holds since y is regular and $O \neq (\gamma, \sigma'(\alpha)) = (\sigma(\gamma), \alpha)$

Thus we have $(\sigma(x), \alpha) > \sigma \ \forall x \in \Delta$. It Δ' is any base then $\Delta' = \Delta(\gamma)$ for some regular rEE and if we choose of we as above then evidently $\Delta = \Delta(\sigma(\gamma)) = \sigma^{-1}(\Delta(\gamma)) = \sigma^{-1}(\Delta(\gamma))$ So for and base D' there is at least some of WSW with o(D)=D. To show that $\tilde{W} = W$, it suffices to check that $r_{\alpha} \in \tilde{W} \, \forall \alpha \in \bar{\Phi}$. Given a E & choose a base & with a E &, and then choose of in with $\sigma(\Delta') = \Delta$. Set $\beta = \sigma(A) \in \Delta$, and then we have $r_{\beta} = r_{\sigma(\alpha)} = \sigma r_{\alpha} \sigma \in \tilde{w}$ so $r_{\alpha} = \sigma r_{\beta} \sigma \in \tilde{w}$ as well. become BED, SO SBEW

Finally need to show that the element of w = w with $\sigma(\Delta') = \Delta$ is unique for a given base Δ' of $\overline{\Phi}$. we appeal to technical lemma above: it's enough to show that if $\sigma \in W$ has $\sigma(\Delta) = \Delta$ then $\sigma = 1$. Assume $\sigma(\Delta) = \Delta$ and write $\sigma = r_1 r_2 \cdots r_m$ where $r_i = r_{\alpha_i}$ for some simple rade $\alpha_{i_1}, \alpha_{2, \dots}, \alpha_{m_i} \in \Delta_{j_i}$ and assume m is minimal. If o =14hon m>0 So by corollary above $\sigma(\alpha_m) \in \Phi \Rightarrow \sigma(\Delta) \neq \Delta \leq \Phi^+$ Thus the only way to have $\sigma(\Delta) = \Delta$ is if m = 0 and then $\sigma = 1$ D Fix an ordering $d_1 d_2 d_3 \dots d_n$ of the roots in Δ . [Here $\Delta = [\alpha_1, ..., \alpha_n]$ and $\alpha_1 \neq \alpha_3$ for $1 \neq 3$] We call and minimal length expression $\sigma = r_i, r_{i2} \cdots r_{ig}$ where $r_j = r_{dj}$ a reduced expression for $\sigma \in W$. Set l(w) = 0. Call this the length of w. Prop If of w then $l(\sigma) = \# \{ \alpha \in \overline{\Phi}^+ \} \sigma(\alpha) \in \overline{\Phi}^- \}$ Note: this gives $l(r_{\alpha}) = 1 \forall u \in \Delta$. Pf. Use induction + earlier lemmes, see text book. D

A root system & is irreducible if it cannot be partitioned as a disjoint union $\overline{\Phi} = \overline{\Phi}_1 \cup \overline{\Phi}_2$ where $\underline{\Phi}_1$ and $\underline{\Phi}_2$ are both nonempty and $(\alpha, \beta) = 0$ for all $\alpha \in \overline{\Phi}_1$, $\beta \in \overline{\Phi}_2$. If $\overline{\Phi}$ can be partitioned in this way then I is reducible. Next time: there is a natural notion of root subsystem and

Irreducible root systems

Next time: there is a natural notion of two subsystems and directsum for rock systems, and any & is isomorphic to the direct sum of its irroducible subsystems.