This document is a transcript of the lecture, with extra summary and vocabulary sections for your convenience. Due to time constraints, the notes may sometimes only contain limited illustrations, proofs, and examples; for a more thorough discussion of the course content, consult the textbook.

Summary

Quick summary of today's notes. Lecture starts on next page.

- Given real numbers $a, b \in \mathbb{R}$, define $a+b i=\left[\begin{array}{rr}a & -b \\ b & a\end{array}\right]$.

In this notation, we think of 1 as the matrix $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ and i as the matrix $\left[\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right]$.
The set of complex numbers is $\mathbb{C}=\{a+b i: a, b \in \mathbb{R}\}=\left\{\left[\begin{array}{rr}a & -b \\ b & a\end{array}\right]: a, b \in \mathbb{R}\right\}$.
We view \mathbb{R} as a subset of \mathbb{C} by setting $a=a+0 i=\left[\begin{array}{ll}a & 0 \\ 0 & a\end{array}\right]$.

- We can add, subtract, multiply, and invert complex numbers, since they are 2×2 matrices.

The identity " $i^{2}=-1$ " holds in the sense that $\left[\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right]^{2}=\left[\begin{array}{rr}-1 & 0 \\ 0 & -1\end{array}\right]=-\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$.

- Once we get used to these operations, another useful way to view the elements of \mathbb{C} is as formal expressions $a+b i$ where $a, b \in \mathbb{R}$ and i is a symbol that satisfies $i^{2}=-1$.
Addition, subtraction, and multiplication work just like polynomials, but substituting -1 for i^{2}.
- Suppose $p(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots a_{1} x+a_{0}$ is a polynomial with coefficients $a_{0}, a_{1}, \ldots, a_{n} \in \mathbb{C}$. Assume $a_{n} \neq 0$ so that $p(x)$ has degree n.

Then there are are n (not necessarily distinct) complex numbers $r_{1}, r_{2}, \ldots, r_{n} \in \mathbb{C}$ such that

$$
p(x)=a_{n}\left(x-r_{1}\right)\left(x-r_{2}\right) \cdots\left(x-r_{n}\right)
$$

The numbers $r_{1}, r_{2}, \ldots, r_{n}$ are the roots of $p(x)$.

1 Last time: methods to check diagonalizability

Let n be a positive integer and let A be an $n \times n$ matrix.
Remember that A is diagonalizable if $A=P D P^{-1}$ where P is an invertible $n \times n$ matrix and D is an $n \times n$ diagonal matrix. In other words, A is diagonalizable if A is similar to a diagonal matrix.
Suppose $v_{1}, v_{2}, \ldots, v_{n} \in \mathbb{R}^{n}$ are linearly independent vectors and $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ are numbers. Define

$$
P=\left[\begin{array}{llll}
v_{1} & v_{2} & \ldots & v_{n}
\end{array}\right] \quad \text { and } \quad D=\left[\begin{array}{llll}
\lambda_{1} & & & \\
& \lambda_{2} & & \\
& & \ddots & \\
& & & \lambda_{n}
\end{array}\right]
$$

If $A=P D P^{-1}$ then $A v_{i}=P D P^{-1} v_{i}=P D e_{i}=\lambda_{i} P e_{i}=\lambda_{i} v_{i}$ for each $i=1,2, \ldots, n$.
In other words, when $A=P D P^{-1}$, the columns of P are a basis for \mathbb{R}^{n} made up of eigenvectors of A.

Matrices that are not diagonalizable.

Proposition. Let A be an $n \times n$ upper-triangular matrix with all entries on the diagonal equal to λ.
If A is not the diagonal matrix λI, then A is not diagonalizable.
Proof. Suppose $A=P D P^{-1}$ where D is diagonal. Every diagonal entry of D is an eigenvalue for A.
The only eigenvalue of A is λ so $D=\lambda I$ and $A=P(\lambda I) P^{-1}=\lambda P I P^{-1}=\lambda P P^{-1}=\lambda I$.
The following result summarizes everything we need to know about diagonalizability: how to determine if a matrix A is diagonalizable, and then how to compute the decomposition $A=P D P^{-1}$ if it exists.

Theorem. Let A be an $n \times n$ matrix. Suppose $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{p}$ are the distinct eigenvalues of A.
Let $d_{i}=\operatorname{dim} \operatorname{Nul}\left(A-\lambda_{i} I\right)$ for $i=1,2, \ldots, p$.
By the definition of an eigenvalue, we have $1 \leq d_{i} \leq n$ for each i. Moreover, the following holds:

1. We always have $d_{1}+d_{2}+\cdots+d_{p} \leq n$.
2. The matrix A is diagonalizable if and only if $d_{1}+d_{2}+\cdots+d_{p}=n$.
3. Suppose A is diagonalizable. Let $D_{i}=\lambda_{i} I_{d_{i}}$ and define D as the $n \times n$ diagonal matrix

$$
D=\left[\begin{array}{llll}
D_{1} & & & \\
& D_{2} & & \\
& & \ddots & \\
& & & D_{p}
\end{array}\right]
$$

Choose n vectors $v_{1}, v_{2}, \ldots, v_{n} \in \mathbb{R}^{n}$ such that the first d_{1} vectors are a basis for $\operatorname{Nul}\left(A-\lambda_{1} I\right)$, the next d_{2} vectors are a basis for $\operatorname{Nul}\left(A-\lambda_{2} I\right)$, the next d_{3} vectors are a basis for $\operatorname{Nul}\left(A-\lambda_{3} I\right)$, and so on, so that the last d_{p} vectors are basis for $\operatorname{Nul}\left(A-\lambda_{p} I\right)$. Then $A=P D P^{-1}$ for

$$
P=\left[\begin{array}{llll}
v_{1} & v_{2} & \ldots & v_{n}
\end{array}\right] .
$$

2 Complex numbers

For the rest of this lecture, let $i=\left[\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right]$. Recall that $I_{2}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$.
Suppose $a, b \in \mathbb{R}$. Both i and I_{2} are 2×2 matrices, so we can form the sum $a I_{2}+b i$.
To simplify our notation, we will write 1 instead of I_{2} and $a+b i$ instead of $a I_{2}+b i$.
We consider $a=a+0 i$ and $b i=0+b i$ and $0=0+0 i$. With this convention, we have

$$
a+b i=a\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]+b\left[\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right]=\left[\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right]+\left[\begin{array}{rr}
0 & -b \\
b & 0
\end{array}\right]=\left[\begin{array}{rr}
a & -b \\
b & a
\end{array}\right] .
$$

Define $\mathbb{C}=\{a+b i: a, b \in \mathbb{R}\}=\left\{\left[\begin{array}{rr}a & -b \\ b & a\end{array}\right]: a, b \in \mathbb{R}\right\}$. This is called the set of complex numbers.
According to our definition, each element of \mathbb{C} is a 2×2 matrix, to be called a complex number.
Fact. We can add complex numbers together. If $a, b, c, d \in \mathbb{R}$ then

$$
(a+b i)+(c+d i)=\left[\begin{array}{rr}
a & -b \\
b & a
\end{array}\right]+\left[\begin{array}{rr}
c & -d \\
d & c
\end{array}\right]=\left[\begin{array}{rr}
a+c & -b-d \\
b+d & a+c
\end{array}\right]=(a+c)+(b+d) i \in \mathbb{C}
$$

Clearly $(a+b i)+(c+d i)=(c+d i)+(a+b i)=(a+c)+(b+d) i$.
Fact. We can subtract complex numbers. If $a, b, c, d \in \mathbb{R}$ then

$$
(a+b i)-(c+d i)=\left[\begin{array}{rr}
a & -b \\
b & a
\end{array}\right]-\left[\begin{array}{rr}
c & -d \\
d & c
\end{array}\right]=\left[\begin{array}{rr}
a-c & -b+d \\
b-d & a-c
\end{array}\right]=(a-c)+(b-d) i \in \mathbb{C}
$$

Fact. We can multiply complex numbers. If $a, b, c, d \in \mathbb{R}$ then

$$
(a+b i)(c+d i)=\left[\begin{array}{rr}
a & -b \\
b & a
\end{array}\right]\left[\begin{array}{rr}
c & -d \\
d & c
\end{array}\right]=\left[\begin{array}{rr}
a c-b d & -(a d+b c) \\
a d+b c & a c-b d
\end{array}\right]=(a c-b d)+(a d+b c) i \in \mathbb{C}
$$

Note that $(a+b i)(c+d i)=(c+d i)(a+b i)=(a c-b d)+(a d+b c) i$.
Fact. We can multiply complex numbers by real numbers. If $a, b, x \in \mathbb{R}$ then define

$$
(a+b i) x=x(a+b i)=x\left[\begin{array}{rr}
a & -b \\
b & a
\end{array}\right]=\left[\begin{array}{rr}
a x & -b x \\
b x & a x
\end{array}\right]=(a x)+(b x) i \in \mathbb{C} .
$$

Note that this is the same as the product $(a+b i)(x+0 i)$.
Fact. We can divide complex numbers by nonzero real numbers. If $a, b, x \in \mathbb{R}$ and $x \neq 0$ then define

$$
(a+b i) / x=(a+b i)(1 / x)=(a / x)+(b / x) i
$$

We sometimes write $\frac{p}{q}$ instead of p / q. Both expressions means the same thing.
A complex number $a+b i$ is nonzero if $a \neq 0$ or $b \neq 0$. Since

$$
\operatorname{det}(a+b i)=\operatorname{det}\left[\begin{array}{rr}
a & -b \\
b & a
\end{array}\right]=a^{2}+b^{2}
$$

which is only zero if $a=b=0$, every nonzero complex number is invertible as a matrix.

Fact. This fact lets us divide complex numbers. If $a, b, c, d \in \mathbb{R}$ and $c+d i \neq 0$ then define

$$
(a+b i) /(c+d i)=\left[\begin{array}{rr}
a & -b \\
b & a
\end{array}\right]\left[\begin{array}{rr}
c & -d \\
d & c
\end{array}\right]^{-1}
$$

We can write this more explicitly as

$$
\begin{aligned}
(a+b i) /(c+d i) & =\left[\begin{array}{rr}
a & -b \\
b & a
\end{array}\right]\left[\begin{array}{rr}
c & -d \\
d & c
\end{array}\right]^{-1} \\
& =\frac{1}{c^{2}+d^{2}}\left[\begin{array}{rr}
a & -b \\
b & a
\end{array}\right]\left[\begin{array}{rr}
c & d \\
-d & c
\end{array}\right] \\
& =\frac{1}{c^{2}+d^{2}}\left[\begin{array}{ll}
a c+b d & a d-b c \\
b c-a d & a c+b d
\end{array}\right]=\frac{a c+b d}{c^{2}+d^{2}}+\frac{b c-a d}{c^{2}+d^{2}} i \in \mathbb{C} .
\end{aligned}
$$

The last formula is not so easy to remember.
It may be easier to divide complex numbers using the following method:
Example. We have $\frac{3-4 i}{2+i}=\frac{(3-4 i)(2-i)}{(2+i)(2-i)}=\frac{6-3 i-8 i+4 i^{2}}{4-i^{2}}=\frac{6-11 i-4}{5}=\frac{2-11 i}{5}=\frac{2}{5}-\frac{11}{5} i$.
More generally, if $c+d i \neq 0$ then we always have $\frac{a+b i}{c+d i}=\frac{(a+b i)(c-d i)}{c^{2}+d^{2}}$ since

$$
\frac{a+b i}{c+d i}=(a+b i)(c+d i)^{-1}=\frac{1}{c^{2}+d^{2}}(a+b i)(c-d i)=\frac{(a+b i)(c-d i)}{c^{2}+d^{2}} .
$$

The complex conjugate of $c+d i$ is its matrix transpose, in other words, the complex number

$$
\overline{c+d i}=(c+d i)^{\top}=c-d i \in \mathbb{C} .
$$

When $c+d i$ is nonzero, the complex conjugate is related to the inverse by the identity

$$
(c+d i)^{-1}=\left[\begin{array}{rr}
c & -d \\
d & c
\end{array}\right]^{-1}=\frac{1}{c^{2}+d^{2}}\left[\begin{array}{rr}
c & d \\
-d & c
\end{array}\right]=\frac{1}{c^{2}+d^{2}} \cdot \overline{c+d i}
$$

Since $x, y \in \mathbb{C}$ satisfy $x y=y x$ and $(x y)^{\top}=y^{\top} x^{\top}$ (since complex numbers are matrices), it follows that

$$
\overline{x y}=\bar{y} \cdot \bar{x}=\bar{x} \cdot \bar{y}
$$

We can also add complex numbers $a+b i$ with real numbers c when $a, b, c \in \mathbb{R}$.
To do this, we set $c=c+0 i$ and define $(a+b i)+c=c+(a+b i)=(a+b i)+(c+0 i)=(a+c)+b i$.
Under this convention, we have

$$
\begin{aligned}
i^{2}+1=(0+i)(0+i)+(1+0 i) & =\left[\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right]\left[\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right]+\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \\
& =\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]-\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]=0+0 i=0
\end{aligned}
$$

Thus it makes sense to write $i^{2}=-1$. In a similar way:

Theorem. Define the exponential function $\mathbb{C} \rightarrow \mathbb{C}$ by the convergent power series

$$
e^{x}=1+\frac{1}{1} x+\frac{1}{1 \cdot 2} x^{2}+\frac{1}{1 \cdot 2 \cdot 3} x^{3}+\frac{1}{1 \cdot 2 \cdot 3 \cdot 4} x^{4}+\ldots
$$

Then $e^{1}=e=2.71828 \ldots$ and $e^{i \pi}+1=0$.
Proof. We need two facts from calculus:

$$
\begin{aligned}
-1 & =\cos \pi
\end{aligned}=1-\frac{1}{1 \cdot 2} \pi^{2}+\frac{1}{1 \cdot 2 \cdot 3 \cdot 4} \pi^{4}-\frac{1}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6} \pi^{6}+\ldots .
$$

We have

$$
i=\left[\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right], \quad i^{2}=\left[\begin{array}{rr}
-1 & 0 \\
0 & -1
\end{array}\right], \quad i^{3}=\left[\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right], \quad \text { and } \quad i^{0}=i^{4}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

Thus $i^{n+4}=i^{n}$ for all n.
Also, we have $(i \pi)^{n}=\pi^{n} i^{n}$. It follows that
$e^{i \pi}=\left[\begin{array}{lll}1-\frac{1}{1 \cdot 2} \pi^{2}+\frac{1}{1 \cdot 2 \cdot 3 \cdot 4} \pi^{4}-\frac{1}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6} \pi^{6}+\ldots & \frac{1}{1} \pi-\frac{1}{1 \cdot 2 \cdot 3} \pi^{3}+\frac{1}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5} \pi^{5}-\frac{1}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7} \pi^{7}+\ldots \\ \frac{1}{1} \pi-\frac{1}{1 \cdot 2 \cdot 3} \pi^{3}+\frac{1}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5} \pi^{5}-\frac{1}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7} \pi^{7}+\ldots & 1-\frac{1}{1 \cdot 2} \pi^{2}+\frac{1}{1 \cdot 2 \cdot 3 \cdot 4} \pi^{4}-\frac{1}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6} \pi^{6}+\ldots\end{array}\right]$.
By our two facts, this is just $e^{i \pi}=\left[\begin{array}{rr}-1 & 0 \\ 0 & -1\end{array}\right]=-1+0 i$. Thus $e^{i \pi}+1=(-1+0 i)+(1+0 i)=0$.
After a while, we tend to forget that complex numbers are 2×2 matrices and instead view the elements of \mathbb{C} as formal expressions $a+b i$ where $a, b \in \mathbb{R}$ and i is a symbol that satisfies $i^{2}=-1$.
We can add, subtract, and multiply such expressions just like polynomials, but substituting -1 for i^{2}. This convention gives the same operations as we saw above.
Moreover, this makes it clearer how to view \mathbb{R} as a subset of \mathbb{C}, by setting $a=a+0 i$.
The real part of a complex number $a+b i \in \mathbb{C}$ is $\Re(a+b i)=a \in \mathbb{R}$.
The imaginary part of $a+b i \in \mathbb{C}$ is $\Im(a+b i)=b \in \mathbb{R}$.
Remark. It can be helpful to draw the complex number $a+b i \in \mathbb{C}$ as the vector $\left[\begin{array}{c}a \\ b\end{array}\right] \in \mathbb{R}^{2}$.
The number $i(a+b i)=-b+a i \in \mathbb{C}$ then corresponds to the vector $\left[\begin{array}{r}-b \\ a\end{array}\right] \in \mathbb{R}^{2}$, which is given by rotating $\left[\begin{array}{l}a \\ b\end{array}\right]$ ninety degrees counterclockwise. (Try drawing this yourself.)

The main reason it is useful to work with complex numbers is the following theorem about polynomials. Suppose $p(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$ is a polynomial with coefficients $a_{0}, a_{1}, \ldots, a_{n} \in \mathbb{C}$.

Assume $a_{n} \neq 0$ so that $p(x)$ has degree n.
Even though we think of complex numbers are 2×2 matrices, this expression for $p(x)$ still makes sense for $x \in \mathbb{C}$: if we plug in any complex number for x then $a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0} \in \mathbb{C}$.

Theorem (Fundamental theorem of algebra). Define $p(x)$ as above. There are n (not necessarily distinct) complex numbers $r_{1}, r_{2}, \ldots, r_{n} \in \mathbb{C}$ such that $p(x)=a_{n}\left(x-r_{1}\right)\left(x-r_{2}\right) \cdots\left(x-r_{n}\right)$.
One calls the numbers $r_{1}, r_{2}, \ldots, r_{n}$ the roots of $p(x)$.
A root r has multiplicity m if exactly m of the numbers $r_{1}, r_{2}, \ldots, r_{n}$ are equal to r.

The use of complex numbers in this theorem is essential. The statement fails if we use \mathbb{R} instead of \mathbb{C}. Example: if $p(x)=x^{2}+1$ then there do not exist real numbers $r_{1}, r_{2} \in \mathbb{R}$ with $p(x)=\left(x-r_{1}\right)\left(x-r_{2}\right)$. However, we do have $x^{2}+1=(x-i)(x+i)$.

3 Vocabulary

Keywords from today's lecture:

1. Complex number.

We define a complex number to be either

- A matrix $a+b i=\left[\begin{array}{rr}a & -b \\ b & a\end{array}\right]$ where $a, b \in \mathbb{R}$ and $i=\left[\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right]$.
- A formal expression " $a+b i$ " where $a, b \in \mathbb{R}$ and i is a symbol that has $i^{2}=-1$.

The first definition makes it clear how to add, subtract, multiply, and divide complex numbers (use matrix operations). The second definition is secretly just a way of abbreviating the first definition.
The set of complex numbers is denoted \mathbb{C}.
Example:

$$
\begin{aligned}
& 1+2 i \text { corresponds to }\left[\begin{array}{rr}
1 & -2 \\
2 & 1
\end{array}\right] . \\
& (1+2 i)+(2+3 i)=3+5 i \text { corresponds to }\left[\begin{array}{rr}
1 & -2 \\
2 & 1
\end{array}\right]+\left[\begin{array}{rr}
2 & -3 \\
3 & 2
\end{array}\right]=\left[\begin{array}{rr}
3 & -5 \\
5 & 3
\end{array}\right] . \\
& (1+2 i)(2+3 i)=-4+7 i \text { corresponds to }\left[\begin{array}{rr}
1 & -2 \\
2 & 1
\end{array}\right]\left[\begin{array}{rr}
2 & -3 \\
3 & 2
\end{array}\right]=\left[\begin{array}{rr}
-4 & -6 \\
7 & -4
\end{array}\right] . \\
& (1+2 i)^{-1}=\frac{1}{5}-\frac{2}{5} i \text { corresponds to }\left[\begin{array}{rr}
1 & -2 \\
2 & 1
\end{array}\right]^{-1}=\frac{1}{5}\left[\begin{array}{rr}
1 & 2 \\
-2 & 1
\end{array}\right] .
\end{aligned}
$$

2. Complex conjugation.

If $a, b \in \mathbb{R}$ then complex conjugate of $a+b i \in \mathbb{C}$ is $\overline{a+b i}=a-b i \in \mathbb{C}$.
If $y, z \in \mathbb{C}$ then $\overline{y+z}=\bar{y}+\bar{z}$ and $\overline{y z}=\bar{y} \cdot \bar{z}$ and $\overline{y^{-1}}=\bar{y}^{-1}$.

3. Fundamental theorem of algebra.

Any polynomial

$$
f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}
$$

with coefficients $a_{0}, a_{1}, \ldots, a_{n} \in \mathbb{C}$ and $a_{n} \neq 0$ can be factored as

$$
f(x)=a_{n}\left(x-\lambda_{1}\right)\left(x-\lambda_{2}\right) \cdots\left(x-\lambda_{n}\right)
$$

for some not necessarily distinct complex numbers $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n} \in \mathbb{C}$.

