MIDTERM SOLUTIONS- SECTION L2, MATH 2121, FALL 2023

Problem 1. (10 points)
Find the general solution to the linear system

$$
\begin{cases}x_{1}+x_{2}+x_{3}+x_{4} & =1 \\ x_{1}+2 x_{2}+4 x_{3}+2 x_{4} & =0 \\ 2 x_{1}-4 x_{3}+x_{4} & =0\end{cases}
$$

Solution.

The augmented matrix of the system is $A=\left[\begin{array}{rrrr|r}1 & 1 & 1 & 1 & 1 \\ 1 & 2 & 4 & 2 & 0 \\ 2 & 0 & -4 & 1 & 0\end{array}\right]$.
We row reduce this as

$$
\begin{aligned}
A=\left[\begin{array}{rrrr|r}
1 & 1 & 1 & 1 & 1 \\
1 & 2 & 4 & 2 & 0 \\
2 & 0 & -4 & 1 & 0
\end{array}\right] & \rightarrow\left[\begin{array}{rrrr|r}
1 & 1 & 1 & 1 & 1 \\
0 & 1 & 3 & 1 & -1 \\
0 & -2 & -6 & -1 & -2
\end{array}\right] \\
& \rightarrow\left[\begin{array}{llll|r}
1 & 1 & 1 & 1 & 1 \\
0 & 1 & 3 & 1 & -1 \\
0 & 0 & 0 & 1 & -4
\end{array}\right] \\
& \rightarrow\left[\begin{array}{llll|r}
1 & 1 & 1 & 0 & 5 \\
0 & 1 & 3 & 0 & 3 \\
0 & 0 & 0 & 1 & -4
\end{array}\right] \\
& \rightarrow\left[\begin{array}{rrrr|r}
1 & 0 & -2 & 0 & 2 \\
0 & 1 & 3 & 0 & 3 \\
0 & 0 & 0 & 1 & -4
\end{array}\right]=\operatorname{RREF}(A) .
\end{aligned}
$$

The linear system with augmented matrix $\operatorname{RREF}(A)$ is

$$
\begin{cases}x_{1}-2 x_{3} & =2 \\ x_{2}+3 x_{3} & =3 \\ x_{4} & =-4\end{cases}
$$

This means the basic variables are $x_{1}=2+2 x_{3}, x_{2}=3-3 x_{3}$, and $x_{4}=-4$ so the general solution is

$$
\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=(2+2 a, 3-3 a, a,-4) \quad \text { for all } a \in \mathbb{R} .
$$

Problem 2. (10 points)
Determine the values of the constants a and b such that the matrix equation

$$
\left[\begin{array}{rr}
a & 6 \\
-1 & 3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
3 \\
b
\end{array}\right]
$$

has (1) a unique solution, (2) no solution, or (3) infinitely many solutions.

Solution.

The system has a unique solution if $\left[\begin{array}{rr}a & 6 \\ -1 & 3\end{array}\right]$ is invertible.
This happens if $3 a+6 \neq 0$ or equivalently $a \neq-2$.
Assume $a=-2$. Then the augmented matrix of the matrix equation is $A=\left[\begin{array}{cc|c}-2 & 6 & 3 \\ -1 & 3 & b\end{array}\right]$.
This row reduces to

$$
A=\left[\begin{array}{ll|l}
-2 & 6 & 3 \\
-1 & 3 & b
\end{array}\right] \rightarrow\left[\begin{array}{rr|r}
1 & -3 & -1.5 \\
-1 & 3 & b
\end{array}\right] \rightarrow\left[\begin{array}{rr|r}
1 & -3 & -1.5 \\
0 & 0 & b-1.5
\end{array}\right]
$$

The last matrix is in echelon form so its pivot positions are the pivot positions of $\operatorname{RREF}(A)$.
There is no solution if the last column is a pivot. This happens when $b-1.5 \neq 0$ or equivalently $b \neq 3 / 2$.

There are infinitely many solutions if the last column is not a pivot as then x_{2} is a free variable.
This happens when $b-1.5=0$ or equivalently $b=3 / 2$.
The final answer is therefore

- unique solution if $a \neq-2$,
- no solution if $a=-2$ and $b \neq 3 / 2$, and
- infinitely many solutions if $a=-2$ and $b=3 / 2$.

Problem 3. (10 points)
Let x be a real number and define

$$
A=\left[\begin{array}{lll}
1 & 3 & 0 \\
2 & 4 & 2 \\
3 & 1 & x
\end{array}\right]
$$

Compute the rank and determinant of the matrix A. Your answer should depend on x.

Solution.

The determinant is $1(4 x-2)-3(2 x-6)+0=4 x-2-6 x+18=16-2 x$. So $\operatorname{det} A=16-2 x$.
We row reduce A as

$$
A=\left[\begin{array}{lll}
1 & 3 & 0 \\
2 & 4 & 2 \\
3 & 1 & x
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & 3 & 0 \\
0 & -2 & 2 \\
0 & -8 & x
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & 3 & 0 \\
0 & -2 & 2 \\
0 & 0 & x-8
\end{array}\right]
$$

The last matrix is in echelon form so its pivot positions are the pivot positions of $\operatorname{RREF}(A)$.

If $x \neq 8$ then every diagonal position is a pivot.
Then all three columns of A form a basis for the column space, and in this case $\operatorname{rank} A=3$.

If $x=8$ then only the first diagonal positions are pivots.
Then just the first two columns of A are a basis for the column space, and in this case $\operatorname{rank} A=2$.
So the rank of A is $\operatorname{rank} A= \begin{cases}2 & \text { if } x=8 \\ 3 & \text { if } x \neq 8 .\end{cases}$

Problem 4. (10 points)
This question has two parts:
(a) What is the definition of an onto linear function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$?
(b) Find the standard matrix of the linear function $f: \mathbb{R}^{4} \rightarrow \mathbb{R}^{2}$ defined by

$$
f\left(\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]\right)=\left[\begin{array}{ll}
2 & 0 \\
2 & 3
\end{array}\right]\left[\begin{array}{ll}
v_{1} & v_{2} \\
v_{3} & v_{4}
\end{array}\right]\left[\begin{array}{l}
5 \\
6
\end{array}\right]
$$

Is f onto? Justify your answer.

Solution.

(a) An onto linear function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a function with $f(c v)=c f(v)$ and $f(v+w)=f(v)+f(w)$ for all $c \in \mathbb{R}$ and $v, w \in \mathbb{R}^{n}$, such that for each $y \in \mathbb{R}^{m}$ there is at least one $x \in \mathbb{R}^{n}$ with $f(x)=y$.
The last property could be rephrased as: the standard matrix of f has a pivot position in every row.
(b) The standard matrix of f is $A=\left[\begin{array}{llll}f\left(e_{1}\right) & f\left(e_{2}\right) & f\left(e_{3}\right) & f\left(e_{4}\right)\end{array}\right]$.

We have $f\left(e_{1}\right)=\left[\begin{array}{ll}2 & 0 \\ 2 & 3\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]\left[\begin{array}{l}5 \\ 6\end{array}\right]=\left[\begin{array}{ll}2 & 0 \\ 2 & 3\end{array}\right]\left[\begin{array}{l}5 \\ 0\end{array}\right]=\left[\begin{array}{l}10 \\ 10\end{array}\right]$.
We have $f\left(e_{2}\right)=\left[\begin{array}{ll}2 & 0 \\ 2 & 3\end{array}\right]\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]\left[\begin{array}{l}5 \\ 6\end{array}\right]=\left[\begin{array}{ll}2 & 0 \\ 2 & 3\end{array}\right]\left[\begin{array}{l}6 \\ 0\end{array}\right]=\left[\begin{array}{l}12 \\ 12\end{array}\right]$.
We have $f\left(e_{3}\right)=\left[\begin{array}{ll}2 & 0 \\ 2 & 3\end{array}\right]\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]\left[\begin{array}{l}5 \\ 6\end{array}\right]=\left[\begin{array}{ll}2 & 0 \\ 2 & 3\end{array}\right]\left[\begin{array}{l}0 \\ 5\end{array}\right]=\left[\begin{array}{r}0 \\ 15\end{array}\right]$.
We have $f\left(e_{4}\right)=\left[\begin{array}{ll}2 & 0 \\ 2 & 3\end{array}\right]\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]\left[\begin{array}{l}5 \\ 6\end{array}\right]=\left[\begin{array}{ll}2 & 0 \\ 2 & 3\end{array}\right]\left[\begin{array}{l}0 \\ 6\end{array}\right]=\left[\begin{array}{r}0 \\ 18\end{array}\right]$.
The standard matrix is therefore $A=\left[\begin{array}{rrrr}10 & 12 & 0 & 0 \\ 10 & 12 & 15 & 18\end{array}\right]$.
This matrix has a pivot in every row since it is row equivalent to $\left[\begin{array}{rrrr}10 & 12 & 0 & 0 \\ 0 & 0 & 15 & 18\end{array}\right]$ which is in echelon form and has two nonzero rows. Therefore f is onto.

Problem 5. (10 points)

Two subspaces of \mathbb{R}^{n} are disjoint if the only vector they both contain is the zero vector.
This question has two parts:
(a) Does there exist a non-invertible 2×2 matrix A such that $\operatorname{Col} A$ and $\operatorname{Nul} A$ are disjoint? Find an example or explain why none exists.
(b) Does there exist a non-invertible 3×3 matrix A such that $\operatorname{Col} A$ and $\operatorname{Nul} A$ are disjoint? Find an example or explain why none exists.

Solution.

(a) Yes. The matrix $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$ is not invertible and has $\operatorname{Col} A=\mathbb{R}$-span $\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right]\right\}$ and $\operatorname{Nul} A=$ \mathbb{R}-span $\left\{\left[\begin{array}{l}0 \\ 1\end{array}\right]\right\}$ which are disjoint subspaces.
(b) Yes. The matrix $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$ is not invertible and has $\operatorname{Col} A=\mathbb{R}$-span $\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]\right\}$ and $\operatorname{Nul} A=$ \mathbb{R}-span $\left\{\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]\right\}$ which are disjoint subspaces.

Problem 6. (10 points)
Let $v=\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right]$ and $w=\left[\begin{array}{l}0 \\ 1 \\ 2 \\ 3\end{array}\right]$.
Compute $A=v v^{\top}+w w^{\top}$. Then find a basis for $\operatorname{Col} A$ and a basis for $\operatorname{Nul} A$.

Solution.

We have

$$
v v^{\top}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]\left[\begin{array}{llll}
1 & 1 & 1 & 1
\end{array}\right]=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{array}\right]
$$

and

$$
w w^{\top}=\left[\begin{array}{l}
0 \\
1 \\
2 \\
3
\end{array}\right]\left[\begin{array}{llll}
0 & 1 & 2 & 3
\end{array}\right]=\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 1 & 2 & 3 \\
0 & 2 & 4 & 6 \\
0 & 3 & 6 & 9
\end{array}\right]
$$

so

$$
A=\left[\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
1 & 2 & 3 & 4 \\
1 & 3 & 5 & 7 \\
1 & 4 & 7 & 10
\end{array}\right]
$$

This matrix row reduces to

$$
A=\left[\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
1 & 2 & 3 & 4 \\
1 & 3 & 5 & 7 \\
1 & 4 & 7 & 10
\end{array}\right] \rightarrow\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 1 & 2 & 3 \\
0 & 2 & 4 & 6 \\
0 & 3 & 6 & 9
\end{array}\right] \rightarrow\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 1 & 2 & 3 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \rightarrow\left[\begin{array}{rrrr}
1 & 0 & -1 & -2 \\
0 & 1 & 2 & 3 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]=\operatorname{RREF}(A)
$$

The first two columns have pivots so a basis for $\operatorname{Col} A$ is
$\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 4\end{array}\right]$.

The linear system $\operatorname{RREF}(A) x=0$ can be rewritten (ignoring the trivial equations $0=0$) as

$$
\left\{\begin{array}{l}
x_{1}-x_{3}-2 x_{4}=0 \\
x_{2}+2 x_{3}+3 x_{4}=0
\end{array}\right.
$$

which means that $A x=0$ if and only if $x_{1}=x_{3}+2 x_{4}$ and $x_{2}=-2 x_{3}-3 x_{4}$ or equivalently

$$
x=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{r}
x_{3}+2 x_{4} \\
-2 x_{3}-3 x_{4} \\
x_{3} \\
x_{4}
\end{array}\right]=x_{3}\left[\begin{array}{r}
1 \\
-2 \\
1 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{r}
2 \\
-3 \\
0 \\
1
\end{array}\right]
$$

so a basis for $\operatorname{Nul}(A)$ is $\left[\begin{array}{r}1 \\ -2 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{r}2 \\ -3 \\ 0 \\ 1\end{array}\right]$.

