This document is a transcript of the lecture, with extra summary and vocabulary sections for your convenience. Due to time constraints, the notes may sometimes only contain limited illustrations, proofs, and examples; for a more thorough discussion of the course content, consult the textbook.

Summary

Quick summary of today's notes. Lecture starts on next page.

- Let A be an $n \times n$ matrix. Let $I=I_{n}$ be the $n \times n$ identity matrix.

Let λ be a number and suppose $0 \neq v \in \mathbb{R}^{n}$.
If $A v=\lambda v$ then we say that v is an eigenvector for A and that λ is an eigenvalue for A.
More specifically, v is an eigenvector with eigenvalue λ for A.

- The eigenvalues of A are the solutions to the characteristic equation $\operatorname{det}(A-x I)=0$.

If λ is an eigenvalue then $\operatorname{Nul}(A-\lambda I)$ is the λ-eigenspace of A.
To find a basis for the λ-eigenspace, use our familiar algorithm for finding bases of null spaces.

- Suppose $v_{1}, v_{2}, \ldots, v_{r}$ are eigenvectors for A.

Let λ_{i} be the eigenvalue such that $A v_{i}=\lambda_{i} v_{i}$.
If $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{r}$ are all distinct, then $v_{1}, v_{2}, \ldots, v_{r}$ are linearly independent.

- If A and B are $n \times n$ matrices and there exists an invertible $n \times n$ matrix P with

$$
A=P B P^{-1}
$$

then we say that A is similar to B and that B is similar to A.
Any matrix is similar to itself, and if A is similar to B and B is similar to C then A is similar to C.

- Similar matrices have the same characteristic equations and same eigenvalues.
- A is diagonalizable if A is similar to a diagonal matrix D.

One useful property of diagonalizable matrices: if $A=P D P^{-1}$ where D is diagonal, then there are simple formulas for each entry in the matrix $A^{n}=P D^{n} P^{-1}$ for all positive integers n.

1 Eigenvector and eigenvalues

Everywhere is this lecture, n is a positive integer and A is an $n \times n$ matrix.
Let I denote the $n \times n$ identity matrix. Let λ be a number.

Definition. A vector $v \in \mathbb{R}^{n}$ is an eigenvector for A with eigenvalue λ if $v \neq 0$ and $A v=\lambda v$.
The set of all $v \in \mathbb{R}^{n}$ with $A v=\lambda v$ is the λ-eigenspace of A for λ. This is just the nullspace of $A-\lambda I$.
Proposition. Let λ be a number. The following are equivalent:

1. There exists an eigenvector $v \in \mathbb{R}^{n}$ for A with eigenvalue λ.
(Remember that eigenvectors must be nonzero.)
2. The matrix $A-\lambda I$ is not invertible.
3. $\operatorname{det}(A-\lambda I)=0$.
4. The λ-eigenspace for A contains a nonzero vector.

As usual, a matrix is triangular if it is upper-triangular or lower-triangular.
The characteristic polynomial of a square matrix A is $\operatorname{det}(A-x I)$.
Theorem. The eigenvalues of a triangular square matrix A are its diagonal entries. If these numbers are $d_{1}, d_{2}, \ldots, d_{n}$ then the characteristic polynomial of A is $\left(d_{1}-x\right)\left(d_{2}-x\right) \cdots\left(d_{n}-x\right)$.

The following is true for all square matrices, not just triangular ones.
Theorem. Suppose $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{r}$ are distinct eigenvalues for A, meaning $\lambda_{i} \neq \lambda_{j}$ for $i \neq j$.
Let $v_{1}, v_{2}, \ldots, v_{r} \in \mathbb{R}^{n}$ be the corresponding eigenvectors, so that $A v_{i}=\lambda_{i} v_{i}$ for $i=1,2, \ldots, r$.
Then the vectors $v_{1}, v_{2}, \ldots v_{r}$ are linearly independent.
Proof. Suppose $v_{1}, v_{2}, \ldots, v_{r}$ are linearly dependent. We argue that this leads to a logical contradiction.
There must exist an index $p>0$ such that $v_{1}, v_{2}, \ldots, v_{p}$ are linearly independent and v_{p+1} is a linear combination of $v_{1}, v_{2}, \ldots, v_{p}$. (Otherwise, the vectors $v_{1}, v_{2}, \ldots, v_{r}$ would be linearly independent.)

Let $c_{1}, c_{2}, \ldots, c_{p} \in \mathbb{R}$ be scalars such that $v_{p+1}=c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{p} v_{p}$. Then

$$
\lambda_{p+1} v_{p+1}=A v_{p+1}=A\left(c_{1} v_{1}+\cdots+c_{p} v_{p}\right)=c_{1} A v_{1}+\cdots+c_{p} A v_{p}=c_{1} \lambda_{1} v_{1}+c_{2} \lambda_{2} v_{2}+\cdots+c_{p} \lambda_{p} v_{p}
$$

On the other hand, multiplying both sides of $v_{p+1}=c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{p} v_{p}$ by λ_{p+1} gives

$$
\lambda_{p+1} v_{p+1}=c_{1} \lambda_{p+1} v_{1}+c_{2} \lambda_{p+1} v_{2}+\cdots+c_{p} \lambda_{p+1} v_{p}
$$

By subtracting the two equations, we get

$$
0=\lambda_{p+1} v_{p+1}-\lambda_{p+1} v_{p+1}=c_{1}\left(\lambda_{1}-\lambda_{p+1}\right) v_{1}+c_{2}\left(\lambda_{2}-\lambda_{p+1}\right) v_{2}+\cdots+c_{p}\left(\lambda_{p}-\lambda_{p+1}\right) v_{p}
$$

Since the vectors $v_{1}, v_{2}, \ldots, v_{p}$ are linearly independent by assumption, we must have

$$
c_{1}\left(\lambda_{1}-\lambda_{p+1}\right)=c_{2}\left(\lambda_{2}-\lambda_{p+1}\right)=\cdots=c_{p}\left(\lambda_{p}-\lambda_{p+1}\right)=0 .
$$

But the differences $\lambda_{i}-\lambda_{p+1}$ for $i=1,2, \ldots, p$ are all nonzero, so we must have $c_{1}=c_{2}=\cdots=c_{p}=0$. This implies that $v_{p+1}=0$, contradicting our assumption that v_{p+1} is a (necessarily nonzero) eigenvector.

We conclude from this contradiction that actually the vectors $v_{1}, v_{2}, \ldots, v_{r}$ are linearly independent.

Let x be a variable. The eigenvalues of A are precisely the solutions to the equation $\operatorname{det}(A-x I)=0$ which we call the characteristic equation for A.

Example. The matrix

$$
A=\left[\begin{array}{rrrr}
5 & -2 & 6 & -1 \\
0 & 3 & -8 & 0 \\
0 & 0 & 5 & 4 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

has characteristic polynomial $\operatorname{det}(A-x I)=(5-x)(3-x)(5-x)(1-x)=(5-x)^{2}(3-x)(1-x)$.
Since $(5-x)^{2}$ divides $\operatorname{det}(A-x I)$ but $(5-x)^{3}$ does not divide $\operatorname{det}(A-x I)$, we say that 5 is an eigenvalue of A with algebraic multiplicity 2. The other eigenvalues 1 and 3 have algebraic multiplicity 1.

In general the algebraic multiplicity of an eigenvalue λ for a square matrix A is the unique integer $m \geq 1$ such that $(\lambda-x)^{m}$ divides $\operatorname{det}(A-x I)$ but $(\lambda-x)^{m+1}$ does not divide $\operatorname{det}(A-x I)$.

We consider the following example in more depth.
Example. Consider the matrix

$$
A=\left[\begin{array}{lll}
1 & 5 & 4 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{array}\right]
$$

Since A is triangular, its characteristic polynomial is $(1-x)(2-x)(3-x)$ and its eigenvalues are $1,2,3$. Each eigenvalue in this example has algebraic multiplicity 1 . We compute the corresponding eigenspaces:

1-eigenspace. The eigenvectors of A with eigenvalue 1 are the nonzero elements of $\operatorname{Nul}(A-I)$.

$$
A-I=\left[\begin{array}{lll}
0 & 5 & 4 \\
& 1 & 0 \\
& & 2
\end{array}\right] \sim\left[\begin{array}{lll}
0 & 1 & 0 \\
& 5 & 4 \\
& & 2
\end{array}\right] \sim\left[\begin{array}{lll}
0 & 1 & 0 \\
& 0 & 4 \\
& & 2
\end{array}\right] \sim\left[\begin{array}{lll}
0 & 1 & 0 \\
& 0 & 1 \\
& & 0
\end{array}\right]=\operatorname{RREF}(A-I)
$$

This shows that $x \in \operatorname{Nul}(A-I)$ if and only if $x=\left[\begin{array}{c}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{c}x_{1} \\ 0 \\ 0\end{array}\right]=x_{1}\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$, so $\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$ is a basis for $\operatorname{Nul}(A-I)$. Therefore all eigenvectors of A with eigenvalue 1 are nonzero scalar multiples of $\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$.

2-eigenspace. The eigenvectors of A with eigenvalue 2 are the nonzero elements of $\operatorname{Nul}(A-2 I)$.

$$
A-2 I=\left[\begin{array}{lll}
-1 & 5 & 4 \\
& 0 & 0 \\
& & 1
\end{array}\right] \sim\left[\begin{array}{rrr}
1 & -5 & 0 \\
& 0 & 1 \\
& & 0
\end{array}\right]=\operatorname{RREF}(A-2 I)
$$

This shows that $x \in \operatorname{Nul}(A-2 I)$ if and only if $x=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{r}5 x_{2} \\ x_{2} \\ 0\end{array}\right]=x_{2}\left[\begin{array}{l}5 \\ 1 \\ 0\end{array}\right]$, so $\left[\begin{array}{l}5 \\ 1 \\ 0\end{array}\right]$ is a basis for $\operatorname{Nul}(A-2 I)$. All eigenvectors of A with eigenvalue 2 are nonzero scalar multiples of $\left[\begin{array}{l}5 \\ 1 \\ 0\end{array}\right]$.

3-eigenspace. The eigenvectors of A with eigenvalue 3 are the nonzero elements of $\operatorname{Nul}(A-3 I)$.

$$
A-3 I=\left[\begin{array}{rrr}
-2 & 5 & 4 \\
& -1 & 0 \\
0 & 0 & 0
\end{array}\right] \sim\left[\begin{array}{lll}
-2 & 0 & 4 \\
& 1 & 0 \\
& & 0
\end{array}\right] \sim\left[\begin{array}{rrr}
1 & 0 & -2 \\
& 1 & 0 \\
& & 0
\end{array}\right]=\operatorname{RREF}(A-3 I)
$$

This shows that $x \in \operatorname{Nul}(A-3 I)$ if and only if $x=\left[\begin{array}{c}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{r}2 x_{3} \\ 0 \\ x_{3}\end{array}\right]=x_{3}\left[\begin{array}{l}2 \\ 0 \\ 1\end{array}\right]$ so $\left[\begin{array}{l}2 \\ 0 \\ 1\end{array}\right]$ is a basis for $\operatorname{Nul}(A-3 I)$. All eigenvectors of A with eigenvalue 3 are nonzero scalar multiples of $\left[\begin{array}{l}2 \\ 0 \\ 1\end{array}\right]$.

Since the eigenvalues $1,2,3$, are distinct, the eigenvectors $\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}5 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}2 \\ 0 \\ 1\end{array}\right]$ are linearly independent.

Consider the invertible matrix whose columns are given by these linearly independent vectors:

$$
P=\left[\begin{array}{lll}
1 & 5 & 2 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

As usual, let $e_{1}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right], e_{2}=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$, and $e_{3}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$. The product $P e_{i}$ is the i th column of P, so

$$
P e_{1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \quad \text { and } \quad P e_{2}=\left[\begin{array}{l}
5 \\
1 \\
0
\end{array}\right] \quad \text { and } \quad P e_{3}=\left[\begin{array}{l}
2 \\
0 \\
1
\end{array}\right]
$$

Since $P x=y$ means that $P^{-1} y=P^{-1} P x=I x=x$, it follows that

$$
P^{-1}\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]=e_{1} \quad \text { and } \quad P^{-1}\left[\begin{array}{l}
5 \\
1 \\
0
\end{array}\right]=e_{2} \quad \text { and } \quad P^{-1}\left[\begin{array}{l}
2 \\
0 \\
1
\end{array}\right]=e_{3} .
$$

Combining these identities shows that

$$
\begin{aligned}
& P^{-1} A P e_{1}=P^{-1} A\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]=P^{-1}\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]=e_{1} . \\
& P^{-1} A P e_{2}=P^{-1} A\left[\begin{array}{l}
5 \\
1 \\
0
\end{array}\right]=2 P^{-1}\left[\begin{array}{l}
5 \\
1 \\
0
\end{array}\right]=2 e_{2} . \\
& P^{-1} A P e_{3}=P^{-1} A\left[\begin{array}{l}
2 \\
0 \\
1
\end{array}\right]=3 P^{-1}\left[\begin{array}{l}
2 \\
0 \\
1
\end{array}\right]=3 e_{3} .
\end{aligned}
$$

These calculations determine the columns of the matrix $P^{-1} A P$.
If fact, we see that $P^{-1} A P=D$ where $D=\left[\begin{array}{lll}e_{1} & 2 e_{2} & 3 e_{3}\end{array}\right]=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3\end{array}\right]$.

This means that $A=P\left(P^{-1} A P\right) P^{-1}=P D P^{-1}$, so

$$
\left[\begin{array}{lll}
1 & 5 & 4 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{array}\right]=\left[\begin{array}{lll}
1 & 5 & 2 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{array}\right]\left[\begin{array}{lll}
1 & 5 & 2 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]^{-1}
$$

One application of this decomposition: we can derive a simple formula for an arbitrary power A^{n} of A.
Define $A^{0}=I, A^{1}=A, A^{2}=A A, A^{3}=A A A$, and so on.
Lemma. For any integer $n \geq 0$ we have $A^{n}=\left(P D P^{-1}\right)^{n}=P D^{n} P^{-1}$.
Proof. Do some small examples and convince yourself that the pattern continues:

$$
\begin{aligned}
& A^{2}=A A=P D P^{-1} P D P^{-1}=P D I D P^{-1}=P D^{2} P^{-1} \\
& A^{3}=A^{2} A=P D^{2} P^{-1} P D P^{-1}=P D^{2} I D P^{-1}=P D^{3} P^{-1} \\
& A^{4}=A^{3} A=P D^{3} P^{-1} P D P^{-1}=P D^{3} I D P^{-1}=P D^{4} P^{-1}
\end{aligned}
$$

and so on.

Lemma. For any integer $n \geq 0$ we have

$$
D^{n}=\left[\begin{array}{rrr}
1^{n} & 0 & 0 \\
0 & 2^{n} & 0 \\
0 & 0 & 3^{n}
\end{array}\right]=\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & 2^{n} & 0 \\
0 & 0 & 3^{n}
\end{array}\right]
$$

Proof. To multiply diagonal matrices we just multiply the entries in the corresponding diagonal positions:

$$
\left[\begin{array}{llll}
x_{1} & & & \\
& x_{2} & & \\
& & \ddots & \\
& & & x_{k}
\end{array}\right]\left[\begin{array}{llll}
y_{1} & & & \\
& y_{2} & & \\
& & \ddots & \\
& & & y_{k}
\end{array}\right]=\left[\begin{array}{llll}
x_{1} y_{1} & & & \\
& x_{2} y_{2} & & \\
& & \ddots & \\
& & & x_{k} y_{k}
\end{array}\right]
$$

Therefore to evaluate $D^{n}=D D \cdots D$, we just raise each diagonal entry to the nth power.
Finally, by the usual algorithm we can compute $P^{-1}=\left[\begin{array}{rrr}1 & -5 & -2 \\ & 1 & 0 \\ & & 1\end{array}\right]$.
(Check that this is the correct inverse of $P!$)
Putting everything together gives the identity

$$
\begin{aligned}
A^{n}=P D^{n} P^{-1} & =\left[\begin{array}{lll}
1 & 5 & 2 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & 2^{n} & 0 \\
0 & 0 & 3^{n}
\end{array}\right]\left[\begin{array}{rrr}
1 & -5 & -2 \\
& 1 & 0 \\
& & 1
\end{array}\right] \\
& =\left[\begin{array}{rrr}
1 & 5 \cdot 2^{n} & 2 \cdot 3^{n} \\
0 & 2^{n} & 0 \\
0 & 0 & 3^{n}
\end{array}\right]\left[\begin{array}{rrr}
1 & -5 & -2 \\
& 1 & 0 \\
& & 1
\end{array}\right]=\left[\begin{array}{rrr}
1 & 5\left(2^{n}-1\right) & 2\left(3^{n}-1\right) \\
0 & 2^{n} & 0 \\
0 & 0 & 3^{n}
\end{array}\right]
\end{aligned}
$$

Remark. We've done all these calculations for their own sake as a means of illustrating some key concepts. But these calculations would also come up in the solution of the following discrete dynamical system. Suppose $a_{0}, a_{1}, a_{2}, \ldots, b_{0}, b_{1}, b_{2}, \ldots$, and $c_{0}, c_{1}, c_{2}, \ldots$ are sequences of numbers.

For each integer $n \geq 1$, suppose

$$
\begin{equation*}
a_{n}=a_{n-1}+5 b_{n-1}+4 c_{n-1} \quad \text { and } \quad b_{n}=2 b_{n-1} \quad \text { and } \quad c_{n}=3 c_{n-1} \tag{*}
\end{equation*}
$$

How could we find a formula for a_{n}, b_{n}, and c_{n} in terms of n and the sequences' initial values a_{0}, b_{0}, c_{0} ? Note that $\left({ }^{*}\right)$ is equivalent to

$$
\left[\begin{array}{c}
a_{n} \\
b_{n} \\
c_{n}
\end{array}\right]=\left[\begin{array}{lll}
1 & 5 & 4 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{array}\right]\left[\begin{array}{c}
a_{n-1} \\
b_{n-1} \\
c_{n-1}
\end{array}\right]=A\left[\begin{array}{c}
a_{n-1} \\
b_{n-1} \\
c_{n-1}
\end{array}\right]=A^{2}\left[\begin{array}{c}
a_{n-2} \\
b_{n-2} \\
c_{n-2}
\end{array}\right]=\cdots=A^{n}\left[\begin{array}{c}
a_{0} \\
b_{0} \\
c_{0}
\end{array}\right]
$$

Thus, our formula for A^{n} gives

$$
a_{n}=a_{0}+5\left(2^{n}-1\right) b_{0}+2\left(3^{n}-1\right) c_{0} \quad \text { and } \quad b_{n}=2^{n} b_{0} \quad \text { and } \quad c_{n}=3^{n} c_{0}
$$

If $a_{0}=b_{0}=c_{0}=1$ then $a_{10}=123212$ and $b_{10}=1024$ and $c_{10}=59049$. Moreover,

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{3^{n}}=\lim _{n \rightarrow \infty} \frac{a_{0}+5\left(2^{n}-1\right) b_{0}+2\left(3^{n}-1\right) c_{0}}{3^{n}}=2 c_{0}
$$

2 Similar matrices

When do square matrices have the same eigenvalues? Here is one condition that guarantees this to occur:
Definition. Two $n \times n$ matrices X and Y are similar if there exists an invertible $n \times n$ matrix P with

$$
X=P Y P^{-1}
$$

In this case it also holds that $Y=P^{-1} P Y P^{-1} P=P^{-1} X P$.
If X and Y are similar, then we say that " X is similar to Y " and " Y is similar to X."

In the previous example we showed that $A=\left[\begin{array}{lll}1 & 5 & 4 \\ 0 & 2 & 0 \\ 0 & 0 & 3\end{array}\right]$ and $D=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3\end{array}\right]$ are similar matrices.
There is a special name for this kind of similarity:
Definition. A square matrix X is diagonalizable if X is similar to a diagonal matrix

Proposition. An $n \times n$ matrix A is always similar to itself.
Proof. Since $I=I^{-1}$ we have $A=P A P^{-1}$ for $P=I$.

Proposition. Suppose A, B, C are $n \times n$ matrices. Assume A and B are similar. Assume B and C are also similar. Then A and C are similar.

Proof. If $A=P B P^{-1}$ and $B=Q C Q^{-1}$ then $R=P Q$ is invertible and $A=R C R^{-1}$.

Theorem. If A and B are similar $n \times n$ matrices then A and B have the same characteristic polynomial and so have the same eigenvalues. (Similar matrices usually have different eigenvectors, however.)

Proof. Recall that $\operatorname{det}(X Y)=\operatorname{det}(X) \operatorname{det}(Y)$. Assume $A=P B P^{-1}$. Then

$$
A-x I=P(B-x I) P^{-1} \quad \text { and } \quad \operatorname{det}(A-x I)=\operatorname{det}\left(P(B-x I) P^{-1}\right)=\operatorname{det}(P) \operatorname{det}(B-x I) \operatorname{det}\left(P^{-1}\right)
$$

But $\operatorname{det}(P) \operatorname{det}\left(P^{-1}\right)=\operatorname{det}\left(P P^{-1}\right)=\operatorname{det}(I)=1$, so $\operatorname{det}(A-x I)=\operatorname{det}(B-x I)$.

3 Vocabulary

Keywords from today's lecture:

1. Characteristic equation of a square matrix A.

The equation $\operatorname{det}(A-x I)=0$, where I is the identity matrix with the same size as A.
The solutions x for this equation give all eigenvalues of A.
Example: If $A=\left[\begin{array}{lll}0 & 2 & 0 \\ 2 & 0 & 0 \\ 0 & 0 & 2\end{array}\right]$ then

$$
\operatorname{det}(A-x I)=\operatorname{det}\left[\begin{array}{rrr}
-x & 2 & 0 \\
2 & -x & 0 \\
0 & 0 & 2-x
\end{array}\right]=(2-x)\left(x^{2}-4\right)=(2-x)^{2}(-2-x)=0
$$

has solutions $x=2$ and $x=-2$. These solutions are the eigenvalues for A.
2. Algebraic multiplicity of an eigenvalue λ of square matrix A.

The number of times the factor $(\lambda-x)$ divides the characteristic polynomial $\operatorname{det}(A-x I)$.
If $A=\left[\begin{array}{ccc}0 & 2 & 0 \\ 2 & 0 & 0 \\ 0 & 0 & 2\end{array}\right]$ then 2 has algebraic multiplicity 2 and -2 has algebraic multiplicity 1 .

3. Similar matrices.

Two $n \times n$ matrices A and B are similar if there exists an invertible $n \times n$ matrix M with

$$
A=M B M^{-1}
$$

If A and B are similar and B and C are similar, then A and C are similar.
Example: $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3\end{array}\right]$ is similar to $\left[\begin{array}{lll}3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1\end{array}\right]=\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right]\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3\end{array}\right]\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right]^{-1}$.

4. Diagonalizable matrix.

A matrix that is similar to a diagonal matrix.

