Math 5143 - Lecture 7

Math 5143 - Lecture 7
Last time: (abstract) root systems
Fix a finite dim. real vector space E
with a bilinear form $(-, \cdot)$ that is symmetric, positive definite
[By appropriately choosing bases, can identity E with \mathbb{R}^{n} with standard inner product, but this may be inconvenient]
For $0 \neq \alpha \in E$, let $H_{\alpha}=\{v \in E \mid(v, \alpha)=0\}$.
Then the reflection a cross H_{α} is the linear map
$r_{\alpha}: E \rightarrow E$ with formula $r_{\alpha}(v)=v-\frac{2(v, \alpha)}{(\alpha, \alpha)} \alpha$

Def A finite subset $\Phi \subseteq E \backslash\{0\}$ is a root system if
(RI) E is spanned by Φ
(BB) $r_{\alpha}(\Phi)=\Phi \forall \alpha \in \Phi$
(22) $\mathbb{R} \alpha \cap E=\{ \pm \alpha\}$ for $\alpha \in \Phi$ (RS) $\frac{2(\beta, \alpha)}{(\alpha, \alpha)} \in \mathbb{Z} \forall \alpha, \beta \in \Phi$

The elems of Φ are called roots
The subgrap of GL(E) generated by $\left\{r_{\alpha} \mid \alpha \in \Phi\right\}$
is called the well group of Φ, often denoted W
Notation: Set $\langle\beta, \alpha\rangle=\frac{2(\beta, \alpha)}{(\alpha, \alpha)}$ for $\alpha, \beta \in \Phi$
If $\Phi \leq \epsilon$ and $\Phi^{\prime} \leq \epsilon^{\prime}$ are root systems, then an isomorphism $\Phi \rightarrow \Phi^{\prime}$ is a linear bijection $f: E \rightarrow \mathrm{E}^{\prime}$ such that $\langle f(\beta) f(\alpha)\rangle=\langle\beta, \alpha\rangle \forall_{\alpha, \beta}, E \Phi$.

Motivation: Suppose L is a semisimple Lie algebra, over \mathbb{C}, finite dim and nonzero. Choose a maximal toral subalgebra $H \subseteq L$ and let $H^{*}=\{\operatorname{linear}$ maps $H \rightarrow \mathbb{C}\}$,
ζ (all elements are semisimplo)
(if L is classical, con take A to be subalgebria of diagonal matrices in L)
For each $\alpha \in H^{*}$ define $L_{\alpha}=\{X \in L \mid[h, X]=\alpha(h) X \forall h \in H\}$.
Set $\Phi=\left\{\alpha \in H^{*} \backslash 0 \mid L_{\alpha} \neq 0\right\}$, We showed $H=L_{0}$ is abelian.
So we hove a decomposition $L=H \Theta \bigoplus_{\alpha \in \Phi} L_{\alpha}$
Here, Φ is a root system in $E=\mathbb{R}-\operatorname{span}\{\alpha \in \Phi\}$, where the relevant form (\because)) is the Killing form of $L_{\text {, }}$ restricted to H, and then transferred to H^{*} by nondeganeracy.
Also: $\left[l_{\alpha,} L_{\beta}\right) \subseteq L_{\alpha+\beta} \quad \forall \alpha, \beta \in \Phi$

Up to isomorphism, there are 4 roctsystems in \mathbb{R}^{2} :

$\Phi_{A_{1} \times A_{1}}$
$\square^{\alpha-1}{ }^{2}$

$\Phi_{A_{2}}$

α-rings had size $\quad 3 \alpha+2 \beta \quad \alpha$-raving has size 4

Prop. Let Φ be a root system with Weal gran W.
If $\sigma \in G L(\epsilon)$ has $\sigma(\Phi)=\Phi$ then $\sigma r_{\alpha} \sigma^{-1}=r_{\sigma(a)}$ and $\langle\beta, \alpha\rangle=\langle\sigma(\beta), \sigma(\alpha)\rangle \forall \alpha, \beta \in \Phi$.

Pf Compute $\sigma r_{\alpha} \sigma^{-1}(\sigma(\beta))=\sigma r_{\alpha}(\beta)=\sigma(\beta)-\langle\beta, \alpha\rangle \sigma(\alpha)$. clearly $\sigma r_{\alpha} \sigma^{-1}$ preserver Φ and sends $\sigma(\alpha) \mapsto-\sigma(\alpha)$.
Also $\sigma r_{\alpha} \sigma^{-1}$ fixes the hyperplane $\sigma\left(H_{\alpha}\right)$ where $H_{\alpha}=[v \in \in(v, \alpha)=0]$
A prior, we don't know that $\sigma\left(H_{\alpha}\right)=H_{\sigma}(\alpha)$. If we knew this then it would be clear by comparing formulas that $\sigma r_{\alpha} \sigma^{-1}=r_{\sigma(\alpha)}$ and also $\langle\beta, \alpha\rangle=\langle\sigma(\beta), \sigma(\alpha)\rangle \forall \alpha, \beta \in \Phi$. So just need to show: Lumina If $\sigma \in G(\in)$ has $\sigma(\mathbb{C})=\Phi$ and σ fixes a hyperplane $H \leq E$ while sending some $0 \neq \alpha \in E$ to $-\alpha$, then $H=H_{\alpha}$ and $\sigma=\sigma_{\alpha}$. this olement must have $\alpha \notin H$

Pf idea (compare with text book)
Define $\tau=\sigma r_{\alpha}$. Then $\left.\tau(\alpha)=\alpha, \tau \mid \Phi\right)=\Phi, \tau$ fires $A_{\text {pt -wise }}$
Choose a basis $v_{1}, v_{2}, \ldots, v_{n-1}$ for H. Set $v_{n}=\alpha$.
Since $\alpha \notin H, v_{1}, v_{2}, \ldots, v_{n}$ is a basis for E. But the matrix of τ in this basis is the identity matrix, so $\tau=1$. τ
Lemma Let $\alpha, \beta \in \Phi$ be narproportimal (so $\alpha \neq \pm \beta$)
(a) If $(\alpha, \beta)>0$ then $\alpha-\beta \in \Phi(b)$ If $(\alpha, \beta)<0$ then $\alpha+\beta \in \Phi$.

Pf (b) follows from (a), swapping β and - β. for (a): $(\alpha, \beta)\rangle 0 \Rightarrow\langle\alpha, \beta\rangle>0$. The acute angle between α and β mast be $\pi / 3, \pi / 4$, or $\pi / 6$ (by considering the 4 root (since α, β not orthogonal) and must have $\langle\alpha, \beta\rangle=1$ or $\langle\beta, \alpha\rangle=1$. sisters in \mathbb{R}^{2}) If $\langle\alpha, \beta\rangle=1$ then $\alpha-\beta=\sigma_{\beta}(\alpha) \in \Phi$. If $\langle\beta, \alpha\rangle=1$ then $\alpha-\beta=-\sigma_{\alpha}(\beta) \in \Phi$.

For $\alpha, \beta \in \Phi$, with $\beta \neq \pm \alpha$, the α-string through β is the set of roots $\{\beta+i \alpha \mid i \in \mathbb{Z}] \cap \Phi$. $Y_{\text {this sequence }}$ finite but has no" gaps"
Prop. There are integers air ≥ 0 such that the α-string through β is exactly $\{\beta+i \alpha \mid-r \leq i \leq q\}$.
Pf If there were any gaps in the string, then we could find $p, s \in \mathbb{Z}$ with $-r \leq p<s \leq q$ where $\beta+p \alpha, \beta+s \alpha \in \Phi$ but

$$
\beta+(p+1) \alpha, \beta+(s-1) \alpha \notin \Phi . \cdots 0_{p \text { sap }}^{0}-\operatorname{comp}_{\text {gap }} s
$$

Prev lemma implied $(\beta+\rho \alpha, \alpha) \geq 0 \geq(\beta+s \alpha, \alpha)$

$$
\Rightarrow((s-p) \alpha, \alpha)=|s-p|(\alpha, \alpha) \leq 0 \text {, impossible as }(-) \text { is pos. definite } D
$$

Cor. The integers $r, q \geq 0$ such that the $\alpha-s$ truing through β is $\{\beta+i \alpha \mid-r \leq i \leq q]$ satisfy $r-q=\langle\beta, \alpha\rangle \in[0, \pm 1, \pm 2, \pm\}]$ So every α-string has at most 4 elements.
$>$ and in fact, reveries
Pf. The reflection r_{α} preserve the α-string through β since $r_{\alpha}(\beta+i \alpha)=\beta-(\underbrace{\langle\beta, \alpha}_{\epsilon_{\mathbb{Z}}})+i) \alpha$. Therefore must have $r_{\alpha}(\beta+q \alpha)=\beta-r \alpha$. But

$$
r_{\alpha}(\beta+q \alpha)=\beta-\langle\beta, \alpha\rangle \alpha-q \alpha \text { so }\langle\beta, \alpha\rangle=r-q \cdot \Delta
$$

"Simple roots" and the Wei group
Φ is a root sy stem in vectanpace E with Weyl group W

A base or simple system for Φ is a basis Δ for E such that each $\alpha \in \Phi$ can be written as $\alpha=\sum k_{\alpha \beta} \beta$ where coefficients $\beta \in \Delta$
$k_{\alpha \beta}$ are either (1) all nonnegative integers or (2) all nonpasitive integers.
Necessarily $|\Delta|=\operatorname{dim} E$. Not clear apriori that any base exists.
Ex In each root system in \mathbb{R}^{2}, the rods labeled $\{\alpha, \beta]$ form a base.
Lemme If Δ is a base of Φ and $\alpha, \beta \in \Delta$ have $\alpha \neq \beta$, then $\alpha-\beta \notin \Phi$ so $(\alpha, \beta) \leq 0$. Pf If $(\alpha, \beta)>0$ then our earlier lemme says $\alpha-\beta \in \Phi$ since if $\alpha \neq \beta$ then also $\alpha \neq-\beta$ (since elems of Δ are linearly, independent) But if $\alpha-\beta \in \Phi$ then Δ would not be a base. ©
G ven a simple system Δ for Φ, define the height of a root $\alpha=\sum_{\beta \in \Delta} k_{\alpha \beta \beta}$ to be the sum $h t(\alpha)=\sum_{\beta \in \Delta} k_{\alpha \beta} \in \mathbb{Z} \backslash 0$. we also define $\Phi^{+}=\{\alpha \in \Phi \mid h t(\alpha)>0\}$ and $\Phi^{-}=-\Phi^{+}$ so that $\Phi=\Phi^{+} \Delta \Phi^{-}$. Call Φ^{+}the set of positive roots, Φ^{-}the set of negative roots.
Thu I does have a base/simple system.
For each $\gamma \in E$ define $\Phi^{+}(\gamma)=\{\alpha \in \Phi \mid(\gamma, \alpha)>0\}$. One con always chaser $\gamma \in E \backslash \bigcup_{\alpha \in \Phi} H_{\alpha}$ and we call such γ regular.
If 1 is regular then $\Phi=\Phi^{+}(\gamma) L \Phi^{-}(\gamma)$ where $\Phi^{-}(\gamma)=-\Phi^{+}(\gamma)$.
Call $\alpha \in \Phi^{+}(\gamma)$ indecomposable if we cannot write $\alpha=\beta_{1}+\beta_{2}$ where $\beta_{i} \in \Phi^{-1}(\gamma)$.
Thu If $y \in \in$ is regular, then the set $\Delta(y)$ of indecomposable roots in Φ is a base, and every base arises in this way.

Pf we make a series of claims.
(1) Each $\alpha \in \Phi^{+}(\gamma)$ is in $\mathbb{Z} \geq 0-$ span $\{\beta \in \mathbb{A}(\gamma)\}$

Pf Otherwise, choose $\alpha \in \Phi^{+}(y)$ not in \uparrow with (α, y) minimal.
Then $\alpha=\beta_{1}+\beta_{2}$ for some $\beta_{1}, \beta_{2} \in \Phi^{+}(\gamma)[\alpha$ cannot be indecompocable]
Thus $(\alpha, \gamma)=(\underbrace{\beta, \gamma}_{>0})+(\underbrace{\beta, \gamma}_{>0})$ so by minimality of (α, γ)
it must hold that $\beta_{1}, \beta_{2} \in \mathbb{Z}_{20}-\operatorname{span}[\beta \in \Delta(y)]$ a contradiction

$$
(\cos \alpha \text { is not in })
$$

(2) If $\alpha, \beta \in \Delta(y)$ and $\alpha \neq \beta$, then $(\alpha, \beta) \leq 0$.

를 Otherwise $\alpha-\beta \in \Phi, \beta \neq \pm \alpha$, so $\alpha-\beta$ or $\beta-\alpha$ is in $\Phi^{+}(\gamma)$
But then $\alpha=\beta+(\alpha-\beta)$ or $\beta=\alpha+(\beta-\alpha)$ wald be decomposable. D
(3) $\Delta(y)$ is linearly independent

Pf Suppose we can write $0=\sum_{\alpha} c_{\alpha} \alpha-\sum_{\beta} d_{\beta} \beta$
where α, β range over dis joint subsets of $\Delta(\gamma)$ and $c_{\alpha}, d_{\beta} \geq 0$
Then $0 \leq\left(\sum_{\alpha} c_{\alpha} \alpha, \sum_{\alpha} c_{\alpha} \alpha\right)=\left(\sum_{\alpha} c_{\alpha} \alpha, \sum_{\beta} d_{\beta} \beta\right)$

$$
=\sum_{\alpha_{1}, \beta}^{c_{\alpha} \partial_{\beta}} \underbrace{\left(\alpha_{1} \beta\right)}_{\geq 0} \leq 0
$$

\Rightarrow so all $c_{\alpha}=0$. Similarly derive that all $d \beta=0, D$
(4) $\boldsymbol{\Delta}(\boldsymbol{y})$ is a base of Φ.

Pf clear from (1)23
(5) Every base of Φ arises of $\Delta(\gamma)$ for some regular $\gamma \in E$. Pf Given some base Δ for Φ, we need to find y with $\Delta=\Delta(\gamma)$. choose a regular 1 with $(\gamma, \alpha)>0$ for all $\alpha \in \Delta$. (It's a (HW) exercise to show we con always do this $]$. Then $\Phi^{+1 /}=\Phi^{+1 /}(y)$ so every $\alpha \in \Delta$ must be indecomposable writ r. This means $\Delta \subseteq \Delta(\gamma)$. As $|\Delta|=|\Delta(\gamma)|=\operatorname{dim} \epsilon$, must have $\Delta=\Delta(\gamma)$.

Call elemi of Δ simple roots
The hyperplanes H_{α} for $\alpha \in \Phi$ divide E into finitely many regions. We call the corrected components of $E \backslash \bigcup_{\alpha \in \Phi} H_{\alpha}$ the Weylchambers of E.

Properties of simple roots Fix a base Δ of Φ and define $\Phi^{t / 2}$ relative to Δ. Glens of Φ^{\dagger} are positive roots, lems of Φ are negative roots.
Lemme If $\alpha \in \Phi^{+}$but $\alpha \notin \Delta$ then $\alpha-\beta \in \Phi^{+}$for some $\beta \in \Delta$.
Pf If $(\alpha, \beta) \leq 0$ for all $\beta \in \Delta$ then argument in proof of (3) in previous proof would show that $\Delta U\{\alpha\}$ is linearly independent.
As this is impossible, must have $(\alpha, \beta)>0$ for some $\beta \in \Delta$ and then $\alpha-\beta \in \Phi$. Since α, β cannot be proportional, $\alpha-\beta$ mort be in It (since at least ane ref in $\alpha-\beta=\sum_{\delta \in s} c_{\delta} \delta$ must have $c_{\delta}>0$).
By induction: cor tach $\alpha \in \Phi^{+}$can be written $\alpha=\alpha_{1}+\alpha_{2}+\ldots+\alpha_{k}$ where $\alpha_{i} \in \Delta V_{i}$ and whore each partial sum n $\alpha_{1}+\alpha_{2}+\cdots+\alpha_{j} \in \Phi^{+}$for $1 \leq j \leq k$.

Lemma If $\alpha \in \Delta$ then $\underbrace{r_{\alpha}(\alpha)=-\alpha}_{\text {hod by def, for any } 0 \neq \alpha \in E}$ and $r_{\text {nattwowal }}\left(\Phi^{+} \backslash[\alpha]\right)=\Phi^{+} \backslash\{\alpha]$
Pf Suppose $\beta \in \Phi^{+} \backslash[\alpha]$. Write $\beta=\sum_{\gamma \in \Delta} k_{\boldsymbol{\gamma}} \gamma$ where $k_{\gamma} \in \mathbb{Z}_{\geq 0}$.
Note: β is not proportional to α. Thus $k_{1} \neq 0$ for some $\gamma \neq \alpha$.
Then the coeff of γ in $r_{\mu}(\beta)=\beta-\langle\beta, \alpha\rangle \alpha$ is also $k_{y}>0$, so $r_{\alpha}(\beta)$ must still be in Φ^{+}since it is a valid root.
(lemme now follows as $r_{\alpha}: \in \rightarrow \epsilon$ is a bijectia)
Cor Set $\delta=\frac{1}{2} \sum_{\beta \in \Phi^{+}}^{\beta}$ then $r_{\alpha}(\delta)=\delta-\alpha \quad \forall \alpha \in \Delta$.

Lemma Suppose we have a sequence $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m} \in \Delta$. Write $r_{i}=r_{\alpha_{i}}$
Suppose $r_{1} r_{2} \cdots r_{m-1}\left(\alpha_{m}\right) \in \Phi^{-}$. Then $r_{1} r_{2} \cdots r_{m}=r_{1} \ldots r_{s-1} r_{s+1} \ldots r_{m-1}$
for some index $1 \leq s \leq m-1$. [The roots $\alpha_{1}, \alpha_{2, \ldots}, \alpha_{m}$ don't need to be all distinct?
Pf. Set $\beta_{i} \stackrel{\text { def }}{=} r_{i+1} r_{i+2} \ldots r_{m-1}\left(\alpha_{m}\right)$, with $\beta_{m-1} \stackrel{\text { def }}{=} \alpha_{m}$.
Then $\beta_{0} \in \Phi^{-}$and $\beta_{m-1} \in \Delta \subset \Phi^{+}$so there is same
smallest index s with $\beta_{s} \in \Phi^{+}$. Then $r_{s}\left(\beta_{s-1}\right)=\beta_{s}$
since $r_{s}^{2}=1 \Rightarrow r_{s}\left(\beta_{s}\right)=\beta_{s-1} \in \Phi^{-} \Rightarrow \beta_{s}=\alpha_{s}$ by prov.lem.

$$
\Rightarrow r_{s} \stackrel{\text { def }}{=} r_{\alpha_{s}}=r_{\beta_{s}}=r_{r_{s+1}} r_{s+2} \cdots r_{m-1}\left(\alpha_{m)}\right)=\left(r_{s+1} \cdots r_{m-1}\right) r_{m}\left(r_{m-1} \cdots r_{s+1}\right)
$$

[since of $r_{a} \sigma^{-1}=r_{\sigma(\alpha)}$]
Result follows by substituting this expo for r_{S}, noting that $r_{i}^{2}=1, \Delta$
ζ_{G} inter $r_{1} \ldots r_{p} \ldots r_{m}$

Cor. If $\sigma=r_{\alpha_{1}} r_{\alpha_{2}}-r_{\alpha_{m}}$ is an expression for $\sigma \in W$ with m as small as parible ant $\alpha_{i} \in \Delta_{\text {, }}$ then $\sigma\left(\alpha_{m}\right) \in \Phi^{-}$.

Recall: I is a root system with Well graph.
Prep Any given $\alpha \in \Phi$ belongs to some base of Φ. Pf The hyperplanes A_{β} for $\beta \in \Phi \backslash(\pm a]$ are distend from H_{α}, So it we choose $\gamma \in H_{\alpha}$ with $\gamma \$ A_{\beta} \forall \beta \in \Phi \backslash\{ \pm \alpha]$, and then Chase some regular γ^{\prime} close to γ with $\left(\gamma^{\prime}, \alpha\right)=\varepsilon>0$ and $\left(\gamma^{\prime}, \beta\right)>\varepsilon \forall \beta \in \Phi \backslash[\pm \alpha]$ then weill have $\alpha \in \Delta\left(\gamma^{\prime}\right) \cdot D$

Fix a base Δ for Φ.

The If Δ^{\prime} is any base for Φ then there exists a unique element $\sigma \in W$ with $\sigma\left(\Delta^{\prime}\right)=\Delta$. Moreover, it holds that $W=\left\langle r_{\alpha} \mid \alpha \in \Delta\right\rangle\left[\right.$ Real $\left.\mid: W \stackrel{\text { def }}{=}\left\langle r_{\alpha} \mid \alpha \in \Phi\right\rangle\right]$
Pf Let $\tilde{w}=\left\langle r_{\alpha} \mid \alpha \in \Delta\right\rangle \leqslant W$ Well show below that $\tilde{w}=w$. Let $\delta=\frac{1}{2} \sum_{\alpha \in \Phi^{+}}^{\alpha}$ and choose a regular $r \in E$ along with $\sigma \in \tilde{W}$ such that $(\sigma(r), \delta)$ is maximal. If α is simple not then $r_{\alpha} \sigma \in \tilde{W}$ so our maximality assumption $\Rightarrow(\sigma(\gamma), \delta) \geq\left(r_{\alpha} \sigma((), \delta)\right.$ $=\left(\sigma(\gamma), r_{\alpha}(\delta)\right)=(\sigma(\gamma), \delta-\alpha)=(\sigma(y), \delta)-(\sigma(\gamma), \alpha) \forall \alpha \in \Delta$ $\left.\left.\begin{array}{c}\uparrow \\ \left(r_{\alpha}(x), r\right)\end{array}\right)=\left(\alpha_{1}, r_{\alpha}(y)\right) \forall x_{1},\right) \in E, \alpha \in \mathbb{}$ Thus $(\sigma(\gamma), \alpha) \geqslant 0 \forall \alpha \in \Delta$. Equality never halle since γ is regular and $0 \neq\left(\gamma, \sigma^{-1}(\alpha)\right)=(\sigma(\gamma), \alpha)$

Thus we have $(\sigma(\gamma), \alpha)>0 \quad \forall \alpha \in \Delta$.
It Δ^{\prime} is any base then $\Delta^{\prime}=\Delta(\gamma)$ for some regular $\gamma \in E$ and if we choose $\sigma \in \tilde{W}$ as above then evidently $\Delta=\Delta(\sigma(\gamma))=\sigma^{-1}(\Delta(\gamma))=\sigma^{-1}\left(\Delta^{\prime}\right)$. so for and base Δ^{\prime} there is at leapt some $\sigma \in \tilde{W} \subseteq w$ with $\sigma\left(\Delta^{\prime}\right)=\Delta$ To show that $\tilde{W}=W$, it suffices to check that $r_{\alpha} \in \tilde{W} \forall \alpha \in \Phi$. Given $\alpha \in \Phi$, choose a base Δ^{\prime} with $\alpha \in \Delta^{\prime}$, and then choose $\sigma \in \tilde{w}$ with $\sigma\left(\Delta^{\prime}\right)=\Delta$. Set $\beta=\sigma(\alpha) \in \Delta$, and then we have $r_{\beta}=r_{\sigma(\alpha)}=\sigma r_{\alpha} \sigma_{\uparrow}^{-1} \in \tilde{W}$ so $r_{\alpha}=\sigma^{-1} r_{\beta} \sigma \in \tilde{W}$ as well. became $\beta \in \Delta_{\text {, so }} s_{\beta} \in \tilde{W}$

Finally, need to show that the element $\sigma \in \tilde{W}=W$ with $\sigma\left(\Delta^{\prime}\right)=\Delta$ is unique for a given base Δ^{\prime} of Φ.
we appeal to technical lemma above: its enough to show that if $\sigma \in W$ has $\sigma(\Delta)=\Delta$ then $\sigma=1$.
Assume $\sigma(\Delta)=\Delta$ and write $\sigma=r_{1} r_{2} \ldots r_{m}$ where $r_{i}=r_{\alpha_{i}}$ for some simple roots $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m} \in \Delta_{\text {, }}$ and assume m is minimal. If $\sigma \neq 1$ then $m>0$ so by corollary above $\sigma\left(\alpha_{m}\right) \in \Phi^{-} \Rightarrow \sigma(\Delta) \neq \Delta \subseteq \Phi^{+}$ Thus the only way to have $\sigma(\Delta)=\Delta$ is if $m=0$ and then $\sigma=10$

Fix an ordering $\alpha_{1} \alpha_{2} \alpha_{3} \ldots \alpha_{n}$ of the roots in Δ. [Here $\Delta=\left[\alpha_{1}, \ldots, \alpha_{n}\right]$ and $\alpha_{i} \neq \alpha_{j}$ for $i \neq j$]

We call ant minimal length expression

$$
\sigma=r_{i}, r_{i_{2}} \cdots r_{i e} \quad \text { where } r_{j} \stackrel{\text { deft }}{=} r_{\alpha_{j}}
$$

a reduced expression for $\sigma \in W$. Set $l(w)=\ell$
Call this the length of w.
Prop If of W then $l(\sigma)=\#\left\{\alpha \in \Phi^{+} \mid \sigma(\alpha) \in \Phi^{-}\right\}$
Note: this gives $l\left(r_{\alpha}\right)=1 \quad \forall \alpha \in \Delta$.
Pf. Use induction + earlier lommes, see textbook. I

Irreducible root systems
A root system Φ is irreolucible it it cannot be partitioned as a disjoint union $\Phi=\Phi_{1} 山 \Phi_{2}$ where Φ_{1} and Φ_{2} are both nonempty and $(\alpha, \beta)=0$ for all $\alpha \in \Phi_{1}, \beta \in \Phi_{2}$. If Φ can be partitioned in this way then Φ is reducible.
Next time: there is a natural notion of root subsystem and directsune for root systems, and any Φ is isomorphic to the direct sum of its irrolucible subsystems.

Ex The root system $\Phi A_{1} \times A_{\text {, }}$, is reducible:

$$
\begin{aligned}
& \Phi_{A_{1} \times A_{1}}=\{ \pm \alpha] \Delta[\pm \beta] \\
& \uparrow \gamma \\
& \text { orthegons al } \\
& \text { to each other }
\end{aligned}
$$

However, $\Phi_{A_{2}} \Phi_{B_{2}}, \Phi_{G_{2}}$ are all irreducible.
Prop Suppose Φ has a base Δ. Then Φ is roolcicille if and only if there is a portion $\Delta=\Delta_{1} \cup \Delta_{2}$ where $\Delta_{1}, \Delta_{2} \neq \phi$ and $(\alpha, \beta)=0 \quad \forall \alpha \in \Delta_{1}, \beta \in \Delta_{2}$.
Pf [Skip since out of time \rightarrow fairly straightforward argument, see textbook]

