MIDTERM SOLUTIONS - SECTION L1, MATH 2121, FALL 2023

Problem 1. (10 points)
Compute the determinant of the matrix

$$
A=\left[\begin{array}{lll}
1 & 0 & 2 \\
0 & x & 0 \\
y & 0 & 4
\end{array}\right]
$$

Then find all values of $x, y \in \mathbb{R}$ such that A is invertible and compute a formula for A^{-1}.

Solution.

The determinant is $\operatorname{det} A=1(4 x-0)-0+2(0-x y)=4 x-2 x y=2 x(2-y)$.
A is invertible when its determinant is nonzero, which happens when $x \neq 0$ and $y \neq 2$.
For these values of x and y we have $A^{-1}=\left[\begin{array}{ccc}\frac{4}{4-2 y} & 0 & \frac{-2}{4-2 y} \\ 0 & \frac{1}{x} & 0 \\ \frac{-y}{4-2 y} & 0 & \frac{1}{4-2 y}\end{array}\right]$.

Problem 2. (10 points)
Find all values of $a, b \in \mathbb{R}$ such that \mathbb{R}-span $\left\{\left[\begin{array}{l}3 \\ 2 \\ a\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{r}1 \\ 2 \\ -1\end{array}\right]\right\}$ does not contain $\left[\begin{array}{l}3 \\ 1 \\ b\end{array}\right]$.

Solution.

We want to find a and b such that the matrix

$$
A=\left[\begin{array}{rrr|r}
1 & 1 & 3 & 3 \\
0 & 2 & 2 & 1 \\
0 & -1 & a & b
\end{array}\right]
$$

has a pivot in the last column, as then it is the augmented matrix of an inconsistent linear system.
Notice that we rearranged the spanning vectors when forming A to make it easier to row reduce.
We row reduce A by

$$
A=\left[\begin{array}{rrr|r}
1 & 1 & 3 & 3 \\
0 & 2 & 2 & 1 \\
0 & -1 & a & b
\end{array}\right] \rightarrow\left[\begin{array}{rrr|r}
1 & 1 & 3 & 3 \\
0 & 1 & 1 & .5 \\
0 & -1 & a & b
\end{array}\right] \rightarrow\left[\begin{array}{rrr|r}
1 & 1 & 3 & 3 \\
0 & 1 & 1 & .5 \\
0 & 0 & a+1 & b+.5
\end{array}\right]
$$

The last matrix is in echelon form (though not reduced) so its pivot positions are the same as in A.
We see that the last column has a pivot precisely when $a=-1$ and $b \neq-1 / 2$.

Problem 3. (10 points)
Determine the possibilities for RREF $\left[\begin{array}{lll}x & 1 & 2 \\ 1 & y & 3\end{array}\right]$ if x and y are real numbers.
Clearly identify the values of x and y that give rise to each reduced echelon form.

Solution.

We start to row reduce the matrix as

$$
\left[\begin{array}{lll}
x & 1 & 2 \\
1 & y & 3
\end{array}\right] \rightarrow\left[\begin{array}{lll}
1 & y & 3 \\
x & 1 & 2
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & y & 3 \\
0 & 1-x y & 2-3 x
\end{array}\right]
$$

If $x y \neq 1$ then we can continue row reducing

$$
\left[\begin{array}{ccc}
1 & y & 3 \\
0 & 1-x y & 2-3 x
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & y & 3 \\
0 & 1 & \frac{2-3 x}{1-x y}
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & 0 & 3-\frac{2-3 x}{1-x y} y \\
0 & 1 & \frac{2-3 x}{1-x y}
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & \frac{3-2 y}{1-x y} \\
0 & 1 & \frac{2-3 x}{1-x y}
\end{array}\right]
$$

where the last matrix is in RREF form.
If $x y=1$ and $x \neq 2 / 3$ then we can continue row reducing

$$
\left[\begin{array}{ccc}
1 & y & 3 \\
0 & 1-x y & 2-3 x
\end{array}\right]=\left[\begin{array}{ccc}
1 & y & 3 \\
0 & 0 & 2-3 x
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & y & 3 \\
0 & 0 & 1
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & y & 0 \\
0 & 0 & 1
\end{array}\right]
$$

where the last matrix is in RREF form.
If $x y=1$ and $x=2 / 3$ then $y=3 / 2$ and

$$
\left[\begin{array}{ccc}
1 & y & 3 \\
0 & 1-x y & 2-3 x
\end{array}\right]=\left[\begin{array}{ccc}
1 & 3 / 2 & 3 \\
0 & 0 & 0
\end{array}\right]
$$

is in RREF form.

Problem 4. (10 points)

This question has two parts:
(a) What is the definition of a one-to-one linear function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$?
(b) Find the standard matrix of the unique linear function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ with

$$
f\left(\left[\begin{array}{l}
2 \\
3
\end{array}\right]\right)=\left[\begin{array}{l}
2 \\
3
\end{array}\right] \quad \text { and } \quad f\left(\left[\begin{array}{l}
2 \\
1
\end{array}\right]\right)=\left[\begin{array}{l}
-2 \\
-1
\end{array}\right]
$$

Is f one-to-one? Justify your answer.

Solution.

Solution.

(a) A one-to-one linear function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a function with $f(c v)=c f(v)$ and $f(v+w)=f(v)+f(w)$ for all $c \in \mathbb{R}$ and $v, w \in \mathbb{R}^{n}$, such that for each $y \in \mathbb{R}^{m}$ there is at most one $x \in \mathbb{R}^{n}$ with $f(x)=y$.

The last property could be rephrased as: the standard matrix of f has a pivot position in every column.
(b) If the standard matrix of f is A then $A\left[\begin{array}{ll}2 & 2 \\ 3 & 1\end{array}\right]=\left[\begin{array}{ll}2 & -2 \\ 3 & -1\end{array}\right]$ so

$$
A=\left[\begin{array}{ll}
2 & -2 \\
3 & -1
\end{array}\right]\left[\begin{array}{ll}
2 & 2 \\
3 & 1
\end{array}\right]^{-1}=-\frac{1}{4}\left[\begin{array}{ll}
2 & -2 \\
3 & -1
\end{array}\right]\left[\begin{array}{rr}
1 & -2 \\
-3 & 2
\end{array}\right]=-\frac{1}{4}\left[\begin{array}{ll}
8 & -8 \\
6 & -8
\end{array}\right]=\left[\begin{array}{rr}
-2 & 2 \\
-3 / 2 & 2
\end{array}\right] .
$$

Since $\operatorname{det} A=-4+3=-1 \neq 0$, the matrix A is invertible.
Therefore $\operatorname{RREF}(A)=I$ has a pivot in every column, so f is one-to-one.

Problem 5. (10 points)
This question has two parts:
(a) Does there exist a 2×2 matrix A with $\operatorname{Col} A=\operatorname{Nul} A$?

Find an example or explain why none exists.
(b) Does there exist a 3×3 matrix A with $\operatorname{Col} A=\operatorname{Nul} A$?

Find an example or explain why none exists.

Solution.

(a) Yes. The matrix $A=\left[\begin{array}{ll}1 & -1 \\ 1 & -1\end{array}\right]$ has $\operatorname{Col} A=\operatorname{Nul} A=\mathbb{R}$-span $\left\{\left[\begin{array}{l}1 \\ 1\end{array}\right]\right\}$.
(b) No. If A is 3×3 then $\operatorname{dim} \operatorname{Col} A+\operatorname{dim} \operatorname{Nul} A=3$ so $\operatorname{dim} \operatorname{Col} A$ and $\operatorname{dim} \operatorname{Nul} A$ cannot be both odd or both even, so $\operatorname{dim} \operatorname{Col} A \neq \operatorname{dim} \operatorname{Nul} A$ which means that $\operatorname{Col} A \neq \operatorname{Nul} A$.

Problem 6. (10 points)
Define the matrix $A=\left[\begin{array}{rrrrr}1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 3 & 1 & -1 \\ 2 & 0 & -4 & 1 & 0\end{array}\right]$. Find a basis for $\operatorname{Col} A$ and a basis for $\operatorname{Nul} A$.

Solution.

We row reduce A as

$$
\begin{aligned}
A=\left[\begin{array}{rrrrr}
1 & 1 & 1 & 1 & 1 \\
0 & 1 & 3 & 1 & -1 \\
2 & 0 & -4 & 1 & 0
\end{array}\right] & \rightarrow\left[\begin{array}{rrrrr}
1 & 1 & 1 & 1 & 1 \\
0 & 1 & 3 & 1 & -1 \\
0 & -2 & -6 & -1 & -2
\end{array}\right] \\
& \rightarrow\left[\begin{array}{rrrrr}
1 & 1 & 1 & 1 & 1 \\
0 & 1 & 3 & 1 & -1 \\
0 & 0 & 0 & 1 & -4
\end{array}\right] \\
& \rightarrow\left[\begin{array}{rrrrr}
1 & 0 & -2 & 0 & 2 \\
0 & 1 & 3 & 1 & -1 \\
0 & 0 & 0 & 1 & -4
\end{array}\right] \rightarrow\left[\begin{array}{rrrrr}
1 & 0 & -2 & 0 & 2 \\
0 & 1 & 3 & 0 & 3 \\
0 & 0 & 0 & 1 & -4
\end{array}\right]=\operatorname{RREF}(A) .
\end{aligned}
$$

Columns 1,2 , and 4 have pivots so a basis for $\operatorname{Col} A$ is
$\left[\begin{array}{l}1 \\ 0 \\ 2\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$.

The solutions to $A x=0$ are the same as $\operatorname{RREF}(A) x=0$, which can be rewritten as

$$
\left\{\begin{array}{l}
x_{1}-2 x_{3}+2 x_{5}=0 \\
x_{2}+3 x_{3}+3 x_{5}=0 \\
x_{4}-4 x_{5}=0
\end{array}\right.
$$

This means that $x \in \mathrm{Nul} A$ if and only if

$$
x=\left[\begin{array}{r}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=\left[\begin{array}{r}
2 x_{3}-2 x_{5} \\
-3 x_{3}-3 x_{5} \\
x_{3} \\
4 x_{5} \\
x_{5}
\end{array}\right]=x_{3}\left[\begin{array}{r}
2 \\
-3 \\
1 \\
0 \\
0
\end{array}\right]+x_{5}\left[\begin{array}{r}
-2 \\
-3 \\
0 \\
4 \\
1
\end{array}\right]
$$

Therefore a basis for $\mathrm{Nul} A$ is $\left[\begin{array}{r}2 \\ -3 \\ 1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{r}-2 \\ -3 \\ 0 \\ 4 \\ 1\end{array}\right]$

