
MATH 2121 — Linear algebra (Fall 2023) Lecture 20

This document is a transcript of the lecture, with extra summary and vocabulary sections for your
convenience. Due to time constraints, the notes may sometimes only contain limited illustrations, proofs,
and examples; for a more thorough discussion of the course content, consult the textbook.

Summary

Quick summary of today’s notes. Lecture starts on next page.

• The inner product or dot product of two vectors u, v ∈ Rn is the scalar

u • v = u1v1 + u2v2 + · · ·+ unvn = u>v = v>u ∈ R1 = R.

A unit vector is a vector v ∈ Rn with v • v = 1.

• Two vectors u, v ∈ Rn are orthogonal if u • v = 0.

If V ⊆ Rn is a subspace then its orthogonal complement is the subspace

V ⊥ = {w ∈ Rn : v • w = 0 for all v ∈ V }.

• A set of nonzero vectors v1, v2, . . . , vp ∈ Rn is orthogonal if vi • vj = 0 for all i 6= j.

Any such set is automatically linearly independent and therefore a basis for a subspace.

• An orthogonal basis is orthonormal if it consists entirely of unit vectors.

If u1, u2, . . . , un ∈ Rm are orthonormal and U =
[
u1 u2 . . . un

]
then U>U = In.

A square matrix U is orthogonal if U−1 = U>.

This occurs if and only if the columns of U are orthonormal.

• Any subspace V ⊆ Rn has an orthogonal basis.

Any subspace V ⊆ Rn therefore also has an orthonormal basis.

If u1, u2, . . . , up is an orthogonal basis for V then the projection of y ∈ Rn onto V is the vector

projV (y) =
y • u1
u1 • u1

u1 +
y • u2
u2 • u2

u2 + · · ·+ y • up
up • up

up ∈ V.

This formula does not depend on the choice of orthogonal basis for V .

The projection of y onto V is the unique vector in V such that y − projV (y) ∈ V ⊥.

The projection of y onto V is also characterized as the vector in V that is the shortest distance
away from y. If v ∈ V and v 6= projV (y) then ‖y − projV (y)‖ < ‖y − v‖.

• The Gram-Schmidt process is an algorithm that takes a basis x1, x2, . . . , xp for a subspace of Rn as
input, and produces an orthogonal basis v1, v2, . . . , vp of the same subspace as output.

The orthogonal basis v1, v2, . . . , vp is defined from the input basis x1, x2, . . . , xp by these formulas:

v1 = x1.

v2 = x2 − x2•v1
v1•v1 v1.

v3 = x3 − x3•v1

v1•v1 v1 −
x3•v2
v2•v2

v2.

v4 = x4 − x4•v1
v1•v1 v1 −

x4•v2
v2•v2

v2 − x4•v3
v3•v3 v3.

...

vp = xp − xp•v1
v1•v1 v1 −

xp•v2
v2•v2 v2 − · · · −

xp•vp−1

vp−1•vp−1
vp−1.
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1 Last time: inner products and orthogonality

The inner product or dot product of two vectors

u =


u1
u2
...

un

 and v =


v1
v2
...

vn


in Rn is the scalar u • v = u1v1 + u2v2 + · · ·+ unvn = u>v = v>u = v • u.

The length of a vector v ∈ Rn is ‖v‖ =
√
v • v =

√
v21 + v22 + · · ·+ v2n.

A vector with length 1 is a unit vector . Note that ‖v‖2 = v • v.

Two vectors u, v ∈ Rn are orthogonal if u • v = 0.

In R2, two vectors are orthogonal if and only if they belong to perpendicular lines through the origin.

Pythagorean Theorem. Two vectors u, v ∈ Rn are orthogonal if and only if ‖u+ v‖2 = ‖u‖2 + ‖v‖2.

The orthogonal complement of a subspace V ⊆ Rn is the subspace V ⊥ whose elements are the vectors
w ∈ Rn such that w • v = 0 for all v ∈ V .

The only vector that is in both V and V ⊥ is the zero vector.

We have {0}⊥ = Rn and (Rn)⊥ = {0}. If A is an m× n matrix then (ColA)⊥ = Nul(A>).

We also showed last time that dimV + dimV ⊥ ≤ n.

A list of vectors u1, u2, . . . , up ∈ Rn is orthogonal if ui • uj = 0 whenever 1 ≤ i < j ≤ p.

Theorem. Any list of orthogonal nonzero vectors is linearly independent and so is an orthogonal basis
of the subspace it spans.

Second proof. Suppose u1, u2, . . . , up ∈ Rn are orthogonal and nonzero.

Let A =
[
u1 u2 . . . up

]
and di = ui • ui > 0 and D =

 d1
. . .

dp

.

Check that A>A = D. Our vectors are linearly dependent if and only if Ax = 0 has a nonzero solution.
This is impossible since if Ax = 0 then A>Ax = 0 which implies x = 0 since A>A = D is invertible.

If u1, u2, . . . , up is an orthogonal basis for a subspace V ⊆ Rn and y ∈ V , then

y = c1u2 + c2u2 + · · ·+ cpup where ci =
y • ui
ui • ui

∈ R.

This is a very useful property of orthogonal bases.

In general, to determine the coefficients that express a vector in a given basis, we have to solve an entire
linear system. For orthogonal bases, we can just compute inner products.
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Example. Let’s work through this statement for the standard orthogonal basis e1, e2, . . . , en for Rn. If

y =


y1
y2
...

yn

 = y1e1 + y2e2 + · · ·+ ynen

then y = c1e1 + c2e2 + · · ·+ cnen where ci = y•ei
ei•ei . But ei • ei = 1 and y • ei = yi, so we just have ci = yi.

2 Orthogonal projection onto a line

Let L ⊆ Rn be a one-dimensional subspace.

Then L = R-span{u} for any nonzero vector u ∈ L.

Let y ∈ Rn. The orthogonal projection of y onto L is the vector

projL(y) =
y • u
u • u

u for any 0 6= u ∈ L.

The value of projL(y) does not depend on the choice of the nonzero vector u.

The component of y orthogonal to L is the vector z = y − projL(y).

Proposition. The only vector ŷ ∈ L with y − ŷ ∈ L⊥ is the orthogonal projection ŷ = projL(y).

Proof. Let u ∈ L be nonzero. Then y − projL(y) = y − y•u
u•uu and it holds that(

y − y • u
u • u

u
)
• u = y • u− y • u

u • u
u • u = y • u− y • u = 0.

This shows that y − projL(y) ∈ L⊥, and clearly projL(y) ∈ L.

To see that projL(y) is the only vector in L with this property, suppose ŷ ∈ L is such that y − ŷ ∈ L⊥.

Then (y − ŷ) • ŷ = y • ŷ − ŷ • ŷ = 0 so y • ŷ = ŷ • ŷ.

But ŷ = cu for some nonzero c ∈ R.

So we have c(y • u) = y • cu = (cu) • (cu) = c2(u • u).

Thus c = y•u
u•u so ŷ = projL(y).

Example. If y =

[
7
6

]
and L = R-span

{[
4
2

]}
then

projL(y) =

[
7
6

]
•
[

4
2

]
[

4
2

]
•
[

4
2

] [ 4
2

]
=

28 + 12

16 + 4

[
4
2

]
=

[
8
4

]
.

In R2, the distance from a point (x, y) to a line L = R-span{u} is the length

∥∥∥∥[ x
y

]
− projL

([
x
y

])∥∥∥∥ .
Example. To find the distance from the point (x, y) = (7, 6) to the line L defined by y = 1

2x, note that L

contains the vector u =

[
4
2

]
. Let w =

[
7
6

]
. Then projL

([
7
6

])
= w•u

u•u u = 28+12
16+4 u = 40

20u =

[
8
4

]
so the distance is

∥∥∥∥[ 7
6

]
−
[

8
4

]∥∥∥∥ =

∥∥∥∥[ −1
2

]∥∥∥∥ =
√

1 + 4 =
√

5.
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3 Orthonormal vectors

A set of vectors u1, u2, . . . , up is orthonormal if the vectors are orthogonal and each vector is a unit vector.
In other words, if ui • uj = 0 when i 6= j and ui • ui = 1 for all i.

An orthonormal basis of a subspace is a basis that is orthonormal.

Confusing convention: a square matrix with orthonormal columns is called an orthogonal matrix .

It would make more sense to call such a matrix an “orthonormal matrix” but the term “orthogonal
matrix” is standard and widely used.

Example. The standard basis e1, e2, . . . , en is an orthonormal basis for Rn.

Example. The vectors 1√
11

 3
1
1

, 1√
6

 −1
2
1

, and 1√
66

 −1
−4

7

 are an orthonormal basis for R3.

Theorem. Let U be an m× n matrix.

The columns of U are orthonormal vectors if and only if U>U = In.

If U is square then its columns are orthonormal if and only if U> = U−1.

(In other words, a matrix U is orthogonal if and only if U is square and U> = U−1.)

Proof. Suppose U =
[
u1 u2 . . . un

]
where each ui ∈ Rm.

The entry in position (i, j) of U>U is then u>i uj = ui • uj .

Therefore ui • ui = 1 and ui • uj = 0 for all i 6= j if and only if U>U is the n× n identity matrix.

Corollary. If U is an orthogonal matrix then det(U) ∈ {−1, 1}.

Proof. We have det(U)2 = det(U>) det(U) = det(U>U) = det(I) = 1.

Theorem. Let U be an m× n matrix with orthonormal columns. Suppose x, y ∈ Rn. Then:

1. ‖Ux‖ = ‖x‖.

2. (Ux) • (Uy) = x • y.

3. (Ux) • (Uy) = 0 if and only if x • y = 0.

Proof. The first and third statements are special cases of the second since ‖Ux‖ = ‖x‖ if and only if
(Ux)•(Ux) = x•x. The second statement holds since (Ux)•(Uy) = x>U>Uy = x>Iy = x>y = x•y.

4 Orthogonal projections onto subspaces

We have already seen that if y ∈ Rn and L ⊆ Rn is a 1-dimensional subspace then y can be written
uniquely as y = ŷ + z where ŷ ∈ L and z ∈ L⊥. This generalizes to arbitrary subspaces as follows:

Theorem. Let W ⊆ Rn be any subspace. Let y ∈ Rn.

Then there are unique vectors ŷ ∈W and z ∈W⊥ such that y = ŷ + z.

3
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If u1, u2, . . . , up is an orthogonal basis for W then

ŷ =
y • u1
u1 • u1

u1 +
y • u2
u2 • u2

u2 + · · ·+ y • up
up • up

up and z = y − ŷ. (*)

It doesn’t matter which orthogonal basis is chosen for W ; this formula gives the same value for ŷ and z.

Proof. To prove the theorem, we need to assume that W has an orthogonal basis. This nontrivial fact
will be proved later in this lecture. Choose one such basis u1, u2, . . . , up ∈W .

Define ŷ by the given formula. Then ŷ ∈W and y − ŷ ∈W⊥ since for each i = 1, 2, . . . , p we have

(y − ŷ) • ui = y • ui −
y • ui
ui • ui

ui • ui = 0.

To show uniqueness, suppose y = û+ v where û ∈W and v ∈W⊥.

Since we already have y = ŷ + z, we must have û− ŷ = z − v. But û− ŷ is in W while z − v is in W⊥,
so both expressions must be zero as W ∩W⊥ = {0}. This means we must have û = ŷ and v = z.

Definition. The vector ŷ, defined relative to y and W by the formula (*) in the preceding theorem, is

the orthogonal projection of y onto W . From now on we will write projW (y) = ŷ to refer to this vector.

Corollary. If W ⊆ Rn is any subspace then dimW⊥ = n− dimW .

Proof. The preceding theorem shows that W and W⊥ together span Rn. Therefore the union of any
basis for W with a basis for W⊥ also spans Rn.

The size of such a union is at most dimW +dimW⊥ and at least n, so n ≤ dimW +dimW⊥. This means
that dimW⊥ ≥ n−dimW. We showed last time that dimW⊥ ≤ n−dimW , so dimW⊥ = n−dimW .

Properties of orthogonal projections onto a subspace W ⊆ Rn.

Fact. If y ∈W then projW (y) = y. If y ∈W⊥ then projW (y) = 0.

Proposition. If v ∈W and y ∈ Rn and v 6= projW (y) then ‖y − projW (y)‖ < ‖y − v‖.

In words: the projection projW (y) is the vector in W that is closest to y.

Proof. Let ŷ = projW (y). Then y − v = (y − ŷ) + (ŷ − v).

The first term in parentheses is in W⊥ while the second term is in W .

Therefore by the Pythagorean theorem ‖y− v‖2 = ‖y− ŷ‖2 + ‖ŷ− v‖2 > ‖y− ŷ‖2 since ‖ŷ− v‖ > 0.

Fact. Suppose u1, u2, . . . , up is an orthonormal basis of W . Then

projW (y) = (y • u1)u1 + (y • u2)u2 + · · ·+ (y • up)up.

Define the matrix U =
[
u1 u2 . . . up

]
. Then projW (y) = UU>y.
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5 The Gram-Schmidt process

The Gram-Schmidt process is an algorithm that takes an arbitrary basis for some subspace of Rn as
input, and produces an orthogonal basis of the same subspace as output.

Theorem. Let W ⊆ Rn be a nonzero subspace. Then W has an orthogonal basis.

(The zero subspace {0} has an orthogonal basis given by the empty set, but we exclude this trivial case.)

Gram-Schmidt process. Suppose x1, x2, . . . , xp is any basis for W .

Then an orthogonal basis is given by the vectors v1, v2, . . . , vp defined by the following formulas:

v1 = x1.

v2 = x2 −
x2 • v1
v1 • v1

v1.

v3 = x3 −
x3 • v1
v1 • v1

v1 −
x3 • v2
v2 • v2

v2.

v4 = x4 −
x4 • v1
v1 • v1

v1 −
x4 • v2
v2 • v2

v2 −
x4 • v3
v3 • v3

v3.

...

vp = xp −
xp • v1
v1 • v1

v1 −
xp • v2
v2 • v2

v2 − · · · −
xp • vp−1
vp−1 • vp−1

vp−1.

These formulas are inductive: to compute any vi you need to have already computed v1, v2, . . . , vi−1.

More strongly, we can say the following. Let Wi = R-span{v1, v2, . . . , vi} for each i = 1, 2, . . . , p.

Then v1, v2, . . . , vi is an orthogonal basis for Wi and vi+1 = xi+1 − projWi
(xi+1).

(Our proof of the existence of orthogonal projections relies on this theorem.)

Proof. For i = 1, 2, . . . , p and y ∈ Rn define projWi
(y) = y•v1

v1•v1 v1 + y•v2
v2•v2 v2 + · · ·+ y•vi

vi•vi vi.

We want to show that v1, v2, . . . , vi is an orthogonal basis for Wi for each i.

If we assume that this is true for any particular value of i, then the formula vi+1 = xi+1 − projWi
(xi+1)

automatically holds, which means that vi+1 ∈ W⊥i so v1, v2, . . . , vi, vi+1 is also an orthogonal set, and
therefore an orthogonal basis for Wi+1.

The single vector v1 = x1 is necessarily an orthogonal basis for W1 = R-span{v1}.

Therefore v1, v2 is an orthogonal basis for W2, which means that v1, v2, v3 is an orthogonal basis for W3;
continuing in this way, we deduce that v1, v2, . . . , vi is an orthogonal basis for Wi for each i = 1, 2, . . . , p.
In particular v1, v2, . . . , vp is an orthogonal basis for Wp = W .

Remark. To find an orthonormal basis for a subspace W , first find an orthogonal basis v1, v2, . . . , vp.
Then replace each vector vi by ui = 1

‖vi‖vi. The vectors u1, u2, . . . , up will then be an orthonormal basis.

Example. Suppose x1 =


1
1
1
1

 and x2 =


0
1
1
1

 and x3 =


0
0
1
1

.
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These vectors are linearly independent and so are a basis for the subspace W = R-span{x1, x2, x3}.

To compute an orthogonal basis for W , we carry out the Gram-Schmit process as follows:

• We set v1 = x1 =


1
1
1
1

. Then v2 = x2 − x2•v1
v1•v1 v1 =


0
1
1
1

− 3
4


1
1
1
1

 =


−3/4

1/4
1/4
1/4

.

• Finally let v3 = x3 − x3•v1
v1•v1 v1 −

x3•v2
v2•v2 v2 =


0
0
1
1

− 1
2


1
1
1
1

− 2
3


−3/4

1/4
1/4
1/4

 =


0

−2/3
1/3
1/3

.

The vectors v1 =


1
1
1
1

 , v2 =


−3/4

1/4
1/4
1/4

 , v3 =


0

−2/3
1/3
1/3

 are then an orthogonal basis for W .

6



MATH 2121 — Linear algebra (Fall 2023) Lecture 20

6 Vocabulary

Keywords from today’s lecture:

1. Orthonormal vectors.

Two vectors u, v ∈ Rn are orthogonal if u • v = 0.

A set of vectors in Rn is orthogonal if any two of the vectors are orthogonal.

A set of vectors in Rn is orthonormal if the vectors are orthogonal and each vector is a unit vector.

Example: the standard basis e1, e2, . . . , en of Rn is orthonormal.

2. Orthogonal projection of a vector y ∈ Rn onto a subspace W ⊆ Rn.

The unique vector projW (y) ∈W such that y − projW (y) is orthogonal to every element of W .

If u1, u2, . . . , up is an orthonormal basis for W then

projW (y) = (y • u1)u1 + (y • u2)u2 + · · ·+ (y • up)up.

3. Orthogonal matrix.

A square matrix U whose columns are orthonormal. A better name for an orthogonal matrix would
be “orthonormal matrix,” but this term is not commonly used.

Equivalently, a matrix U is orthogonal if and only if U is invertible and U−1 = U>.

Example: every rotation matrix

[
cos θ − sin θ
sin θ cos θ

]
is orthogonal.

4. Gram-Schmidt process.

A specific algorithm whose input is an arbitrary basis x1, x2, . . . , xp for a subspace of Rn and whose
output is an orthogonal basis v1, v2, . . . , vp for the same subspace. Explicitly:

v1 = x1.

v2 = x2 −
x2 • v1
v1 • v1

v1.

v3 = x3 −
x3 • v1
v1 • v1

v1 −
x3 • v2
v2 • v2

v2.

v4 = x4 −
x4 • v1
v1 • v1

v1 −
x4 • v2
v2 • v2

v2 −
x4 • v3
v3 • v3

v3.

...

vp = xp −
xp • v1
v1 • v1

− xp • v2
v2 • v2

− · · · − xp • vp−1
vp−1 • vp−1

vp−1.
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