This document is a **transcript** of the lecture, with extra summary and vocabulary sections for your convenience. Due to time constraints, the notes may sometimes only contain limited illustrations, proofs, and examples; for a more thorough discussion of the course content, **consult the textbook**.

Summary

Quick summary of today's notes. Lecture starts on next page.

• The characteristic equation of an $n \times n$ matrix A is a degree n polynomial in one variable. We can always factor this polynomial as

$$\det(A - xI) = (\lambda_1 - x)(\lambda_2 - x) \cdots (\lambda_n - x)$$

for some $\lambda_1, \lambda_2, \dots, \lambda_n \in \mathbb{C}$. These complex numbers are the *(complex) eigenvalues* of A.

• Define \mathbb{C}^n to be the set of vectors $v = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$ with n rows and entries $v_1, v_2, \dots, v_n \in \mathbb{C}$.

The sum u+v and scalar multiple cv for $u,v\in\mathbb{C}^n,\ c\in\mathbb{C}$ are defined just as for vectors in \mathbb{R}^n , except we use the addition and multiplication operations from \mathbb{C} instead of \mathbb{R} .

If A is an $n \times n$ matrix and $v \in \mathbb{C}^n$ then we define Av in the same way as when $v \in \mathbb{R}^n$.

A complex number $\lambda \in \mathbb{C}$ an *eigenvalue* of A if and only if there exists $0 \neq v \in \mathbb{C}^n$ with $Av = \lambda v$.

- The *trace* of a square matrix A, denoted $\operatorname{tr} A$, is the sum of the diagonal entries of A. If A and B are both $n \times n$ then $\operatorname{tr}(A+B) = \operatorname{tr}(A) + \operatorname{tr}(B)$ and $\operatorname{tr}(AB) = \operatorname{tr}(BA)$. But usually $\operatorname{tr}(AB) \neq \operatorname{tr}(A)\operatorname{tr}(B)$.
- Let A be an $n \times n$ matrix.

Suppose the roots of the characteristic polynomial $\det(A-xI)$ are $\lambda_1,\lambda_2,\ldots,\lambda_n\in\mathbb{C}$.

These are the eigenvalues of A, repeated accordingly to their multiplicity.

Then det
$$A = \lambda_1 \lambda_2 \cdots \lambda_n$$
 and $\operatorname{tr} A = \lambda_1 + \lambda_2 + \dots \lambda_n$.

• Let A be an $n \times n$ matrix.

The matrices A and A^{\top} have the same characteristic polynomial and same eigenvalues.

If A is invertible, then A and A^{-1} have the same eigenvectors.

However, λ is an eigenvalue of A if and only if λ^{-1} is an eigenvalue for A^{-1} .

If A is diagonalizable then so is A^{\top} and A^{-1} (when A is invertible).

1 Last time: complex numbers

Given $a, b \in \mathbb{R}$, we interpret a + bi as the matrix $\begin{bmatrix} a & -b \\ b & a \end{bmatrix}$, so $1 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ and $i = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$.

Write \mathbb{C} for the set of *complex numbers* $\{a + bi : a, b \in \mathbb{R}\}.$

We view $\mathbb{R} = \{a + 0i : a \in \mathbb{R}\}$ as a subset of \mathbb{C} .

According to our definition, every complex number is a 2×2 matrix. It can also be helpful to think of a complex number a + bi as a polynomial with real coefficient in a variable i that satisfies $i^2 = -1$.

We can add, subtract, multiply, and invert complex numbers. These operations correspond to the usual ways of adding, subtracting, multiplying, and inverting matrices.

Let $a, b, c, d \in \mathbb{R}$. We add complex numbers in the following way:

$$(a+bi) + (c+di) = (a+c) + (b+d)i \in \mathbb{C}.$$

We multiply complex numbers like polynomials, but substituting -1 for i^2 :

$$(a+bi)(c+di) = ac + (ad+bc)i + bd(i^2) = (ac-bd) + (ad+bc)i \in \mathbb{C}.$$

The order of multiplication does not matter since (a + bi)(c + di) = (c + di)(a + bi).

Given $a, b \in \mathbb{R}$, we define the *complex conjugate* of the complex number $a + bi \in \mathbb{C}$ to be

$$\overline{a+bi} = a-bi \in \mathbb{C}.$$

If $z = a + bi \in \mathbb{C}$. Then $\overline{z} = z$ if and only if b = 0 and $z \in \mathbb{R}$.

If $y, z \in \mathbb{C}$ then $\overline{y+z} = \overline{y} + \overline{z}$ and $\overline{yz} = \overline{y} \cdot \overline{z}$.

If
$$z = a + bi \in \mathbb{C}$$
 then $z\overline{z} = (a + bi)(a - bi) = a^2 + b^2 \in \mathbb{R}$.

This indicates how to invert complex numbers $0 \neq a + bi$:

$$\left[\begin{array}{cc} a & -b \\ b & a \end{array}\right]^{-1} = \overline{\left[(a+bi)^{-1} = \frac{a-bi}{(a+bi)(a-bi)} = \frac{a-bi}{a^2+b^2} = \frac{a}{a^2+b^2} - \frac{b}{a^2+b^2}i} = \frac{1}{a^2+b^2} \left[\begin{array}{cc} a & b \\ -b & a \end{array}\right].$$

Finally, complex division is defined by

$$car{a+bi \over c+di} = (a+bi)(c+di)^{-1} = (c+di)^{-1}(a+bi).$$

Example. We have
$$\frac{3-4i}{2+i} = \frac{(3-4i)(2-i)}{(2+i)(2-i)} = \frac{6-3i-8i+4i^2}{4-i^2} = \frac{6-11i-4}{5} = \frac{2-11i}{5} = \frac{2}{5} - \frac{11}{5}i$$
.

2 Fundamental theorem of algebra

Suppose

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots a_1 x + a_0$$

is a polynomial of degree n (meaning $a_n \neq 0$) with coefficients $a_0, a_1, \ldots, a_n \in \mathbb{C}$.

Theorem (Fundamental theorem of algebra). There are n numbers $r_1, r_2, \ldots, r_n \in \mathbb{C}$ such that

$$p(x) = a_n(x - r_1)(x - r_2) \cdots (x - r_n).$$

One calls the numbers r_1, r_2, \ldots, r_n the **roots** of p(x). They do not have to be distinct.

The roots give all solutions to the equation p(x) = 0.

A root r has multiplicity m if exactly m of the numbers r_1, r_2, \ldots, r_n are equal to r.

Example. We have $9x^2 + 36 = 9(x - 2i)(x + 2i)$.

The fundamental theorem of algebra does not tell us how to finds the roots of p(x).

Here is a strategy to prove the theorem.

Lemma. If p(0) = 0 then p(x) = xq(x) for some polynomial q(x).

Proof. We have
$$p(0) = a_0$$
 so if $p(0) = 0$ then $p(x) = x(a_1 + a_2x + \dots + a_nx^{n-1})$.

Lemma. If $p(\alpha) = 0$ then $p(x) = (x - \alpha)g(x)$ for some polynomial g(x).

Proof. If $p(\alpha) = 0$ then the polynomial $f(x) = p(x + \alpha)$ has f(0) = 0, so f(x) = xq(x).

But then
$$p(x) = f(x - \alpha) = (x - \alpha)g(x)$$
 for the polynomial $g(x) = q(x - \alpha)$.

We now observe that to prove the theorem, it is enough to show that if p(x) is any polynomial of positive degree n (that is, not a constant function), then

there exists a complex number
$$\alpha \in \mathbb{C}$$
 with $p(\alpha) = 0$. (*)

If we can show this property, then we can apply it to p(x) by the lemma to get the factorization

$$p(x) = (x - \alpha)g(x).$$

If n = 1 then g(x) must be constant and we are done.

If n > 1 then we apply the same fact to g(x) to get a factorization $g(x) = (x - \beta)h(x)$ which means

$$p(x) = (x - \alpha)(x - \beta)h(x).$$

If n=2 then h(x) must be constant and we are done.

Otherwise, by continuing in this way we will eventually completely factorize p(x).

The demonstration accompanying this lecture illustrates a proof of the property (*).

3 Complex eigenvalues

Define \mathbb{C}^n to be the set of vectors $v = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$ with n rows and entries $v_1, v_2, \dots, v_n \in \mathbb{C}$.

We have $\mathbb{R}^n \subset \mathbb{C}^n$ since $\mathbb{R} = \{a \in \mathbb{R}\} \subset \mathbb{C} = \{a + bi : a, b \in \mathbb{R}\}.$

The sum u+v and scalar multiple cv for $u,v\in\mathbb{C}^n$ and $c\in\mathbb{C}$ are defined exactly as for vectors in \mathbb{R}^n , except we use the addition and multiplication operations from \mathbb{C} instead of \mathbb{R} .

If A is an $n \times n$ matrix and $v \in \mathbb{C}^n$ then we define Av in the same way as when $v \in \mathbb{R}^n$. For example:

$$\left[\begin{array}{cc} i & 1 \\ 3 & 2i \end{array}\right] \left[\begin{array}{c} 1 \\ 1-i \end{array}\right] = \left[\begin{array}{c} i+(1-i) \\ 3+2i(1-i) \end{array}\right] = \left[\begin{array}{c} 1 \\ 3+2i-2i^2 \end{array}\right] = \left[\begin{array}{c} 1 \\ 5+2i \end{array}\right].$$

Definition. Let A be an $n \times n$ matrix with entries in \mathbb{R} or \mathbb{C} .

Let $\lambda \in \mathbb{C}$. The following statements are equivalent:

- λ is an *eigenvalue* of A.
- $Av = \lambda v$ for some nonzero vector $v \in \mathbb{C}^n$
- $\det(A \lambda I) = 0$.

This is no different from our first definition of an eigenvalue, except that now we permit λ to be in \mathbb{C} .

Example. The eigenvalues of $A = \begin{bmatrix} i & 1 \\ 3 & 2i \end{bmatrix}$ are the solutions to

$$0 = \det(A - xI) = \det\begin{bmatrix} i - x & 1\\ 3 & 2i - x \end{bmatrix} = (i - x)(2i - x) - 3 = 2i^2 - 3ix + x^2 - 3 = -5 - 3ix + x^2.$$

By the quadratic formula these solutions are

$$\lambda = \frac{3i \pm \sqrt{(-3i)^2 - 4(-5)}}{2} = \frac{3i \pm \sqrt{-9 + 20}}{2} = \pm \frac{\sqrt{11}}{2} + \frac{3}{2}i.$$

The fundamental theorem of algebra implies the following essential property:

Fact. If A is an $n \times n$ matrix then A has n (not necessarily real or distinct) eigenvalues $\lambda \in \mathbb{C}$, counting repeated eigenvalues with their respective multiplicities.

If A is a matrix and $v \in \mathbb{C}^n$ then we define \overline{A} and \overline{v} to be the matrix and vector given by replacing all entries of A and v by their complex conjugates.

Proposition. Suppose A is an $n \times n$ matrix with real entries, so that $A = \overline{A}$. If A has a complex eigenvalue $\lambda \in \mathbb{C}$ with eigenvector $v \in \mathbb{C}^n$ then $\overline{v} \in \mathbb{C}^n$ is an eigenvector for A with eigenvalue $\overline{\lambda}$.

This proposition does **not** apply to $A = \begin{bmatrix} i & 1 \\ 3 & 2i \end{bmatrix}$ from above since A does not have all real entries.

4 Some final properties of eigenvalues of eigenvectors

We discuss a few more properties of eigenvalues and eigenvectors.

Lemma. Suppose we can write a polynomial in x in two ways as

$$(\lambda_1 - x)(\lambda_2 - x) \cdots (\lambda_n - x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$$

for some complex numbers $\lambda_1, \lambda_2, \dots, \lambda_n, a_0, a_1, \dots, a_n \in \mathbb{C}$. Then

$$a_n = (-1)^n$$
 and $a_{n-1} = (-1)^{n-1}(\lambda_1 + \lambda_2 + \dots + \lambda_n)$ and $a_0 = \lambda_1 \lambda_2 \cdots \lambda_n$.

Proof. The product $(\lambda_1 - x)(\lambda_2 - x)\cdots(\lambda_n - x)$ is a sum of 2^n monomials corresponding to a choice of either λ_i or -x for each of the n factors, multiplied together.

The only such monomial of degree n is $(-x)^n = (-1)^n x^n = a_n x^n$ so $a_n = (-1)^n$.

The only such monomial of degree 0 is $\lambda_1 \lambda_2 \cdots \lambda_n = a_0$.

Finally, there are n monomials of degree n-1 that arise:

$$\lambda_1(-x)^{n-1} + (-x)\lambda_2(-x)^{n-2} + (-x)^2\lambda_3(-x)^{n-3} + \dots + (-x)^{n-1}\lambda_n = (-1)^{n-1}(\lambda_1 + \dots + \lambda_n)x^{n-1}.$$

This sum must be equal to
$$a_{n-1}x^{n-1}$$
 so $a_{n-1}=(-1)^{n-1}(\lambda_1+\lambda_2+\cdots+\lambda_n)$.

Let A be an $n \times n$ matrix.

Define tr(A) to be the sum of the diagonal entries of A. Call tr(A) the *trace* of A.

Example.
$$\operatorname{tr}\left(\begin{bmatrix} 1 & 0 & 7 \\ -1 & 2 & 8 \\ 2 & 4 & 3 \end{bmatrix}\right) = 1 + 2 + 3 = 6 = \operatorname{tr}\left(\begin{bmatrix} 1 & -1 & 2 \\ 0 & 2 & 4 \\ 7 & 8 & 3 \end{bmatrix}\right).$$

We see in this example that $tr(A^{\top}) = tr(A)$ since A and A^{\top} have the same diagonal entries. Additionally:

Proposition. If A, B are $n \times n$ matrices then $\operatorname{tr}(A+B) = \operatorname{tr}(A) + \operatorname{tr}(B)$ and $\operatorname{tr}(AB) = \operatorname{tr}(BA)$.

Remark. Usually we have $tr(AB) \neq tr(A)tr(B)$, unlike for the determinant.

Proof. The diagonal entries of A + B are given by adding together the diagonal entries of A with those of B in corresponding positions, so it follows that tr(A + B) = tr(A) + tr(B).

Let E_{ij} be the $n \times n$ matrix with 1 in position (i, j) and 0 in all other positions.

(In this proof, we use the symbol i to mean an integer index rather than a complex number.)

You can check that $E_{ij}E_{kl}$ is the zero matrix if $j \neq k$ and that $E_{ij}E_{jk} = E_{ik}$.

Moreover, $\operatorname{tr}(E_{ij}) = 0$ if $i \neq j$ and $\operatorname{tr}(E_{ii}) = 1$.

We conclude that $tr(E_{ij}E_{kl})$ is 1 if i = l and j = k and is 0 otherwise.

This formula is symmetric so $tr(E_{ij}E_{kl}) = tr(E_{kl}E_{ij})$.

It follows that tr(AB) = tr(BA) since if A_{ij} and B_{ij} are the entries of A and B in positions (i, j), then

$$A = \sum_{i=1}^{n} \sum_{j=1}^{n} A_{ij} E_{ij}$$
 and $B = \sum_{k=1}^{n} \sum_{l=1}^{n} B_{kl} E_{kl}$.

Theorem. Let A be an $n \times n$ matrix (with entries in \mathbb{R} or \mathbb{C}).

Suppose the characteristic polynomial of A factors as

$$\det(A - xI) = (\lambda_1 - x)(\lambda_2 - x) \cdots (\lambda_n - x).$$

Then $det(A) = \lambda_1 \lambda_2 \cdots \lambda_n$ and $tr(A) = \lambda_1 + \lambda_2 + \cdots + \lambda_n$. In other words:

- (a) det(A) is the complex eigenvalues of A, repeated with multiplicity.
- (b) tr(A) is the sum of the complex eigenvalues of A, repeated with multiplicity.

Remark. The theorem is true for all matrices, but is much easier to prove for diagonalizable matrices. If $A = PDP^{-1}$ where D is a diagonal matrix, then $\det(A) = \det(PDP^{-1}) = \det(D) = \lambda_1 \lambda_2 \cdots \lambda_n$ and

$$tr(A) = tr(PDP^{-1}) = tr(DP^{-1}P) = tr(D) = \lambda_1 + \lambda_2 + \dots + \lambda_n.$$

Before proving the theorem let's see an example.

Example. If
$$A = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & i \end{bmatrix}$$
 then $\begin{bmatrix} -i \\ 1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$, and $\begin{bmatrix} i \\ 1 \\ 0 \end{bmatrix}$ are eigenvectors of A .

The corresponding eigenvalues are i, i, and -i.

One can check that $det(A - xI) = -x^3 + ix^2 - x + i = (i - x)^2(-i - x)$.

The theorem asserts that $(i)(i)(-i) = -i^3 = i = \det(A)$ and $i + i + (-i) = i = \operatorname{tr}(A)$.

Proof of the theorem. We can write $\det(A - xI) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$ for some numbers $a_0, a_1, \dots, a_n \in \mathbb{C}$. By the lemma it suffices to show that $a_0 = \det(A)$ and $a_{n-1} = (-1)^{n-1} \operatorname{tr}(A)$.

The first claim is easy. The value of a_0 is given by setting x=0 in $\det(A-xI)$, so $a_0=\det(A)$.

Showing that $a_{n-1} = (-1)^{n-1} \operatorname{tr}(A)$ takes a little more work.

Consider the coefficient a_{n-1} of x^{n-1} in the characteristic polynomial $\det(A-xI)$. Remember our formula

$$\det(A - xI) = \sum_{Z \in S_n} (-1)^{\mathsf{inv}(Z)} \mathsf{prod}(Z, A - xI) \tag{*}$$

where $\operatorname{prod}(Z, A - xI)$ is the product of the entries of A - xI in the nonzero positions of the permutation matrix Z. The key observation to make is that if $Z \in S_n$ is not the identity matrix then Z has at most n-2 nonzero entries on the diagonal, so $\operatorname{prod}(Z, A - xI)$ is a polynomial in x degree at most n-2.

Therefore the formula (*) implies that

$$det(A - xI) = prod(I, A - xI) + (polynomial terms of degree \le n - 2).$$

Let d_i be the diagonal entry of A in position (i, i). Then $\operatorname{prod}(I, A - xI) = (d_1 - x)(d_2 - x) \cdots (d_n - x)$ and the coefficient of x^{n-1} in this polynomial must be equal to the coefficient of x^{n-1} in $\det(A - xI)$.

By the lemma, the coefficient of x^{n-1} in $(d_1-x)(d_2-x)\cdots(d_n-x)$ is

$$(-1)^{n-1}(d_1+d_2+\cdots+d_n)=(-1)^{n-1}\operatorname{tr}(A),$$

and so
$$a_{n-1} = (-1)^{n-1} \operatorname{tr}(A)$$
.

Corollary. Suppose A is a 2×2 matrix. Let $p = \det A$ and $q = \operatorname{tr} A$.

Then A has distinct eigenvalues if and only if $q^2 \neq 4p$.

Proof. Suppose $a, b \in \mathbb{C}$ are the eigenvalues of A (repeated with multiplicity).

Then ab = p and a + b = q so $a(q - a) = qa - a^2 = p$ and therefore $a^2 - qa + p = 0$.

The quadratic formula implies that $a=\frac{q\pm\sqrt{q^2-4p}}{2}$ and $b=\frac{q\mp\sqrt{q^2-4p}}{2}$ so $a\neq b$ if and only if $q^2-4p\neq 0$. \square

5 Vocabulary

Keywords from today's lecture:

1. Fundamental theorem of algebra.

Any polynomial

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

with coefficients $a_0, a_1, \ldots, a_n \in \mathbb{C}$ and $a_n \neq 0$ can be factored as

$$f(x) = a_n(x - r_1)(x - r_2) \cdots (x - r_n)$$

for some not necessarily distinct complex numbers $r_1, r_2, \dots, r_n \in \mathbb{C}$.

2. (Complex) eigenvalues and eigenvectors.

Let \mathbb{C}^n be the set of vectors with n rows with entries in \mathbb{C} . Since $\mathbb{R} \subset \mathbb{C}$, we have $\mathbb{R}^n \subset \mathbb{C}^n$.

If A is an $n \times n$ matrix and there exists a nonzero vector $v \in \mathbb{C}^n$ with $Av = \lambda v$ for some $\lambda \in \mathbb{C}$, then λ is an eigenvalue for A. The vector v is called an eigenvector.

Example: The matrix $A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$ has eigenvalues i and -i.

We have
$$\left[\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right] \left[\begin{array}{c} 1 \\ i \end{array}\right] = \left[\begin{array}{c} -i \\ 1 \end{array}\right] = -i \left[\begin{array}{c} 1 \\ i \end{array}\right] \text{ and } \left[\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right] \left[\begin{array}{c} 1 \\ -i \end{array}\right] = \left[\begin{array}{c} i \\ -1 \end{array}\right] = i \left[\begin{array}{c} 1 \\ -i \end{array}\right].$$

3. **Trace** of a square matrix.

The sum of the diagonal entries of a square matrix A, denote tr(A).

The value of tr(A) is also the sum of the complex eigenvalues of A, counted with multiplicity.

Example:
$$\operatorname{tr} \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = 1 + 4 = 5.$$