This document is a **transcript** of the lecture, with extra summary and vocabulary sections for your convenience. Due to time constraints, the notes may sometimes only contain limited illustrations, proofs, and examples; for a more thorough discussion of the course content, **consult the textbook**.

Summary

Quick summary of today's notes. Lecture starts on next page.

- Let A be an $n \times n$ matrix. Let $I = I_n$ be the $n \times n$ identity matrix.
 - Let λ be a number and suppose $0 \neq v \in \mathbb{R}^n$.

If $Av = \lambda v$ then we say that v is an *eigenvector* for A and that λ is an *eigenvalue* for A.

More specifically, v is an *eigenvector with eigenvalue* λ for A.

• The eigenvalues of A are the solutions to the *characteristic equation* det(A - xI) = 0. If λ is an eigenvalue then $Nul(A - \lambda I)$ is the λ -eigenspace of A.

To find a basis for the λ -eigenspace, use our familiar algorithm for finding bases of null spaces.

• Suppose v_1, v_2, \ldots, v_r are eigenvectors for A.

Let λ_i be the eigenvalue such that $Av_i = \lambda_i v_i$.

If $\lambda_1, \lambda_2, \ldots, \lambda_r$ are all distinct, then v_1, v_2, \ldots, v_r are linearly independent.

• If A and B are $n \times n$ matrices and there exists an invertible $n \times n$ matrix P with

$$A = PBP^{-1}$$

then we say that A is *similar* to B and that B is *similar* to A.

Any matrix is similar to itself, and if A is similar to B and B is similar to C then A is similar to C.

- Similar matrices have the same characteristic equations and same eigenvalues.
- A is *diagonalizable* if A is similar to a diagonal matrix D.

One useful property of diagonalizable matrices: if $A = PDP^{-1}$ where D is diagonal, then there are simple formulas for each entry in the matrix $A^n = PD^nP^{-1}$ for all positive integers n.

1 Eigenvector and eigenvalues

Everywhere is this lecture, n is a positive integer and A is an $n \times n$ matrix.

Let I denote the $n \times n$ identity matrix. Let λ be a number.

Definition. A vector $v \in \mathbb{R}^n$ is an *eigenvector* for A with *eigenvalue* λ if $v \neq 0$ and $Av = \lambda v$.

The set of all $v \in \mathbb{R}^n$ with $Av = \lambda v$ is the λ -eigenspace of A for λ . This is just the nullspace of $A - \lambda I$.

Proposition. Let λ be a number. The following are equivalent:

1. There exists an eigenvector $v \in \mathbb{R}^n$ for A with eigenvalue λ .

(Remember that eigenvectors must be nonzero.)

- 2. The matrix $A \lambda I$ is not invertible.
- 3. $\det(A \lambda I) = 0.$
- 4. The λ -eigenspace for A contains a nonzero vector.

As usual, a matrix is *triangular* if it is upper-triangular or lower-triangular.

The *characteristic polynomial* of a square matrix A is det(A - xI).

Theorem. The eigenvalues of a triangular square matrix A are its diagonal entries. If these numbers are d_1, d_2, \ldots, d_n then the characteristic polynomial of A is $(d_1 - x)(d_2 - x)\cdots(d_n - x)$.

The following is true for all square matrices, not just triangular ones.

Theorem. Suppose $\lambda_1, \lambda_2, \ldots, \lambda_r$ are **distinct** eigenvalues for A, meaning $\lambda_i \neq \lambda_j$ for $i \neq j$.

Let $v_1, v_2, \ldots, v_r \in \mathbb{R}^n$ be the corresponding eigenvectors, so that $Av_i = \lambda_i v_i$ for $i = 1, 2, \ldots, r$.

Then the vectors $v_1, v_2, \ldots v_r$ are linearly independent.

Proof. Suppose v_1, v_2, \ldots, v_r are linearly dependent. We argue that this leads to a logical contradiction. There must exist an index p > 0 such that v_1, v_2, \ldots, v_p are linearly independent and v_{p+1} is a linear combination of v_1, v_2, \ldots, v_p . (Otherwise, the vectors v_1, v_2, \ldots, v_r would be linearly independent.)

Let $c_1, c_2, \ldots, c_p \in \mathbb{R}$ be scalars such that $v_{p+1} = c_1v_1 + c_2v_2 + \cdots + c_pv_p$. Then

$$\lambda_{p+1}v_{p+1} = Av_{p+1} = A(c_1v_1 + \dots + c_pv_p) = c_1Av_1 + \dots + c_pAv_p = c_1\lambda_1v_1 + c_2\lambda_2v_2 + \dots + c_p\lambda_pv_p.$$

On the other hand, multiplying both sides of $v_{p+1} = c_1v_1 + c_2v_2 + \cdots + c_pv_p$ by λ_{p+1} gives

$$\lambda_{p+1}v_{p+1} = c_1\lambda_{p+1}v_1 + c_2\lambda_{p+1}v_2 + \dots + c_p\lambda_{p+1}v_p.$$

By subtracting the two equations, we get

$$0 = \lambda_{p+1}v_{p+1} - \lambda_{p+1}v_{p+1} = c_1(\lambda_1 - \lambda_{p+1})v_1 + c_2(\lambda_2 - \lambda_{p+1})v_2 + \dots + c_p(\lambda_p - \lambda_{p+1})v_p.$$

Since the vectors v_1, v_2, \ldots, v_p are linearly independent by assumption, we must have

$$c_1(\lambda_1 - \lambda_{p+1}) = c_2(\lambda_2 - \lambda_{p+1}) = \dots = c_p(\lambda_p - \lambda_{p+1}) = 0.$$

But the differences $\lambda_i - \lambda_{p+1}$ for i = 1, 2, ..., p are all nonzero, so we must have $c_1 = c_2 = \cdots = c_p = 0$. This implies that $v_{p+1} = 0$, contradicting our assumption that v_{p+1} is a (necessarily nonzero) eigenvector.

We conclude from this contradiction that actually the vectors v_1, v_2, \ldots, v_r are linearly independent. \Box

Let x be a variable. The eigenvalues of A are precisely the solutions to the equation det(A - xI) = 0which we call the *characteristic equation* for A.

Example. The matrix

$$A = \begin{vmatrix} 5 & -2 & 6 & -1 \\ 0 & 3 & -8 & 0 \\ 0 & 0 & 5 & 4 \\ 0 & 0 & 0 & 1 \end{vmatrix}$$

has characteristic polynomial $\det(A - xI) = (5 - x)(3 - x)(5 - x)(1 - x) = (5 - x)^2(3 - x)(1 - x)$. Since $(5 - x)^2$ divides $\det(A - xI)$ but $(5 - x)^3$ does not divide $\det(A - xI)$, we say that 5 is an eigenvalue of A with algebraic multiplicity 2. The other eigenvalues 1 and 3 have algebraic multiplicity 1.

In general the *algebraic multiplicity* of an eigenvalue λ for a square matrix A is the unique integer $m \ge 1$ such that $(\lambda - x)^m$ divides det(A - xI) but $(\lambda - x)^{m+1}$ does not divide det(A - xI).

We consider the following example in more depth.

Example. Consider the matrix

$$A = \left[\begin{array}{rrrr} 1 & 5 & 4 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{array} \right].$$

Since A is triangular, its characteristic polynomial is (1 - x)(2 - x)(3 - x) and its eigenvalues are 1, 2, 3. Each eigenvalue in this example has algebraic multiplicity 1. We compute the corresponding eigenspaces:

1-eigenspace. The eigenvectors of A with eigenvalue 1 are the nonzero elements of Nul(A - I).

$$A - I = \begin{bmatrix} 0 & 5 & 4 \\ 1 & 0 \\ 2 \end{bmatrix} \sim \begin{bmatrix} 0 & 1 & 0 \\ 5 & 4 \\ 2 \end{bmatrix} \sim \begin{bmatrix} 0 & 1 & 0 \\ 0 & 4 \\ 2 \end{bmatrix} \sim \begin{bmatrix} 0 & 1 & 0 \\ 0 & 4 \\ 2 \end{bmatrix} \sim \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 \\ 0 \end{bmatrix} = \mathsf{RREF}(A - I).$$

This shows that $x \in \mathrm{Nul}(A - I)$ if and only if $x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_1 \\ 0 \\ 0 \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$, so $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$ is a basis for $\mathrm{Nul}(A - I)$.

for Nul(A - I). Therefore all eigenvectors of A with eigenvalue 1 are nonzero scalar multiples of $\begin{bmatrix} 0\\0 \end{bmatrix}$.

2-eigenspace. The eigenvectors of A with eigenvalue 2 are the nonzero elements of Nul(A - 2I).

$$A - 2I = \begin{bmatrix} -1 & 5 & 4 \\ & 0 & 0 \\ & & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & -5 & 0 \\ & 0 & 1 \\ & & 0 \end{bmatrix} = \mathsf{RREF}(A - 2I).$$

This shows that $x \in \operatorname{Nul}(A - 2I)$ if and only if $x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 5x_2 \\ x_2 \\ 0 \end{bmatrix} = x_2 \begin{bmatrix} 5 \\ 1 \\ 0 \end{bmatrix}$, so $\begin{bmatrix} 5 \\ 1 \\ 0 \end{bmatrix}$ is a basis for $\operatorname{Nul}(A - 2I)$. All eigenvectors of A with eigenvalue 2 are nonzero scalar multiples of $\begin{bmatrix} 5 \\ 1 \\ 0 \end{bmatrix}$.

This

$$A - 3I = \begin{bmatrix} -2 & 5 & 4 \\ & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} -2 & 0 & 4 \\ & 1 & 0 \\ & & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -2 \\ & 1 & 0 \\ & & 0 \end{bmatrix} = \mathsf{RREF}(A - 3I).$$

This shows that $x \in \mathrm{Nul}(A - 3I)$ if and only if $x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2x_3 \\ 0 \\ x_3 \end{bmatrix} = x_3 \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix}$ so $\begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix}$ is a basis for $\mathrm{Nul}(A - 3I)$. All eigenvectors of A with eigenvalue 3 are nonzero scalar multiples of $\begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix}$.

Since the eigenvalues 1, 2, 3, are distinct, the eigenvectors $\begin{bmatrix} 1\\0\\0 \end{bmatrix}$, $\begin{bmatrix} 5\\1\\0 \end{bmatrix}$, $\begin{bmatrix} 2\\0\\1 \end{bmatrix}$ are linearly independent.

Consider the **invertible** matrix whose columns are given by these linearly independent vectors:

$$P = \left[\begin{array}{rrrr} 1 & 5 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right].$$

As usual, let $e_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$, $e_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$, and $e_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$. The product Pe_i is the *i*th column of P, so

$$Pe_1 = \begin{bmatrix} 1\\0\\0 \end{bmatrix}$$
 and $Pe_2 = \begin{bmatrix} 5\\1\\0 \end{bmatrix}$ and $Pe_3 = \begin{bmatrix} 2\\0\\1 \end{bmatrix}$.

Since Px = y means that $P^{-1}y = P^{-1}Px = Ix = x$, it follows that

$$P^{-1}\begin{bmatrix}1\\0\\0\end{bmatrix} = e_1 \quad \text{and} \quad P^{-1}\begin{bmatrix}5\\1\\0\end{bmatrix} = e_2 \quad \text{and} \quad P^{-1}\begin{bmatrix}2\\0\\1\end{bmatrix} = e_3.$$

Combining these identities shows that

$$P^{-1}APe_{1} = P^{-1}A\begin{bmatrix} 1\\0\\0 \end{bmatrix} = P^{-1}\begin{bmatrix} 1\\0\\0 \end{bmatrix} = e_{1}.$$
$$P^{-1}APe_{2} = P^{-1}A\begin{bmatrix} 5\\1\\0 \end{bmatrix} = 2P^{-1}\begin{bmatrix} 5\\1\\0 \end{bmatrix} = 2e_{2}.$$
$$P^{-1}APe_{3} = P^{-1}A\begin{bmatrix} 2\\0\\1 \end{bmatrix} = 3P^{-1}\begin{bmatrix} 2\\0\\1 \end{bmatrix} = 3e_{3}.$$

These calculations determine the columns of the matrix $P^{-1}AP$.

If fact, we see that
$$P^{-1}AP = D$$
 where $D = \begin{bmatrix} e_1 & 2e_2 & 3e_3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$.

This means that $A = P(P^{-1}AP)P^{-1} = PDP^{-1}$, so

$$\begin{bmatrix} 1 & 5 & 4 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 5 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix} \begin{bmatrix} 1 & 5 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}^{-1}$$

One application of this decomposition: we can derive a simple formula for an arbitrary power A^n of A. Define $A^0 = I$, $A^1 = A$, $A^2 = AA$, $A^3 = AAA$, and so on.

Lemma. For any integer $n \ge 0$ we have $A^n = (PDP^{-1})^n = PD^nP^{-1}$.

Proof. Do some small examples and convince yourself that the pattern continues:

$$\begin{split} A^2 &= AA = PDP^{-1}PDP^{-1} = PDIDP^{-1} = PD^2P^{-1} \\ A^3 &= A^2A = PD^2P^{-1}PDP^{-1} = PD^2IDP^{-1} = PD^3P^{-1} \\ A^4 &= A^3A = PD^3P^{-1}PDP^{-1} = PD^3IDP^{-1} = PD^4P^{-1} \\ \vdots \end{split}$$

and so on.

Lemma. For any integer $n \ge 0$ we have

$$D^{n} = \begin{bmatrix} 1^{n} & 0 & 0\\ 0 & 2^{n} & 0\\ 0 & 0 & 3^{n} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0\\ 0 & 2^{n} & 0\\ 0 & 0 & 3^{n} \end{bmatrix}.$$

Proof. To multiply diagonal matrices we just multiply the entries in the corresponding diagonal positions:

$$\begin{bmatrix} x_1 & & & \\ & x_2 & & \\ & & \ddots & \\ & & & & x_k \end{bmatrix} \begin{bmatrix} y_1 & & & \\ & y_2 & & \\ & & \ddots & \\ & & & & y_k \end{bmatrix} = \begin{bmatrix} x_1y_1 & & & \\ & x_2y_2 & & \\ & & & \ddots & \\ & & & & x_ky_k \end{bmatrix}$$

Therefore to evaluate $D^n = DD \cdots D$, we just raise each diagonal entry to the *n*th power.

Finally, by the usual algorithm we can compute $P^{-1} = \begin{bmatrix} 1 & -5 & -2 \\ & 1 & 0 \\ & & 1 \end{bmatrix}$.

(Check that this is the correct inverse of P!)

Putting everything together gives the identity

$$\begin{aligned} A^{n} &= PD^{n}P^{-1} = \begin{bmatrix} 1 & 5 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2^{n} & 0 \\ 0 & 0 & 3^{n} \end{bmatrix} \begin{bmatrix} 1 & -5 & -2 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} \\ &= \begin{bmatrix} 1 & 5 \cdot 2^{n} & 2 \cdot 3^{n} \\ 0 & 2^{n} & 0 \\ 0 & 0 & 3^{n} \end{bmatrix} \begin{bmatrix} 1 & -5 & -2 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 5(2^{n} - 1) & 2(3^{n} - 1) \\ 0 & 2^{n} & 0 \\ 0 & 0 & 3^{n} \end{bmatrix}. \end{aligned}$$

Remark. We've done all these calculations for their own sake as a means of illustrating some key concepts. But these calculations would also come up in the solution of the following discrete dynamical system. Suppose $a_0, a_1, a_2, \ldots, b_0, b_1, b_2, \ldots$, and c_0, c_1, c_2, \ldots are sequences of numbers.

For each integer $n \ge 1$, suppose

$$a_n = a_{n-1} + 5b_{n-1} + 4c_{n-1}$$
 and $b_n = 2b_{n-1}$ and $c_n = 3c_{n-1}$. (*)

How could we find a formula for a_n , b_n , and c_n in terms of n and the sequences' initial values a_0, b_0, c_0 ? Note that (*) is equivalent to

$$\begin{bmatrix} a_n \\ b_n \\ c_n \end{bmatrix} = \begin{bmatrix} 1 & 5 & 4 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix} \begin{bmatrix} a_{n-1} \\ b_{n-1} \\ c_{n-1} \end{bmatrix} = A \begin{bmatrix} a_{n-1} \\ b_{n-1} \\ c_{n-1} \end{bmatrix} = A^2 \begin{bmatrix} a_{n-2} \\ b_{n-2} \\ c_{n-2} \end{bmatrix} = \dots = A^n \begin{bmatrix} a_0 \\ b_0 \\ c_0 \end{bmatrix}.$$

Thus, our formula for A^n gives

$$a_n = a_0 + 5(2^n - 1)b_0 + 2(3^n - 1)c_0$$
 and $b_n = 2^n b_0$ and $c_n = 3^n c_0$.

If $a_0 = b_0 = c_0 = 1$ then $a_{10} = 123212$ and $b_{10} = 1024$ and $c_{10} = 59049$. Moreover,

$$\lim_{n \to \infty} \frac{a_n}{3^n} = \lim_{n \to \infty} \frac{a_0 + 5(2^n - 1)b_0 + 2(3^n - 1)c_0}{3^n} = 2c_0$$

2 Similar matrices

When do square matrices have the same eigenvalues? Here is one condition that guarantees this to occur:

Definition. Two $n \times n$ matrices X and Y are *similar* if there exists an invertible $n \times n$ matrix P with

 $X = PYP^{-1}.$

In this case it also holds that $Y = P^{-1}PYP^{-1}P = P^{-1}XP$.

If X and Y are similar, then we say that "X is *similar to* Y" and "Y is *similar to* X."

In the previous example we showed that
$$A = \begin{bmatrix} 1 & 5 & 4 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$
 and $D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$ are similar matrices.

There is a special name for this kind of similarity:

Definition. A square matrix X is *diagonalizable* if X is similar to a diagonal matrix

Proposition. An $n \times n$ matrix A is always similar to itself.

Proof. Since $I = I^{-1}$ we have $A = PAP^{-1}$ for P = I.

Proposition. Suppose A, B, C are $n \times n$ matrices. Assume A and B are similar. Assume B and C are also similar. Then A and C are similar.

Proof. If
$$A = PBP^{-1}$$
 and $B = QCQ^{-1}$ then $R = PQ$ is invertible and $A = RCR^{-1}$.

Theorem. If A and B are similar $n \times n$ matrices then A and B have the same characteristic polynomial and so have the same eigenvalues. (Similar matrices usually have different eigenvectors, however.)

Proof. Recall that det(XY) = det(X) det(Y). Assume $A = PBP^{-1}$. Then

$$A - xI = P(B - xI)P^{-1} \text{ and } \det(A - xI) = \det(P(B - xI)P^{-1}) = \det(P)\det(B - xI)\det(P^{-1}).$$

But $\det(P)\det(P^{-1}) = \det(PP^{-1}) = \det(I) = 1$, so $\det(A - xI) = \det(B - xI)$.

3 Vocabulary

Keywords from today's lecture:

1. Characteristic equation of a square matrix A.

The equation det(A - xI) = 0, where I is the identity matrix with the same size as A. The solutions x for this equation give all eigenvalues of A.

Example: If
$$A = \begin{bmatrix} 0 & 2 & 0 \\ 2 & 0 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$
 then

$$\det(A - xI) = \det \begin{bmatrix} -x & 2 & 0 \\ 2 & -x & 0 \\ 0 & 0 & 2 - x \end{bmatrix} = (2 - x)(x^2 - 4) = (2 - x)^2(-2 - x) = 0$$

has solutions x = 2 and x = -2. These solutions are the eigenvalues for A.

2. Algebraic multiplicity of an eigenvalue λ of square matrix A.

The number of times the factor $(\lambda - x)$ divides the characteristic polynomial det(A - xI).

If
$$A = \begin{bmatrix} 0 & 2 & 0 \\ 2 & 0 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$
 then 2 has algebraic multiplicity 2 and -2 has algebraic multiplicity 1

3. Similar matrices.

_

Two $n \times n$ matrices A and B are similar if there exists an invertible $n \times n$ matrix M with

$$A = MBM^{-1}$$

If A and B are similar and B and C are similar, then A and C are similar.

Example:
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$
 is similar to
$$\begin{bmatrix} 3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}^{-1}.$$

4. Diagonalizable matrix.

A matrix that is similar to a diagonal matrix.

 $\mathbf{6}$