This document is a transcript of the lecture, with extra summary and vocabulary sections for your convenience. Due to time constraints, the notes may sometimes only contain limited illustrations, proofs, and examples; for a more thorough discussion of the course content, consult the textbook.

Summary

Quick summary of today's notes. Lecture starts on next page.

- Let n be a positive integer and let A and B be $n \times n$ matrices.
- It always holds that $\operatorname{det} A=\operatorname{det} A^{\top}$.
- If A is invertible then $\operatorname{det} A \neq 0$. If A is not invertible then $\operatorname{det} A=0$.
- It always holds that $\operatorname{det} A B=(\operatorname{det} A)(\operatorname{det} B)$.
- A matrix is triangular if it looks like

$$
\left[\begin{array}{llll}
* & * & * & * \\
0 & * & * & * \\
0 & 0 & * & * \\
0 & 0 & 0 & *
\end{array}\right] \quad \text { or } \quad\left[\begin{array}{llll}
* & 0 & 0 & 0 \\
* & * & 0 & 0 \\
* & * & * & 0 \\
* & * & * & *
\end{array}\right]
$$

where the $*$'s are arbitrary entries.
Let $a_{i j} \in \mathbb{R}$ denote the entry of A in the i th row and j th column.
If A is triangular then $\operatorname{det} A=a_{11} a_{22} a_{33} \cdots a_{n n}=$ the product of the diagonal entries of A.
The matrix A is diagonal if $a_{i j}=0$ whenever $i \neq j$. Diagonal matrices are triangular.

- Here is an algorithm to compute $\operatorname{det} A$:
- Perform a series of row operations to transform A to a matrix E in echelon form.
- Keep track of a scalar denom $\in \mathbb{R}$ as you do this. Start with denom $=1$.
- Whenever you swap two rows of A, multiply denom by -1 .
- Whenever you multiply a row of A by a nonzero number, multiply denom by that number.
- Then $\operatorname{det} A=\frac{\operatorname{det} E}{\operatorname{denom}}=\frac{\text { product of diagonal entries of } E}{\text { denom }}$.
- Here is another way to compute $\operatorname{det} A$.

Again write $a_{i j}$ for the entry of A in row i and column j.
Also let $A^{(i, j)}$ be the matrix formed from A by deleting row i and column j.
Then $\operatorname{det} A=a_{11} \operatorname{det} A^{(1,1)}-a_{12} \operatorname{det} A^{(1,2)}+a_{13} \operatorname{det} A^{(1,3)}-\cdots-(-1)^{n} a_{1 n} \operatorname{det} A^{(1, n)}$.
This formula is complicated and inefficient for generic matrices.
It is useful when many entries of A are equal to zero, since then the formula has few terms.
Also, when $n \leq 3$ and you expand all the terms in this formula, you get the identities

$$
\operatorname{det}\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=a d-b c \quad \text { and } \quad \operatorname{det}\left[\begin{array}{ccc}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right]=a(e i-f h)-b(d i-f g)+c(d h-e g)
$$

1 Last time: introduction to determinants

Let n be a positive integer.
A permutation matrix is a square matrix formed by rearranging the columns of the identity matrix.
Equivalently, a permutation matrix is a square matrix whose entries are all 0 or 1 , and that has exactly one nonzero entry in each row and in each column.

Let S_{n} be the set of $n \times n$ permutation matrices.
If A is an $n \times n$ matrix and $X \in S_{n}$, then $A X$ has the same columns as A but in a different order.
The columns of A are "permuted" by X to form $A X$.
Example. The six elements of S_{3} are

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right] \quad\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right] \quad\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right]\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right] \quad\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right]
$$

Given $X \in S_{n}$ and an arbitrary $n \times n$ matrix A :

- Define $\operatorname{prod}(X, A)$ to be the product of the entries of A in the nonzero positions of X.
- Define $\operatorname{inv}(X)$ to be the number of 2×2 submatrices of X equal to $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$.

To form a 2×2 submatrix of X, choose any two rows and any two columns, not necessarily adjacent, and then take the 4 entries determined by those rows and columns.

Each 2×2 submatrix of a permutation matrix is either

$$
\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] \text { or }\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] \text { or }\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right] \text { or }\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right] \text { or }\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right] \text { or }\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \text { or }\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] .
$$

Example. prod $\left(\left[\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right],\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right]\right)=c d h$
Example. inv $\left(\left[\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right]\right)=2$ and $\operatorname{inv}\left(\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]\right)=0$ and $\operatorname{inv}\left(\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right]\right)=3$.
Definition. The determinant of an $n \times n$ matrix A is the number given by the formula

$$
\operatorname{det} A=\sum_{X \in S_{n}} \operatorname{prod}(X, A)(-1)^{\operatorname{inv}(X)}
$$

This general formula simplifies to the following expressions for $n=1,2,3$:

$$
\begin{aligned}
& \operatorname{det}\left[\begin{array}{l}
a
\end{array}\right]=a \\
& \operatorname{det}\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=a d-b c \\
& \operatorname{det}\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right]=a(e i-f h)-b(d i-f g)+c(d h-e f)
\end{aligned}
$$

For $n \geq 4$, our formula for $\operatorname{det} A$ is a sum with at least 24 terms, which is not easy to compute by hand (or with a computer, for slightly larger n). We will describe a better way to compute determinants today.

The most important properties of the determinant are described by the following theorem:
Theorem. The determinant is the unique function det : $\{n \times n$ matrices $\} \rightarrow \mathbb{R}$ with these 3 properties:
(1) $\operatorname{det} I_{n}=1$.
(2) If B is formed by switching two columns in an $n \times n$ matrix A, then $\operatorname{det} A=-\operatorname{det} B$.
(3) Suppose A, B, and C are $n \times n$ matrices with columns

$$
A=\left[\begin{array}{llll}
a_{1} & a_{2} & \ldots & a_{n}
\end{array}\right] \quad \text { and } B=\left[\begin{array}{llll}
b_{1} & b_{2} & \ldots & b_{n}
\end{array}\right] \quad \text { and } C=\left[\begin{array}{llll}
c_{1} & c_{2} & \ldots & c_{n}
\end{array}\right] .
$$

Assume that $a_{i}=p b_{i}+q c_{i}$ for numbers $p, q \in \mathbb{R}$.
Assume also that $a_{j}=b_{j}=c_{j}$ for all other indices $i \neq j \in\{1,2, \ldots, n\}$.
Then $\operatorname{det} A=p \operatorname{det} B+q \operatorname{det} C$.
Remark. Our formulation of this theorem last time required $i=1$ in property (3). However, we showed that this property combined with (2) implies the more general version of (3) described here.

Corollary. If A is a square matrix that is not invertible then $\operatorname{det} A=0$.
Corollary. If A is a permutation matrix then $\operatorname{det} A=(-1)^{\operatorname{inv}(A)}$.
Proof. $\operatorname{prod}(X, Y)=0$ if X and Y are different $n \times n$ permutation matrices, but $\operatorname{prod}(X, X)=1$.

2 More properties of the determinant

Recall that A^{\top} denotes the transpose of a matrix A (the matrix whose rows are the columns of A).
Lemma. If $X \in S_{n}$ then $X^{\top} \in S_{n}$ and $\operatorname{inv}(X)=\operatorname{inv}\left(X^{\top}\right)$.
Proof. Transposing a permutation matrix does not affect the $\#$ of 2×2 submatrices equal to $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$.
Corollary. If A is any square matrix then $\operatorname{det} A=\operatorname{det}\left(A^{\top}\right)$.
Proof. If $X \in S_{n}$ then $\operatorname{prod}(X, A)=\operatorname{prod}\left(X^{\top}, A^{\top}\right)$, so our formula for the determinant gives

$$
\operatorname{det} A=\sum_{X \in S_{n}} \operatorname{prod}(X, A)(-1)^{\operatorname{inv}(X)}=\sum_{X \in S_{n}} \operatorname{prod}\left(X^{\top}, A^{\top}\right)(-1)^{\operatorname{inv}\left(X^{\top}\right)}
$$

As X ranges over all elements of S_{n}, the transpose X^{\top} also ranges over all elements of S_{n}.
The second sum is therefore equal to $\sum_{X \in S_{n}} \operatorname{prod}\left(X, A^{\top}\right)(-1)^{\operatorname{inv}(X)}=\operatorname{det}\left(A^{\top}\right)$.

Corollary. If A is a square matrix with two equal rows then $\operatorname{det} A=0$.
Proof. In this case A^{\top} has two equal columns, so $0=\operatorname{det} A^{\top}=\operatorname{det} A$.

The following lemma is a weaker form of a statement we will prove later in the lecture.
Lemma. Let A and B be $n \times n$ matrices with $\operatorname{det} A \neq 0$. Then $\operatorname{det}(A B)=(\operatorname{det} A)(\operatorname{det} B)$.
Proof. Define $f:\{n \times n$ matrices $\} \rightarrow \mathbb{R}$ to be the function $f(M)=\frac{\operatorname{det}(A M)}{\operatorname{det} A}$.
Then f has the defining properties of the determinant, so must be equal to det since det is the unique function with these properties. In more detail:

- We have $f\left(I_{n}\right)=\frac{\operatorname{det}\left(A I_{n}\right)}{\operatorname{det} A}=\frac{\operatorname{det} A}{\operatorname{det} A}=1$.
- If M^{\prime} is given by swapping two columns in M, then $A M^{\prime}$ is given by swapping the two corresponding columns in $A M$, so $f\left(M^{\prime}\right)=\frac{\operatorname{det}\left(A M^{\prime}\right)}{\operatorname{det} A}=\frac{-\operatorname{det}(A M)}{\operatorname{det} A}=-f(M)$.
- If column i of M is p times column i of M^{\prime} plus q times column i of $M^{\prime \prime}$ and all other columns of M, M^{\prime}, and $M^{\prime \prime}$ are equal, then the same is true of $A M, A M^{\prime}$, and $A M^{\prime \prime}$ so

$$
f(M)=\frac{\operatorname{det}(A M)}{\operatorname{det} A}=\frac{p \operatorname{det}\left(A M^{\prime}\right)+q \operatorname{det}\left(A M^{\prime \prime}\right)}{\operatorname{det} A}=p f\left(M^{\prime}\right)+q f\left(M^{\prime \prime}\right) .
$$

These properties uniquely characterize det, so f and det must be the same function.
Therefore $f(B)=\frac{\operatorname{det}(A B)}{\operatorname{det} A}=\operatorname{det} B$ for any $n \times n$ matrix B, so $\operatorname{det}(A B)=(\operatorname{det} A)(\operatorname{det} B)$.

3 Determinants of triangular and invertible matrices

An $n \times n$ matrix A is upper-triangular if all of its nonzero entries occur in positions on or above the diagonal positions $(1,1),(2,2),(3,3), \ldots,(n, n)$. Such a matrix looks like

$$
\left[\begin{array}{llll}
* & * & * & * \\
0 & * & * & * \\
0 & 0 & * & * \\
0 & 0 & 0 & *
\end{array}\right]
$$

where the $*$ entries can be any numbers. The zero matrix is considered to be upper-triangular.
An $n \times n$ matrix A is lower-triangular if all of its nonzero entries occur in positions on or below the diagonal positions. Such a matrix looks like

$$
\left[\begin{array}{llll}
* & 0 & 0 & 0 \\
* & * & 0 & 0 \\
* & * & * & 0 \\
* & * & * & *
\end{array}\right]
$$

where the $*$ entries can again be any numbers. The zero matrix is also considered to be lower-triangular. The transpose of an upper-triangular matrix is lower-triangular, and vice versa.

We say that a matrix is triangular if it is either upper- or lower-triangular.
A matrix is diagonal if it is both upper- and lower-triangular.
This happens precisely when all nonzero entries are on the diagonal: $\left[\begin{array}{cccc}* & 0 & 0 & 0 \\ 0 & * & 0 & 0 \\ 0 & 0 & * & 0 \\ 0 & 0 & 0 & *\end{array}\right]$
The diagonal entries of A are the numbers that occur in positions $(1,1),(2,2),(3,3), \ldots,(n, n)$.

Proposition. If A is a triangular matrix then $\operatorname{det} A$ is the product of the diagonal entries of A.
For example, we have $\operatorname{det}\left[\begin{array}{ccc}a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c\end{array}\right]=a b c$.
Proof. Assume A is upper-triangular. If $X \in S_{n}$ and $X \neq I_{n}$ then at least one nonzero entry of X is in a position below the diagonal, in which case $\operatorname{prod}(X, A)$ is a product of numbers which includes 0 (since all positions below the diagonal in A contain zeros) and is therefore 0 .
Hence $\operatorname{det} A=\sum_{X \in S_{n}} \operatorname{prod}(X, A)(-1)^{\operatorname{inv}(X)}=\operatorname{prod}\left(I_{n}, A\right)=$ the product of the diagonal entries of A. If A is lower-triangular then the same result follows since $\operatorname{det} A=\operatorname{det}\left(A^{\top}\right)$.

Lemma. If A is an $n \times n$ matrix then $\operatorname{det} A$ is a nonzero multiple of $\operatorname{det}(\operatorname{RREF}(A))$.
Proof. Suppose B is obtained from A by an elementary row operation. To prove the lemma, it is enough to show that $\operatorname{det} B$ is a nonzero multiple of $\operatorname{det} A$. There are three possibilities for B :

1. If B is formed by swapping two rows of A then $B=X A$ for a permutation matrix $X \in S_{n}$.

Therefore $\operatorname{det} B=\operatorname{det}(X A)=(\operatorname{det} X)(\operatorname{det} A)= \pm \operatorname{det} A$.
2. Suppose B is formed by rescaling a row of A by a nonzero scalar $\lambda \in \mathbb{R}$.

Then $B=D A$ where D is a diagonal matrix of the form

$$
D=\left[\begin{array}{lllllll}
1 & & & & & & \\
& \ddots & & & & & \\
& & 1 & & & & \\
& & & \lambda & & & \\
& & & & 1 & & \\
& & & & & \ddots & \\
& & & & & & 1
\end{array}\right]
$$

and in this case $\operatorname{det} D=\lambda \neq 0$, so $\operatorname{det} B=\operatorname{det}(D A)=(\operatorname{det} D)(\operatorname{det} A)=\lambda \operatorname{det} A$.
3. Suppose B is formed by adding a multiple of row i of A to row j.

Then $B=T A$ for a triangular matrix T whose diagonal entries are all 1 and whose only other nonzero entry appears in column i and row j.
For example, if $n=4$ and B is formed by adding 5 times row 2 of A to row 3 then

$$
B=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 5 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] A
$$

We therefore have $\operatorname{det} B=\operatorname{det}(T A)=(\operatorname{det} T)(\operatorname{det} A)=\operatorname{det} A$.
This shows that performing any elementary row operation to A multiplies $\operatorname{det} A$ by a nonzero number. It follows that $\operatorname{det}(\operatorname{RREF}(A))$ is a sequence of nonzero numbers times $\operatorname{det} A$.

This brings us to an important property of the determinant that is worth remembering.
Theorem. An $n \times n$ matrix A is an invertible if and only if $\operatorname{det} A \neq 0$.

Proof. We have already seen that if A is not invertible then $\operatorname{det} A=0$.
Assume A is invertible. Then $\operatorname{RREF}(A)=I_{n}$, so $\operatorname{det}(\operatorname{RREF}(A))=\operatorname{det} I_{n}=1$.
Hence $\operatorname{det} A \neq 0$ since $\operatorname{det} A$ is a nonzero multiple of $\operatorname{det}(\operatorname{RREF}(A))$.
Our next goal is to show that the determinant is a multiplicative function.
Lemma. Let A and B be $n \times n$ matrices. If A or B is not invertible then $A B$ is not invertible.

Proof. Let X and Y be $n \times n$ matrices.
We have seen that X and Y are inverses of each other if $X Y=I_{n}$, in which case also $Y X=I_{n}$.
Suppose $A B$ is invertible with inverse X. Then $(A B) X=X(A B)=I_{n}$.
Then A is invertible with $A^{-1}=B X$ since $A(B X)=(A B) X=I_{n}$.
Likewise, B is invertible with $B^{-1}=X A$ since $(X A) B=X(A B)=I_{n}$.
Thus, if A or B is not invertible then $A B$ cannot be invertible.

Theorem. If A and B are any $n \times n$ matrices then $\operatorname{det}(A B)=(\operatorname{det} A)(\operatorname{det} B)$.
Proof. We already proved this in the case when $\operatorname{det} A \neq 0$.
If $\operatorname{det} A=0$, then A is not invertible, so $A B$ is not invertible either, so $\operatorname{det}(A B)=0=(\operatorname{det} A)(\operatorname{det} B)$.
It is difficult to derive this theorem directly from the formula $\operatorname{det} A=\sum_{X \in S_{n}} \operatorname{prod}(X, A)(-1)^{\operatorname{inv}(X)}$.
Example. We have $\operatorname{det}\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]=4-6=-2$ and $\operatorname{det}\left[\begin{array}{ll}2 & 3 \\ 4 & 5\end{array}\right]=10-12=-2$.
On the other hand, $\operatorname{det}\left(\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]\left[\begin{array}{ll}2 & 3 \\ 4 & 5\end{array}\right]\right)=\operatorname{det}\left[\begin{array}{cc}10 & 13 \\ 22 & 29\end{array}\right]=290-286=4$.

4 Computing determinants

Our proof that $\operatorname{det} A$ is a nonzero multiple of $\operatorname{det}(\operatorname{RREF}(A))$ can be turned into an effective algorithm.
$\underline{\text { Algorithm to compute } \operatorname{det} A \text { (useful when } A \text { is larger than } 3 \times 3 \text {). }}$
Input: an $n \times n$ matrix A.

1. Start by setting a scalar denom $=1$.
2. Row reduce A to an echelon form E. It is not necessary to bring A all the way to reduced echelon form. We just need to row reduce A until we get an upper triangular matrix.
Each time you perform a row operation in this process, modify denom as follows:
(a) When you switch two rows, multiply denom by -1 .
(b) When you multiply a row by a nonzero scalar λ, multiply denom by λ.
(c) When you add a multiple of a row to another row, don't do anything to denom.

The determinant $\operatorname{det} E$ is the product of the diagonal entries of E.
The determinant of A is given by $\operatorname{det} A=\frac{\operatorname{det} E}{\operatorname{denom}}$.

Example. We reduce the following matrix to echelon form:

$$
\begin{array}{rlrl}
A & =\left[\begin{array}{rrr}
1 & 3 & 5 \\
0 & -3 & -9 \\
2 & 4 & 6
\end{array}\right] & \text { denom }=1 \\
& \sim\left[\begin{array}{rrr}
1 & 3 & 5 \\
0 & -3 & -9 \\
0 & -2 & -4
\end{array}\right] & \text { (we added a multiple of row 1 to row 3) } & \text { denom }=1 \\
& \sim\left[\begin{array}{rrr}
1 & 3 & 5 \\
0 & 1 & 3 \\
0 & -2 & -4
\end{array}\right] & \text { (we multiplied row 2 by }-1 / 3 \text {) } & \text { denom }=-1 / 3 \\
& \sim\left[\begin{array}{rrr}
1 & 3 & 5 \\
0 & 1 & 3 \\
0 & 0 & 2
\end{array}\right]=E & \text { (we added a multiple of row 2 to row 3) } & \text { denom }=-1 / 3
\end{array}
$$

Therefore $\operatorname{det} A=\frac{\operatorname{det} E}{\operatorname{denom}}=\frac{1 \cdot 1 \cdot 2}{-1 / 3}=-6$.

Another algorithm to compute $\operatorname{det} A$ (useful when A has many entries equal to zero).
Define $A^{(i, j)}$ to be the submatrix formed by removing row i and column j from A.
For example, if $A=\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right]$ then $A^{(1,2)}=\left[\begin{array}{ll}d & f \\ g & i\end{array}\right]$.
Theorem. If A is the $n \times n$ matrix with entry $a_{i j}$ row i and column j, then
(1)

$$
\operatorname{det} A=a_{11} \operatorname{det} A^{(1,1)}-a_{12} \operatorname{det} A^{(1,2)}+a_{13} \operatorname{det} A^{(1,3)}-\cdots-(-1)^{n} a_{1 n} \operatorname{det} A^{(1, n)} .
$$

(2) $\operatorname{det} A=a_{11} \operatorname{det} A^{(1,1)}-a_{21} \operatorname{det} A^{(2,1)}+a_{31} \operatorname{det} A^{(3,1)}-\cdots-(-1)^{n} a_{n 1} \operatorname{det} A^{(n, 1)}$.

Note that each $A^{(1, j)}$ or $A^{(j, 1)}$ is a square matrix smaller than A.
Thus $\operatorname{det} A^{(1, j)}$ or $\operatorname{det} A^{(j, 1)}$ can be computed by the same formula on a smaller scale.
Proof. The second formula follows from the first formula since $\operatorname{det} A=\operatorname{det}\left(A^{\top}\right)$. (Why?)
The first formula is a consequence of the formula for $\operatorname{det} A$ we derived last lecture. One needs to show

$$
-(-1)^{j} a_{1 j} \operatorname{det} A^{(1, j)}=\sum_{X \in S_{n}^{(j)}} \operatorname{prod}(X, A)(-1)^{\operatorname{inv}(X)}
$$

where $S_{n}^{(j)}$ is the set of $n \times n$ permutation matrices which have a 1 in column j of the first row. Summing the left expression over $j=1,2, \ldots, n$ gives the desired formula.
Summing the right expression over $j=1,2, \ldots, n$ gives $\sum_{X \in S_{n}} \operatorname{prod}(X, A)(-1)^{\operatorname{inv}(X)}=\operatorname{det} A$.

Example. This result can be used to derive our formula for the determinant of a 3-by-3 matrix:
$\operatorname{det}\left[\begin{array}{ccc}a & b & c \\ d & e & f \\ g & h & i\end{array}\right]=a \operatorname{det}\left[\begin{array}{cc}e & f \\ h & i\end{array}\right]-b \operatorname{det}\left[\begin{array}{cc}d & f \\ g & i\end{array}\right]+c \operatorname{det}\left[\begin{array}{cc}d & e \\ g & h\end{array}\right]=a(e i-f h)-b(d i-f g)+c(d h-e g)$.

5 Vocabulary

Keywords from today's lecture:

1. Upper-triangular matrix.

A square matrix of the form $\left[\begin{array}{cccc}* & * & * & * \\ 0 & * & * & * \\ 0 & 0 & * & * \\ 0 & 0 & 0 & *\end{array}\right]$ with zeros in all positions below the main diagonal.

2. Lower-triangular matrix.

A square matrix of the form $\left[\begin{array}{cccc}* & 0 & 0 & 0 \\ * & * & 0 & 0 \\ * & * & * & 0 \\ * & * & * & *\end{array}\right]$ with zeros in all positions above the main diagonal.
The transpose of an upper-triangular matrix.

3. Triangular matrix.

A matrix that is either upper-triangular or lower-triangular.

4. Diagonal matrix.

A square matrix of the form $\left[\begin{array}{cccc}* & 0 & 0 & 0 \\ 0 & * & 0 & 0 \\ 0 & 0 & * & 0 \\ 0 & 0 & 0 & *\end{array}\right]$ with zeros in all non-diagonal positions.
A matrix that is both upper-triangular and lower-triangular.

