

Problem #	Points Possible	Score
1	30	
2	10	
3	10	
4	20	
5	10	
6	15	
7	10	
8	15	
Total	120	

 $\binom{3}{3}$

You have **180 minutes** to complete this exam.

No books, notes, or electronic devices can be used on the test.

It will help us to grade your solutions if you draw a box around your final answers to each problem. If we cannot determine what your final is on a problem, you may lose points. Partial credit can be given on some problems. Good luck! **Problem 1.** (30 points) This question has six parts.

(a) Find the general solution to the linear system

$$\begin{cases} x_1 + x_2 + x_3 + x_4 + x_5 = 0\\ x_2 + x_3 + x_4 = 3\\ x_3 + x_5 = 2. \end{cases}$$

Solution to part (a):

(b) Find the standard matrix of the linear transformation $T : \mathbb{R}^4 \to \mathbb{R}$ with $(\lceil x_1 \rceil) = \lceil x_2 \rceil$

$$T\left(\left[\begin{array}{c} x_1\\ x_2\\ x_3\\ x_4 \end{array}\right]\right) = \left[\begin{array}{c} x_1\\ x_2\\ x_3\\ x_4 \end{array}\right] \bullet \left[\begin{array}{c} 2\\ 0\\ 2\\ 1\\ 1 \end{array}\right].$$

Solution to part (b):

(c) Find the value of *h* that makes the rank of the matrix

2	0	2]
1	2	0
2	1	h
1	2	0

as small as possible.

Solution to part (c):

(d) Find all 2×3 matrices A that are in **reduced echelon form** and satisfy

$$A\begin{bmatrix}1\\1\\1\end{bmatrix} = \begin{bmatrix}0\\0\end{bmatrix}.$$

Solution to part (d):

(e) Suppose $a, b, c, d, e \in \mathbb{R}$ are such that ad - bc = 1 and $e \neq 0$. Compute the inverse of

$$A = \left[\begin{array}{rrr} 0 & a & b \\ 0 & c & d \\ e & 0 & 0 \end{array} \right].$$

Solution to part (e):

(f) Suppose *A* is a 3×3 matrix with all real entries. The complex number $\lambda = 2 + 3i$ is an eigenvalue of *A* and the trace of *A* is tr(A) = 7. What is the determinant of *A*?

Solution to part (f):

Problem 2. (10 points) Do there exist two linearly independent vectors in \mathbb{R}^4 that are orthogonal to all three of the vectors

$\left[\begin{array}{c}1\\-2\\1\\2\end{array}\right], \qquad -$	$\begin{bmatrix} 1\\ -1\\ 2\\ 5 \end{bmatrix},$	and	$\begin{bmatrix} 1\\ -5\\ -2\\ -7 \end{bmatrix}$?
---	---	-----	--	---

Find two such vectors if they exist, and otherwise explain why there are no such linearly independent vectors.

Solution:

Problem 3. (10 points) This problem has two parts.

Suppose A is a 3×3 matrix such that

A	$\begin{array}{c} 1\\ -4\\ 5\end{array}$	=	$\begin{array}{c} 1\\ -4\\ 5\end{array}$,	A	$\begin{bmatrix} 12 \\ 8 \\ 4 \end{bmatrix}$	=	$\begin{bmatrix} 3\\2\\1 \end{bmatrix}$,	A	$\begin{bmatrix} 2\\ -2\\ -2 \end{bmatrix}$	=	$ \begin{bmatrix} 1 \\ -1 \\ -1 \end{bmatrix} $.
---	--	---	--	---	---	--	---	---	---	---	---	---	---	---

(a) Find an invertible matrix P and a diagonal matrix D such that $A = PDP^{-1}$.

Solution to part (a):

(b) Determine if $\lim_{n\to\infty} A^n$ exists and compute its value if it does exist. Explain how you found your answer to receive full credit.

Solution to part (b):

Problem 4. (20 points) This problem has four parts.

Suppose *A* is a 3×3 matrix that has exactly two distinct (complex) eigenvalues given by -1 and 2, and that has all three of the following vectors as eigenvectors:

[0]	[1]			2	
0 ,	1	,	and	-2	
$\lfloor 1 \rfloor$	0			1	

(a) Can the matrix *A* be non-diagonalizable? If this is possible then give an example of such a matrix *A*, and otherwise explain why it is impossible.

Solution to part (a):

(b) Continue to suppose that *A* is a 3×3 matrix that has exactly two distinct (complex) eigenvalues given by -1 and 2, and that has all three of the following vectors as eigenvectors:

0		[1]			2	
0	,	1	,	and	-2	
1		0			1	

Can the matrix *A* be non-invertible? If this is possible then give an example of such a matrix *A*, and otherwise explain why it is impossible.

Solution to part (b):

(c) Continue to suppose that *A* is a 3×3 matrix that has exactly two distinct (complex) eigenvalues given by -1 and 2, and that has all three of the following vectors as eigenvectors:

0		[1]			2	
0	,	1	,	and	-2	
1		0			1	

Can the matrix *A* be orthogonal? (That is, can it hold that *A* is invertible with $A^{-1} = A^{\top}$?) If this is possible then give an example of such a matrix *A*, and otherwise explain why it is impossible.

Solution to part (c):

(d) Continue to suppose that *A* is a 3×3 matrix that has exactly two distinct (complex) eigenvalues given by -1 and 2, and that has all three of the following vectors as eigenvectors:

0		[1]			[2]	
0	,	1	,	and	-2	
1		0			1	

Can the matrix *A* be symmetric? (That is, can it hold that $A = A^{\top}$?) If this is possible then give an example of such a matrix *A*, and otherwise explain why it is impossible.

Solution to part (d):

Problem 5. (10 points) This question has two parts.

Consider the plane
$$P = \left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} \in \mathbb{R}^3 : 3x - y + 6z = 0 \right\}$$
 in \mathbb{R}^3 .

(a) The subspace P is 2-dimensional. Find an orthogonal basis for P.

Solution to part (a):

(b) Find the vector in *P* that is closest to $v = \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}$.

Solution to part (b):

Problem 6. (15 points) This question has three parts.

(a) Suppose
$$A = \begin{bmatrix} 1 & 3 \\ 0 & -1 \\ 2 & 2 \end{bmatrix}$$
 and $b = \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix}$.

Does the equation Ax = b have an exact solution?

Find a solution or explain why none exists.

Solution to part (a):

(b) Again suppose
$$A = \begin{bmatrix} 1 & 3 \\ 0 & -1 \\ 2 & 2 \end{bmatrix}$$
 and $b = \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix}$.

Does the equation Ax = b have a least-squares solution?

Find a solution or explain why none exists.

Solution to part (b):

(c) Suppose A is an $m \times n$ matrix and $b \in \mathbb{R}^m$.

Indicate which of the following are TRUE or FALSE.

You do not need to provide any justification for your answers.

Correct answers will receive 1 point, blank answers will recieve 0 points, and incorrect answers will lose 1 point.

1. If $x \in \mathbb{R}^n$ has $A^{\top}Ax = A^{\top}b$ then it always holds that Ax = b.

TRUE

2. If $x \in \mathbb{R}^n$ has Ax = b then it always holds that $A^{\top}Ax = A^{\top}b$.

TRUE FALSE

3. If the equation Ax = b has no solution then $A^{\top}Ax = A^{\top}b$ might also have no solution.

TRUE

FALSE

FALSE

4. If the equation Ax = b has a unique solution then $A^{\top}Ax = A^{\top}b$ also has a unique solution.

TRUE

FALSE

5. If the equation $A^{\top}Ax = A^{\top}b$ has a unique solution x then Ax = b has at most one solution.

TRUE

FALSE

Problem 7. (10 points)

Define $\mathbb{R}^{3 \times 3}$ to be the set of all 3×3 matrices with all real entries.

The set $\mathbb{R}^{3 \times 3}$ is a vector space. Let

$$J = \begin{bmatrix} 0 & 0 & 1\\ 0 & 1 & 0\\ 1 & 0 & 0 \end{bmatrix} \in \mathbb{R}^{3 \times 3}$$

and define $T : \mathbb{R}^{3 \times 3} \to \mathbb{R}^{3 \times 3}$ by the formula T(A) = JAJ. This is a linear function.

Find all real numbers $\lambda \in \mathbb{R}$ such that $T(A) = \lambda A$ for some $0 \neq A \in \mathbb{R}^{3 \times 3}$. For each of these eigenvalues λ find a basis for the subspace $\{A \in \mathbb{R}^{3 \times 3} : T(A) = \lambda A\}$.

Solution :

Problem 8. (15 points) This question has three parts.

	- 1	-1^{-1}	1
(a) Compute the singular values of the matrix $A =$	-2	2	.
	2	-2 _	

Solution to part (a):

(b) Suppose A is a 2×2 matrix with a singular value decomposition

$$A = U\Sigma V^T$$

where U and V are orthogonal 2×2 matrices and

$$\Sigma = \left[\begin{array}{cc} 10 & 0 \\ 0 & 5 \end{array} \right].$$
 The first column of U is the vector $\left[\begin{array}{c} -4/5 \\ 3/5 \end{array} \right].$

Draw a picture of the region in \mathbb{R}^2 given by

$$\left\{Ax: x = \left[\begin{array}{c} x_1 \\ x_2 \end{array}\right] \in \mathbb{R}^2 \text{ is a vector with } x_1^2 + x_2^2 \le 1\right\}.$$

Make your picture as detailed as possible to receive full credit.

Solution to part (b):

(c) Find an orthonormal basis of
$$\mathbb{R}^3$$
 that contains the vector $\begin{bmatrix} 1/3 \\ -2/3 \\ 2/3 \end{bmatrix}$.

Solution to part (c):