This document is a transcript of the lecture, with extra summary and vocabulary sections for your convenience. Due to time constraints, the notes may sometimes only contain limited illustrations, proofs, and examples; for a more thorough discussion of the course content, consult the textbook.

Summary

Quick summary of today's notes. Lecture starts on next page.

- If A and B are $n \times n$ matrices with $A B=I_{n}$ then $B A=I_{n}$ and $A^{-1}=B$.
- A subspace H of \mathbb{R}^{n} is a subset of \mathbb{R}^{n} containing the zero vector that is closed under linear combinations. This means that $0 \in H$ and if $u, v \in H$ and $c \in \mathbb{R}$ then $u+v \in H$ and $c v \in H$.
- The zero subspace of \mathbb{R}^{n} is the set $\{0\}$ with just the zero vector $0 \in \mathbb{R}^{n}$. Let A be an $m \times n$ matrix. The column space of A is the span of the columns of A. Denoted $\operatorname{Col} A$. This is a subspace of \mathbb{R}^{m}.

$$
\mathrm{Col}\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 2 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]=\mathbb{R}-\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
2 \\
0 \\
0
\end{array}\right]\right\}=\left\{\left[\begin{array}{c}
a \\
b \\
a \\
0
\end{array}\right]: a, b \in \mathbb{R}\right\} \subseteq \mathbb{R}^{4}
$$

The null space of A is the set of vectors $\operatorname{Nul} A=\left\{v \in \mathbb{R}^{n}: A v=0\right\}$. This is a subspace of \mathbb{R}^{n}.

$$
\operatorname{Nul}\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 2 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]=\left\{\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \in \mathbb{R}^{3}: x=y+2 z=0\right\}=\left\{\left[\begin{array}{r}
0 \\
-2 z \\
z
\end{array}\right]: z \in \mathbb{R}\right\} \subseteq \mathbb{R}^{3}
$$

- A basis for a subspace $H \subseteq \mathbb{R}^{n}$ is a linearly independent spanning set.

The standard basis of \mathbb{R}^{n} is $e_{1}, e_{2}, \ldots, e_{n}$ where $e_{i} \in \mathbb{R}^{n}$ is the vector with 1 in row i and 0 in all other rows. Any subspace of \mathbb{R}^{n} has a basis with at most n vectors.

- The pivot columns of an $m \times n$ matrix A form a basis for $\operatorname{Col} A$.
- Both A and $\operatorname{RREF}(A)$ have the same null space. Usually $\operatorname{Col} A \neq \operatorname{Col} \operatorname{RREF}(A)$.

To find a basis for $\operatorname{Nul} A$, determine the indices $i_{1}, i_{2}, \ldots, i_{p}$ of the non-pivot columns of A.
Then there are unique vectors $v_{1}, v_{2}, \ldots, v_{p} \in \mathbb{R}^{n}$ such that any

$$
x=\left[\begin{array}{r}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right] \in \mathbb{R}^{n} \quad \text { with } \quad \operatorname{RREF}(A) x=0
$$

can be written as $x=x_{i_{1}} v_{1}+x_{i_{2}} v_{2}+\cdots+x_{i_{p}} v_{p}$. The vectors $v_{1}, v_{2}, \ldots, v_{p}$ are a basis for $\operatorname{Nul} A$.
For example, if $\operatorname{RREF}(A)=\left[\begin{array}{rrrrr}1 & 2 & 0 & 4 & -1 \\ 0 & 0 & 1 & 0 & 2\end{array}\right]$ then any $x \in \mathbb{R}^{5}$ with $\operatorname{RREF}(A) x=0$ has

$$
x=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=\left[\begin{array}{r}
-2 x_{2}-4 x_{4}+x_{5} \\
x_{2} \\
-2 x_{5} \\
x_{4} \\
x_{5}
\end{array}\right]=x_{2}\left[\begin{array}{r}
-2 \\
1 \\
0 \\
0 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{r}
-4 \\
0 \\
0 \\
1 \\
0
\end{array}\right]+x_{5}\left[\begin{array}{r}
1 \\
0 \\
-2 \\
0 \\
1
\end{array}\right] .
$$

The three vectors on the right are a basis for $\operatorname{Nul} A=\operatorname{Nul} \operatorname{RREF}(A)$.

1 Last time: inverses

The following all mean the same thing for a function $f: X \rightarrow Y$:

1. f is invertible.
2. f is one-to-one and onto.
3. For each $b \in Y$ there is exactly one $a \in X$ with $f(a)=b$.
4. There is a unique function $f^{-1}: Y \rightarrow X$, called the inverse of f, such that

$$
f^{-1}(f(a))=a \quad \text { and } \quad f\left(f^{-1}(b)\right)=b \quad \text { for all } a \in X \text { and } b \in Y
$$

Proposition. If $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is linear and invertible then $m=n$ and T^{-1} is linear and invertible.

The following all mean the same thing for an $n \times n$ matrix A :

1. A is invertible.
2. A is the standard matrix of an invertible linear function $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$.
3. There is a unique $n \times n$ matrix A^{-1}, called the inverse of A, such that

$$
A^{-1} A=A A^{-1}=I_{n} \quad \text { where we define } I_{n}=\left[\begin{array}{cccc}
1 & & & \\
& 1 & & \\
& & \ddots & \\
& & & 1
\end{array}\right]
$$

4. For each $b \in \mathbb{R}^{n}$ the equation $A x=b$ has a unique solution.
5. $\operatorname{RREF}(A)=I_{n}$
6. The columns of A are linearly independent and their span is \mathbb{R}^{n}.

Proposition. Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ be a 2×2 matrix.
(1) If $a d-b c=0$ then A is not invertible.
(2) If $a d-b c \neq 0$ then $A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{rr}d & -b \\ -c & a\end{array}\right]$.

Proposition. Let A and B be $n \times n$ matrices.

1. If A is invertible then $\left(A^{-1}\right)^{-1}=A$.
2. If A and B are both invertible then $A B$ is invertible and $(A B)^{-1}=B^{-1} A^{-1}$.
3. If A is invertible then A^{T} is invertible and $\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}$.
$\underline{\text { Process to compute } A^{-1}}$
Let A be an $n \times n$ matrix. Consider the $n \times 2 n$ matrix $\left[\begin{array}{ll}A & I_{n}\end{array}\right]$.
If A is invertible then $\operatorname{RREF}\left(\left[\begin{array}{ll}A & I_{n}\end{array}\right]\right)=\left[\begin{array}{ll}I_{n} & A^{-1}\end{array}\right]$.
So to compute A^{-1}, row reduce $\left[\begin{array}{ll}A & I_{n}\end{array}\right]$ to reduced echelon form, and then take the last n columns.

2 Stronger characterization of invertible matrices

Remember that a matrix can only be invertible if it has the same number of rows and columns.
Theorem. When A is a square $n \times n$ matrix, the following are equivalent:
(a) A is invertible.
(b) The columns of A are linearly independent.
(c) The span of the columns of A is \mathbb{R}^{n}

Proof. We already know that (a) implies both (b) and (c).
Assume just (b) holds. Then A has a pivot position in every column, so $\operatorname{RREF}(A)=I_{n}$ since A has the same number of rows and columns. But this implies that A is invertible.
Similarly, if (c) holds then A has a pivot position in every row, so $\operatorname{RREF}(A)=I_{n}$ and A is invertible.

Corollary. Suppose A and B are both $n \times n$ matrices. If $A B=I_{n}$ then $B A=I_{n}$.
This means that if we want to show that $B=A^{-1}$ then it is enough to just check that $A B=I_{n}$.
Proof. Assume $A B=I_{n}$. Then the columns of A span \mathbb{R}^{n} since if $v \in \mathbb{R}^{n}$ then $A u=v$ for $u=B v \in \mathbb{R}^{n}$, so A is invertible. Therefore $B=A^{-1} A B=A^{-1} I_{n}=A^{-1}$ so $B A=A^{-1} A=I_{n}$.

Important note: this corollary only applies to square matrices.

3 Subspaces of \mathbb{R}^{n}

Let n be a positive integer. Remember that $0=\left[\begin{array}{c}0 \\ 0 \\ \vdots \\ 0\end{array}\right] \in \mathbb{R}^{n}$.
Definition. Let H be a subset of \mathbb{R}^{n}. The subset H is a subspace if these three conditions hold:

1. $0 \in H$.
2. $u+v \in H$ for all $u, v \in H$.
3. $c v \in H$ for all $c \in \mathbb{R}$ and $v \in H$.

Common examples

\mathbb{R}^{n} is a subspace of itself.
The set $\{0\}$ consisting of just the zero vector is a subspace of \mathbb{R}^{n}.
The empty set \varnothing is not a subspace since it does not contain the zero vector.
A subset $H \subseteq \mathbb{R}^{2}$ is a subspace if and only if $H=\{0\}$ or $H=\mathbb{R}^{2}$ or $H=\mathbb{R}$-span $\{v\}$ for some $v \in \mathbb{R}^{2}$
The span of a set of vectors in \mathbb{R}^{n} is a subspace of \mathbb{R}^{n}.
Conversely, any subspace of \mathbb{R}^{n} is the span of a finite set of vectors, although this is not obvious.

Example. The set

$$
X=\left\{v=\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] \in \mathbb{R}^{3}: v_{1}+v_{2}+v_{3}=1\right\}
$$

is not a subspace since $0 \notin X$.
Example. The set

$$
H=\left\{v=\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] \in \mathbb{R}^{3}: v_{1}+v_{2}+v_{3}=0\right\}
$$

is a subspace since if $u, v \in H$ and $c \in \mathbb{R}$ then

$$
\left(u_{1}+v_{1}\right)+\left(u_{2}+v_{2}\right)+\left(u_{3}+v_{3}\right)=\left(u_{1}+u_{2}+u_{3}\right)+\left(v_{1}+v_{2}+v_{3}\right)=0+0=0
$$

and

$$
c v_{1}+c v_{2}+c v_{3}=c\left(v_{1}+v_{2}+v_{3}\right)=0
$$

so $u+v \in H$ and $c v \in H$.

Any matrix A gives rise to two subspaces, called the column space and null space.
Definition. The column space of an $m \times n$ matrix A is the subspace

$$
\operatorname{Col} A=\left\{A x: x \in \mathbb{R}^{n}\right\} \subseteq \mathbb{R}^{m}
$$

The set $\operatorname{Col} A$ is the span of the columns of A.
Example. If $V=\mathbb{R}$-span $\left\{\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]\right\}$ then what are some matrices A with $\operatorname{Col} A=V$?
Here are four examples:

$$
A=\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
1 & 0
\end{array}\right] \quad \text { or } \quad A=\left[\begin{array}{ll}
0 & 1 \\
1 & 0 \\
0 & 1
\end{array}\right] \quad \text { or } \quad A=\left[\begin{array}{ll}
1 & 2 \\
2 & 1 \\
1 & 2
\end{array}\right] \quad \text { or } \quad A=\left[\begin{array}{llllll}
1 & 0 & 0 & 1 & 1 & 2 \\
0 & 1 & 1 & 0 & 2 & 1 \\
1 & 0 & 0 & 1 & 1 & 2
\end{array}\right]
$$

Many different matrices can have the same column space, and it may not be at all obvious whether a subspace V is equal to the column space of a given matrix A.

Remark. If $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is the linear function $T(x)=A x$ then $\operatorname{Col} A=\operatorname{range}(T)$.
A vector $b \in \mathbb{R}^{m}$ belongs to $\operatorname{Col} A$ if and and only if $A x=b$ has a solution.
Thus $\operatorname{Col} A=\mathbb{R}^{m}$ if and only if $A x=b$ has a solution for each $b \in \mathbb{R}^{m}$ ($\Leftrightarrow A$ has a pivot in every row).

Definition. The null space of an $m \times n$ matrix A is the subspace

$$
\operatorname{Nul} A=\left\{v \in \mathbb{R}^{n}: A v=0\right\} \subseteq \mathbb{R}^{n}
$$

The set $\operatorname{Nul} A$ is exactly the set of solutions to the matrix equation $A x=0$.
Proof that Nul A is a subspace. If $u, v \in \operatorname{Nul} A$ and $c \in \mathbb{R}$ then $A(u+v)=A u+A v=0+0=0$ and $A(c v)=c(A v)=0$, so $u+v \in \operatorname{Nul} A$ and $c v \in \operatorname{Nul} A$. Thus $\operatorname{Nul} A$ is a subspace of \mathbb{R}^{n}.

Remark. If $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is the linear function $T(x)=A x$ then $\operatorname{Nul} A=\left\{x \in \mathbb{R}^{n}: T(x)=0\right\}$.

The column space is a subspace of \mathbb{R}^{m} where m is the number of rows of A.
The null space is a subspace of \mathbb{R}^{n} where n is the number of columns of A.

A subspace can be completely determined by a finite amount of data. This data will be called a basis.
Definition. Let H be a subspace of \mathbb{R}^{n}. A basis for H is a set of vectors $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\} \subseteq H$ that are linearly independent and have span equal to H.
The empty set $\varnothing=\{ \}$ is considered to be a basis for the zero subspace $\{0\}$.
Example. The set $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\} \subseteq \mathbb{R}^{n}$ where $e_{1}=\left[\begin{array}{c}1 \\ 0 \\ 0 \\ \vdots \\ 0\end{array}\right], e_{2}=\left[\begin{array}{c}0 \\ 1 \\ 0 \\ \vdots \\ 0\end{array}\right]$, and so on, is a basis for \mathbb{R}^{n}.
We call this the standard basis of \mathbb{R}^{n}.
Theorem. Every subspace H of \mathbb{R}^{n} has a basis of size at most n.
Proof. If $H=\{0\}$ then \varnothing is a basis.
Assume $H \neq\{0\}$. Let \mathcal{B} be a set of linearly independent vectors in H that is as large as possible. The size of \mathcal{B} must be at most n since any $n+1$ vectors in \mathbb{R}^{n} are linearly dependent.
Let $w_{1}, w_{2}, \ldots, w_{k}$ be the elements of \mathcal{B}. Since \mathcal{B} is as large as possible, if $v \in H$ is any vector then $w_{1}, w_{2}, \ldots, w_{k}, v$ are linearly dependent so we can write

$$
c_{1} w_{1}+c_{2} w_{2}+\cdots+c_{k} w_{k}+c v=0
$$

for some numbers $c_{1}, c_{2}, \ldots, c_{k}, c \in \mathbb{R}$ which are not all zero.
If $c=0$ then this would imply that the vectors in \mathcal{B} are linearly dependent. But the vectors in \mathcal{B} are linearly independent, so we must have $c \neq 0$. Therefore

$$
v=\frac{c_{1}}{c} w_{1}+\frac{c_{2}}{c} w_{2}+\cdots+\frac{c_{k}}{c} w_{k} .
$$

This means that v is in the span of the vectors in \mathcal{B}. Since $v \in H$ is an arbitrary vector, we conclude that the span of the vectors in \mathcal{B} is all of H, so \mathcal{B} is a basis for H.

Example. Let $A=\left[\begin{array}{rrrrr}-3 & 6 & -1 & 1 & -7 \\ 1 & -2 & 2 & 3 & -1 \\ 2 & -4 & 5 & 8 & -4\end{array}\right]$.
How can we find a basis for $\operatorname{Nul} A$? Well, finding a basis for $\operatorname{Nul} A$ is more or less the same task as finding all solutions to the homogeneous equation $A x=0$. So let's first try to solve that equation.
If we row reduce the 3×6 matrix $\left[\begin{array}{ll}A & 0\end{array}\right]$, we get

$$
\left[\begin{array}{ll}
A & 0
\end{array}\right] \sim\left[\begin{array}{rrrrrr}
1 & -2 & 0 & -1 & 3 & 0 \\
0 & 0 & 1 & 2 & -2 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]=\operatorname{RREF}\left(\left[\begin{array}{ll}
A & 0
\end{array}\right]\right)
$$

This tells us that $A x=0$ if and only if $\left\{\begin{array}{l}x_{1}-2 x_{2}-x_{4}+3 x_{5}=0 \\ x_{3}+2 x_{4}-2 x_{5}=0\end{array} \quad\right.$ or equivalently $\left\{\begin{array}{l}x_{1}=2 x_{2}+x_{4}-3 x_{5} \\ x_{3}=-2 x_{4}+2 x_{5} .\end{array}\right.$

By substituting these formulas for the basic variables x_{1} and x_{3}, we deduce that $x \in \operatorname{Nul} A$ if and only if

$$
x=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=\left[\begin{array}{r}
2 x_{2}+x_{4}-3 x_{5} \\
x_{2} \\
-2 x_{4}+2 x_{5} \\
x_{4} \\
x_{5}
\end{array}\right]=x_{2}\left[\begin{array}{l}
2 \\
1 \\
0 \\
0 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{r}
1 \\
0 \\
-2 \\
1 \\
0
\end{array}\right]+x_{5}\left[\begin{array}{r}
-3 \\
0 \\
2 \\
0 \\
1
\end{array}\right] .
$$

The vectors

$$
\left\{\left[\begin{array}{l}
2 \\
1 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{r}
1 \\
0 \\
-2 \\
1 \\
0
\end{array}\right],\left[\begin{array}{r}
-3 \\
0 \\
2 \\
0 \\
1
\end{array}\right]\right\}
$$

are a basis for $\operatorname{Nul} A$: we just computed that these vectors span the null space, and they are linearly independent since each has a nonzero entry in a row (namely, either row 2,4 , or 5) where the others have zeros. (Why does this imply linear independence?)

This example is important: the procedure just described works to construct a basis of $\operatorname{Nul} A$ for any matrix A. The size of this basis will always be equal to the number of free variables in the linear system $A x=0$. How to find a basis for $\operatorname{Nul} A$ is something you should learn and remember.

Example. Let $B=\left[\begin{array}{rrrrr}1 & 0 & -3 & 5 & 0 \\ 0 & 1 & 2 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$.
This matrix is in reduced echelon form. How to find a basis for $\operatorname{Col} B$?
The columns of B automatically span $\operatorname{Col} B$, but they might not be linearly independent.
The largest linearly independent subset of the columns of B will be a basis for $\operatorname{Col} B$, however.
In our example, the pivot columns 1,2 and 5 are linearly independent since each has a row with a 1 where the others have 0 s. These columns span columns 3 and 4 , so a basis for $\operatorname{Col} B$ is

$$
\left\{\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right]\right\}
$$

This example was special since the matrix B was already in reduced echelon form. To find a basis of the column space of an arbitrary matrix, we rely on the following observation:

Proposition. Let A be any matrix. The pivot columns of A form a basis for $\operatorname{Col} A$.
Proof. Let $v_{1}, v_{2}, \ldots, v_{n}$ be the columns of $A=\left[\begin{array}{llll}v_{1} & v_{2} & \ldots & v_{n}\end{array}\right]$.
Consider the matrices $A_{k}=\left[\begin{array}{llll}v_{1} & v_{2} & \ldots & v_{k}\end{array}\right]$ for $k=1,2, \ldots, n$.
Observe that $\operatorname{RREF}\left(A_{k}\right)$ is equal to the first k columns of $\operatorname{RREF}(A)$.
If k is not a pivot column of A, then the last column of A_{k} is not a pivot column.
This means that $A_{k-1} x=v_{k}$ is consistent so v_{k} is in the span of $v_{1}, v_{2}, \ldots, v_{k-1}$.
Thus each non-pivot column of A is a linear combination of earlier columns. This means that each non-pivot column of A is a linear combination of earlier columns that are pivot columns: if i_{1} is the first non-pivot column, then $v_{i_{1}}$ is a linear combination of earlier columns, which are all pivots; if i_{2} is the second non-pivot column, then $v_{i_{2}}$ is a linear combination of earlier columns, and these are all either
pivots or $v_{i_{1}}$, but in any linear combination involving $v_{i_{1}}$ we can replace $v_{i_{1}}$ by a linear combination of pivot columns to get a linear combination involving only pivot columns; if i_{3} is the third non-pivot column, then $v_{i_{3}}$ is a linear combination of earlier columns, and these are all either pivots or $v_{i_{1}}$ or $v_{i_{2}}$, and we can replace $v_{i_{1}}$ and $v_{i_{2}}$ by combinations of pivot columns as needed; and so on.
We conclude that $\operatorname{Col} A$ is spanned by the pivot columns of A. Why are they linearly independent? If k is a pivot column of A, then the last column of A_{k} is a pivot column.
This means that $A_{k-1} x=v_{k}$ is inconsistent so v_{k} is not in the span of $v_{1}, v_{2}, \ldots, v_{k-1}$ •
Therefore v_{k} is also not in the span of the (smaller) set of earlier columns that are pivot columns.
Thus if $j_{1}<j_{2}<\cdots<j_{q}$ are the pivot columns of A then we have a strictly increasing chain of subspaces

$$
\mathbb{R}-\operatorname{span}\left\{v_{j_{1}}\right\} \subsetneq \mathbb{R}-\operatorname{span}\left\{v_{j_{1}}, v_{j_{2}}\right\} \subsetneq \mathbb{R}-\operatorname{span}\left\{v_{j_{1}}, v_{j_{2}}, v_{j_{3}}\right\} \subsetneq \cdots \subsetneq \mathbb{R}-\operatorname{span}\left\{v_{j_{1}}, v_{j_{2}}, \ldots, v_{j_{q}}\right\}
$$

The fact that this chain is strictly increasing means $v_{j_{1}}, v_{j_{2}}, \ldots, v_{j_{q}}$ are also linearly independent.

Example. The matrix

$$
A=\left[\begin{array}{rrrrr}
1 & 3 & 3 & 2 & -9 \\
-2 & -2 & 2 & -8 & 2 \\
2 & 3 & 0 & 7 & 1 \\
3 & 4 & -1 & 11 & -8
\end{array}\right]
$$

is row equivalent to the matrix B in the previous example. Columns 1,2 , and 5 of A have pivots, so

$$
\left\{\left[\begin{array}{r}
1 \\
-2 \\
2 \\
3
\end{array}\right],\left[\begin{array}{r}
3 \\
-2 \\
3 \\
4
\end{array}\right],\left[\begin{array}{r}
-9 \\
2 \\
1 \\
-8
\end{array}\right]\right\}
$$

is a basis for $\operatorname{Col} A$.

Next time: we will show that if H is a subspace of \mathbb{R}^{n} then all of its bases have the same size. The common size of each basis is the dimension of H.

4 Vocabulary

Keywords from today's lecture:

1. Subspace of \mathbb{R}^{n}

A subset $H \subseteq \mathbb{R}^{n}$ such that $0 \in H$; if $u, v \in H$ then $u+v \in H$; and if $v \in H, c \in \mathbb{R}$ then $c v \in H$.
Example: Pick any vectors $v_{1}, v_{2}, \ldots, v_{p} \in \mathbb{R}^{n}$. Then \mathbb{R}-span $\left\{v_{1}, v_{2}, \ldots, v_{p}\right\}$ is a subspace.
2. Column space of an $m \times n$ matrix A.

The subspace $\operatorname{Col} A=\left\{A v: v \in \mathbb{R}^{n}\right\} \subseteq \mathbb{R}^{m}$. The span of the columns of A.
Example: If $A=\left[\begin{array}{cc}1 & 0 \\ 0 & 1 \\ 0 & 0\end{array}\right]$ then $\operatorname{Col} A=\left\{\left[\begin{array}{l}x \\ y \\ 0\end{array}\right] \in \mathbb{R}^{3}: x, y \in \mathbb{R}\right\}$.
3. Null space of an $m \times n$ matrix A.

The subspace $\operatorname{Nul} A=\left\{v \in \mathbb{R}^{n}: A v=0\right\} \subseteq \mathbb{R}^{n}$.
Example: If $A=\left[\begin{array}{rrr}1 & -2 & 0 \\ -1 & 2 & 0\end{array}\right]$ then $\operatorname{Nul} A=\left\{\left[\begin{array}{c}2 x \\ x \\ y\end{array}\right] \in \mathbb{R}^{3}: x, y \in \mathbb{R}\right\}=\mathbb{R}$-span $\left\{\left[\begin{array}{l}2 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]\right\}$.
4. Basis of a subspace $H \subseteq \mathbb{R}^{n}$

A set of linearly independent vectors in H whose span is H.
Example: The vectors $\left[\begin{array}{r}1 \\ -1 \\ 0\end{array}\right],\left[\begin{array}{r}0 \\ 1 \\ -1\end{array}\right]$ are a basis for the subspace $\left\{\left[\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right] \in \mathbb{R}^{3}: v_{1}+v_{2}+v_{3}=0\right\}$.
The standard basis of \mathbb{R}^{n} consists of the vectors $e_{1}=\left[\begin{array}{c}1 \\ 0 \\ 0 \\ \vdots \\ 0\end{array}\right], e_{2}=\left[\begin{array}{c}0 \\ 1 \\ 0 \\ \vdots \\ 0\end{array}\right], \ldots, e_{n}=\left[\begin{array}{c}0 \\ 0 \\ \vdots \\ 0 \\ 1\end{array}\right]$.

