This document is a transcript of the lecture, with extra summary and vocabulary sections for your convenience. Due to time constraints, the notes may sometimes only contain limited illustrations, proofs, and examples; for a more thorough discussion of the course content, consult the textbook.

Summary

Quick summary of today's notes. Lecture starts on next page.

- Let A be an $m \times n$ matrix. Then $A^{\top} A$ is a symmetric $n \times n$ matrix.

The eigenvalues of $A^{\top} A$ are nonnegative real numbers. This means that there are real numbers $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n} \geq 0$ such that $\operatorname{det}\left(A^{\top} A-x I\right)=\left(\lambda_{1}-x\right)\left(\lambda_{2}-x\right) \cdots\left(\lambda_{n}-x\right)$.
Define $\sigma_{i}=\sqrt{\lambda_{i}}$. Then the numbers $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{n} \geq 0$ are the singular values of A.
The rank of A is the same as its number of nonzero singular values.

- Recall that an orthogonal matrix is an invertible square matrix U with $U^{-1}=U^{\top}$.

Suppose A is any $m \times n$ matrix with $\operatorname{rank} A=r$.
Suppose $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{r}>0$ are the nonzero singular values of A.
Then we can write $A=U \Sigma V^{\top}$ where
U is some $m \times m$ orthogonal matrix.
V is some $n \times n$ orthogonal matrix.

$$
\Sigma \text { is the } m \times n \text { matrix } \Sigma=\left[\begin{array}{cc}
D & 0 \\
0 & 0
\end{array}\right] \text { where } D=\left[\begin{array}{llll}
\sigma_{1} & & & \\
& \sigma_{2} & & \\
& & \ddots & \\
& & & \sigma_{r}
\end{array}\right]
$$

The decomposition $A=U \Sigma V^{\top}$ is called a singular value decomposition or $S V D$.

- To compute an SVD for A, first find the eigenvalues of $A^{\top} A$.

Then construct an orthonormal basis $v_{1}, v_{2}, \ldots, v_{n}$ of \mathbb{R}^{n} consisting of eigenvectors for $A^{\top} A$.
Let λ_{i} be the eigenvalue such that $A^{\top} A v_{i}=\lambda_{i} v_{i}$ and define $\sigma_{i}=\sqrt{\lambda_{i}}$.
Order the basis vectors such that $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$ and $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{n}$.
Then set $V=\left[\begin{array}{llll}v_{1} & v_{2} & \ldots & v_{n}\end{array}\right]$ and define Σ in terms of the σ_{i} 's as above.
Let $r=\operatorname{rank} A$. This is the largest index with $\sigma_{r}>0$.
For $i=1,2, \ldots, r$ define $u_{i}=\frac{1}{\sigma_{i}} A v_{i}$.
Choose any vectors $u_{r+1}, u_{r+2}, \ldots, u_{m} \in \mathbb{R}^{m}$ such that $u_{1}, u_{2}, \ldots, u_{m}$ are orthonormal.
Finally set $U=\left[\begin{array}{llll}u_{1} & u_{2} & \ldots & u_{m}\end{array}\right]$.
The matrices U and V will then be orthogonal and $A=U \Sigma V^{\top}$ is a singular value decomposition.

- A pseudo-inverse of an $m \times n$ matrix A is an $n \times m$ matrix A^{+}that satisfies

$$
A A^{+} A=A \quad \text { and } \quad A^{+} A A^{+}=A^{+}
$$

Every matrix has a pseudo-inverse, which can be computed from a singular value decomposition.
If $A=U \Sigma V^{\top}$ is a singular value decomposition and Σ^{+}is the matrix formed by transposing Σ and then replacing all nonzero entries by their reciprocals, then $A^{+}=V \Sigma^{+} U^{\top}$ is a pseudo-inverse.

1 Last time: symmetric matrices

A matrix A is symmetric if $A^{\top}=A$.
This happens if and only if A is square and $A_{i j}=A_{j i}$ for all i, j.
Example. $\left[\begin{array}{ll}1 & 2 \\ 2 & 3\end{array}\right]$ is symmetric but $\left[\begin{array}{ll}1 & 2 \\ 3 & 2\end{array}\right]$ is not.

A matrix U is orthogonal if U is invertible and $U^{-1}=U^{\top}$.
This happens precisely when U is square with orthonormal columns.

An $n \times n$ matrix A is orthogonally diagonalizable if there is an orthogonal matrix U and a diagonal matrix D such that $A=U D U^{-1}=U D U^{\top}$. In this case, the columns of U are an orthonormal basis for \mathbb{R}^{n} consisting of eigenvectors for A, and the eigenvalues of these eigenvectors are the diagonal entries of D.

The following summarizes the main results from last time:

Theorem.

(1) A square matrix is orthogonally diagonalizable if and only if it is symmetric.
(2) Eigenvectors with different eigenvalues for a symmetric matrix are orthogonal.
(3) All (complex) eigenvalues of a symmetric matrix A are real. The characteristic polynomial of A has all real roots and can be expressed as $\operatorname{det}(A-x I)=\left(\lambda_{1}-x\right)\left(\lambda_{2}-x\right) \cdots\left(\lambda_{n}-x\right)$ for some (not necessarily distinct) real numbers $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n} \in \mathbb{R}$.

Example. Suppose $A=\left[\begin{array}{cc}a & b \\ b & a\end{array}\right]$ for some $a, b \in \mathbb{R}$.
How does the preceding theorem apply to this generic 2-by-2 matrix? Since

$$
\operatorname{det}(A-x I)=\operatorname{det}\left[\begin{array}{rr}
a-x & b \\
b & a-x
\end{array}\right]=(a-x)^{2}-b^{2}=(a-b-x)(a+b-x)
$$

the eigenvalues of A are $a-b$ and $a+b$.
It's not too hard to guess the eigenvectors corresponding to these eigenvectors, though the usual method of row reducing $A-\lambda I$ to find a basis for $\operatorname{Nul}(A-\lambda I)$ will also produce the answer:
The vector $\left[\begin{array}{r}1 \\ -1\end{array}\right]$ is an eigenvector for A with eigenvalue $a-b$.
The vector $\left[\begin{array}{l}1 \\ 1\end{array}\right]$ is an eigenvector for A with eigenvalue $a+b$.
These eigenvectors are orthogonal, as predicted by the theorem. We can convert them to unit vectors by multiplying each vector by the reciprocal of its length. This gives the eigenvectors

$$
\frac{1}{\sqrt{2}}\left[\begin{array}{r}
1 \\
-1
\end{array}\right] \quad \text { and } \quad \frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

which form an orthonormal basis for \mathbb{R}^{2}.
It follows that $A=U D U^{-1}=U D U^{\top}$ where $U=\frac{1}{\sqrt{2}}\left[\begin{array}{rr}1 & 1 \\ -1 & 1\end{array}\right]$ and $D=\left[\begin{array}{rr}a-b & 0 \\ 0 & a+b\end{array}\right]$.

2 Singular value decomposition

Today, we'll apply the results from last time to prove the existence of singular value decompositions, which give a sort of approximate orthogonal diagonalization for any matrix, not just symmetric ones.

Let A be an $m \times n$ matrix.
Then $A^{\top} A$ is a symmetric $n \times n$ matrix, since $\left(A^{\top} A\right)^{\top}=A^{\top}\left(A^{\top}\right)^{\top}=A^{\top} A$.
It follows from our results last time that $A^{\top} A$ has all real eigenvalues. A stronger statement holds:
Lemma. All eigenvalues of $A^{\top} A$ are nonnegative real numbers.
If λ is an eigenvalue of $A^{\top} A$ and $v \in \mathbb{R}^{n}$ is a unit vector with $A^{\top} A v=\lambda v$, then $\lambda=\|A v\|^{2}$.
Proof. If $v \in \mathbb{R}^{n}$ has $\|v\|=1$ and $A^{\top} A v=\lambda v$ then

$$
0 \leq\|A v\|^{2}=(A v) \bullet(A v)=(A v)^{\top}(A v)=v^{\top} A^{\top} A v=v^{\top}(\lambda v)=\lambda\left(v^{\top} v\right)=\lambda\|v\|^{2}=\lambda
$$

The preceding lemma allows us to make the following definition.
Definition. Let $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n} \geq 0$ be the eigenvalues of $A^{\top} A$ arranged in decreasing order. Define $\sigma_{i}=\sqrt{\lambda_{i}}$ for $i=1,2, \ldots, n$. We call the numbers $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{n} \geq 0$ the singular values of A.
In other words, the singular values of a matrix A are the squares roots of the eigenvalues of $A^{\top} A$, which are guaranteed to be nonnegative real numbers (and therefore always have well-defined square roots).

Example. Suppose $A=\left[\begin{array}{rrr}4 & 11 & 14 \\ 8 & 7 & -2\end{array}\right]$. Then $A^{\top} A=\left[\begin{array}{rrr}80 & 100 & 40 \\ 100 & 170 & 140 \\ 40 & 140 & 200\end{array}\right]$.
This matrix $A^{\top} A$ has characteristic polynomial

$$
\operatorname{det}\left(A^{\top} A-x I\right)=(360-x)(90-x) x
$$

so the eigenvalues of $A^{\top} A$ are $\lambda_{1}=360, \lambda_{2}=90$, and $\lambda_{3}=0$.
The singular values of A are therefore $\sigma_{1}=\sqrt{360}=6 \sqrt{10}, \sigma_{2}=\sqrt{90}=3 \sqrt{10}$, and $\sigma_{3}=0$.

As a sequel to the lemma above, we have this nontrivial statement about the eigenvectors of $A^{\top} A$.
Theorem. Suppose $v_{1}, v_{2}, \ldots, v_{n}$ is an orthonormal basis of \mathbb{R}^{n} composed of eigenvectors of $A^{\top} A$, arranged so that if $\lambda_{i} \in \mathbb{R}$ is the eigenvalue of v_{i} then $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$.
Assume A has r nonzero singular values.
Then $A v_{1}, A v_{2}, \ldots, A v_{r}$ is an orthogonal basis for the column space of A and consequently rank $A=r$.
Proof. Choose indices $i \neq j$. Then $v_{i} \bullet v_{j}=0$ so also $v_{i} \bullet \lambda_{j} v_{j}=0$. Then

$$
\left(A v_{i}\right)^{\top} A v_{j}=v_{i}^{\top} A^{\top} A v_{j}=v_{i}^{\top}\left(\lambda_{j} v_{j}\right)=v_{i} \bullet \lambda_{j} v_{j}=0
$$

This shows that $A v_{1}, A v_{2}, \ldots, A v_{r}$ are orthogonal vectors in $\operatorname{Col} A$.
Since $\left\|A v_{i}\right\|=\sqrt{\lambda_{i}}>0$, these vectors are all nonzero and therefore are linearly independent.
To see that these vectors span the column space of A, suppose $y \in \operatorname{Col} A$.

Then $y=A x$ for some vector $x \in \mathbb{R}^{n}$, which we can write as

$$
x=c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{n} v_{n}
$$

for some coefficients $c_{1}, c_{2}, \ldots, c_{n} \in \mathbb{R}$. If $i>r$ then $A v_{i}=0$ since $\left\|A v_{i}\right\|=\sqrt{\lambda_{i}}=0$. Therefore

$$
y=A x=c_{1} A v_{1}+c_{2} A v_{2}+\cdots+c_{r} A v_{r}+\underbrace{c_{r+1} A v_{r+1}+\cdots+c_{n} A v_{n}}_{=0}=c_{1} A v_{1}+c_{2} A v_{2}+\cdots+c_{r} A v_{r}
$$

We conclude that $A v_{1}, A v_{2}, \ldots, A v_{r}$ is a basis for $\operatorname{Col} A$.

Corollary. The rank of a matrix is the same as its number of nonzero singular values.

We arrive at today's main result.
Theorem (Existence of SVDs). Let A be an $m \times n$ matrix with rank r.
Suppose $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{r}$ are the nonzero singular values of A.
Then we can write $A=U \Sigma V^{\top}$ where
U is some $m \times m$ orthogonal matrix.
V is some $n \times n$ orthogonal matrix.
Σ is the $m \times n$ matrix $\Sigma=\left[\begin{array}{cc}D & 0 \\ 0 & 0\end{array}\right]$ where $D=\left[\begin{array}{llll}\sigma_{1} & & & \\ & \sigma_{2} & & \\ & & \ddots & \\ & & & \sigma_{r}\end{array}\right]$.
Comments. The three zeros in the matrix defining Σ represent blocks of zeros: the upper right 0 stands for an $r \times(n-r)$ zero submatrix, the lower right 0 stands for an $(m-r) \times(n-r)$ zero submatrix, and the lower left 0 stands for an $(m-r) \times r$ zero submatrix.
Another way to think of Σ : place the diagonal matrix D in the upper left corner of an $m \times n$ matrix, and then fill all of the remaining entries with zeros.

Definition. A factorization $A=U \Sigma V^{\top}$ with U, V, Σ as above is a singular value decomposition of A.
We sometimes abbreviate by writing $S V D$ instead of singular value decomposition.
The matrices U and V in an SVD $A=U \Sigma V^{\top}$ are not uniquely determined by A, but Σ is.
The columns of U are called left singular vectors of A.
The columns of V are called right singular vectors of A.
Proof that an SVD of A exists. Let $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$ be the decreasing list of eigenvalues of $A^{\top} A$.
The singular values of A are $\sigma_{i}=\sqrt{\lambda_{i}}$ for each $i=1,2, \ldots, n$.
Let $v_{1}, v_{2}, \ldots, v_{n}$ be a list of corresponding orthonormal eigenvectors for $A^{\top} A$.
Then we have $\lambda_{r+1}=\lambda_{r+2}=\cdots=\lambda_{n}=0$ and $A v_{1}, A v_{2}, \ldots, A v_{r}$ is an orthogonal basis for $\operatorname{Col} A$.
For each $i=1,2, \ldots, r$, define $u_{i}=\frac{1}{\left\|A v_{i}\right\|} A v_{i}=\frac{1}{\sqrt{\lambda_{i}}} A v=\frac{1}{\sigma_{i}} A v_{i}$.
Then $u_{1}, u_{2}, \ldots, u_{r}$ is an orthonormal basis for $\operatorname{Col} A$.
We can choose vectors $u_{r+1}, u_{r+2}, \ldots, u_{m} \in \mathbb{R}^{m}$ such that the extended list of vectors $u_{1}, u_{2}, \ldots, u_{m}$ is an orthonormal basis for \mathbb{R}^{m}. Make any such choice, and define

$$
U=\left[\begin{array}{llll}
u_{1} & u_{2} & \ldots & u_{m}
\end{array}\right] \quad \text { and } \quad V=\left[\begin{array}{llll}
v_{1} & v_{2} & \ldots & v_{n}
\end{array}\right] .
$$

These matrices are orthogonal by construction, and

$$
\begin{aligned}
A V & =\left[\begin{array}{llll}
A v_{1} & A v_{2} & \ldots & A v_{n}
\end{array}\right] \\
& =\left[\begin{array}{llllll}
A v_{1} & A v_{2} & \ldots & A v_{r} & 0 & \ldots
\end{array}\right]=\left[\begin{array}{lllllll}
\sigma_{1} u_{1} & \sigma_{2} u_{2} & \ldots & \sigma_{r} u_{r} & 0 & \ldots & 0
\end{array}\right]
\end{aligned}
$$

If Σ is the matrix given in the theorem, then we also have

$$
U \Sigma=\left[\begin{array}{lllllll}
\sigma_{1} u_{1} & \sigma_{2} u_{2} & \ldots & \sigma_{r} u_{r} & 0 & \ldots & 0
\end{array}\right]=A V
$$

so $U \Sigma V^{\top}=A V V^{\top}=A I=A$, which confirms the theorem statement.

We conclude this lecture with a small example, continuing from before.
Example. Again suppose $A=\left[\begin{array}{rrr}4 & 11 & 14 \\ 8 & 7 & -2\end{array}\right]$.
To find a singular value decomposition for A, there are three steps.

1. Find an orthogonal diagonalization of $A^{\top} A$.

In this case $A^{\top} A$ is a 3×3 matrix, and by the usual methods (of row reducing $A-\lambda I$ to find a basis for $\operatorname{Nul}(A-\lambda I)$ for each eigenvalue λ), you can find that

$$
v_{1}=\left[\begin{array}{c}
1 / 3 \\
2 / 3 \\
2 / 3
\end{array}\right], \quad v_{2}=\left[\begin{array}{r}
-2 / 3 \\
-1 / 3 \\
2 / 3
\end{array}\right], \quad \text { and } \quad v_{3}=\left[\begin{array}{r}
2 / 3 \\
-2 / 3 \\
1 / 3
\end{array}\right]
$$

is an orthonormal basis of \mathbb{R}^{3} consisting of eigenvectors of $A^{\top} A$.
The corresponding eigenvalues are $\lambda_{1}=360, \lambda_{2}=90$, and $\lambda_{3}=0$.
2. Set up V and Σ.

Following the proof of the theorem, we have

$$
V=\left[\begin{array}{lll}
v_{1} & v_{2} & v_{3}
\end{array}\right]=\frac{1}{3}\left[\begin{array}{rrr}
1 & -2 & 2 \\
2 & -1 & -2 \\
2 & 2 & 1
\end{array}\right] \quad \text { and } \quad D=\left[\begin{array}{rr}
\sigma_{1} & 0 \\
0 & \sigma_{2}
\end{array}\right]
$$

for $\sigma_{1}=\sqrt{\lambda_{1}}=\sqrt{360}$ and $\sigma_{2}=\sqrt{\lambda_{2}}=\sqrt{90}$.
Since Σ has the same size as A, we get $\Sigma=\left[\begin{array}{rrr}\sqrt{360} & 0 & 0 \\ 0 & \sqrt{90} & 0\end{array}\right]$.
3. Construct U.

We have $U=\left[\begin{array}{ll}u_{1} & u_{2}\end{array}\right]$ where $u_{i}=\frac{1}{\sigma_{i}} A v_{i}$.
In this case you can compute that

$$
u_{1}=\frac{1}{\sqrt{360}}\left[\begin{array}{r}
18 \\
6
\end{array}\right] \quad \text { and } \quad u_{2}=\frac{1}{\sqrt{90}}\left[\begin{array}{r}
3 \\
-9
\end{array}\right]
$$

which means that we can write $U=\frac{1}{\sqrt{10}}\left[\begin{array}{rr}3 & 1 \\ 1 & -3\end{array}\right]$.
Putting everything together produces the singular value decomposition

$$
A=U \Sigma V^{\top}=\left[\begin{array}{rr}
3 / \sqrt{10} & 1 / \sqrt{10} \tag{}\\
1 / \sqrt{10} & -3 / \sqrt{10}
\end{array}\right]\left[\begin{array}{rrr}
\sqrt{360} & 0 & 0 \\
0 & \sqrt{90} & 0
\end{array}\right]\left[\begin{array}{rrr}
1 / 3 & 2 / 3 & 2 / 3 \\
-2 / 3 & -1 / 3 & 2 / 3 \\
2 / 3 & -2 / 3 & 1 / 3
\end{array}\right]
$$

Be careful to note that the third matrix factor is the transpose V^{\top} rather than V.

One application of singular value decompositions is to show the existence of pseudo-inverses:
Definition. A pseudo-inverse of an $m \times n$ matrix A is an $n \times m$ matrix A^{+}such that

$$
A A^{+} A=A \quad \text { and } \quad A^{+} A A^{+}=A^{+}
$$

Example: If A is a square, invertible matrix, then $A^{+}=A^{-1}$ is the pseudo-inverse of A.
Theorem. Every matrix A has a pseudo-inverse, which can be computed as follows. If $A=U \Sigma V^{\top}$ is a singular value decomposition, and Σ^{+}is the matrix formed by transposing Σ and then replacing all of its nonzero entries by their reciprocals, then $A^{+}=V \Sigma^{+} U^{\top}$ is a pseudo-inverse for A.

Example. If A is as in $\left(^{*}\right)$ then a pseudo-inverse is provided by

$$
A^{+}=\left[\begin{array}{rrr}
1 / 3 & -2 / 3 & 2 / 3 \\
2 / 3 & -1 / 3 & -2 / 3 \\
2 / 3 & 2 / 3 & 1 / 3
\end{array}\right]\left[\begin{array}{rr}
1 / \sqrt{360} & 0 \\
0 & 1 / \sqrt{90} \\
0 & 0
\end{array}\right]\left[\begin{array}{rr}
3 / \sqrt{10} & 1 / \sqrt{10} \\
1 / \sqrt{10} & -3 / \sqrt{10}
\end{array}\right]
$$

One can show that the pseudo-inverse is unique (but we won't prove this in these notes).
Proof. We have

$$
A A^{+} A=\left(U \Sigma V^{\top}\right)\left(V \Sigma^{+} U^{\top}\right)\left(U \Sigma V^{\top}\right)=U \Sigma \Sigma^{+} \Sigma V^{\top}
$$

and

$$
A^{+} A A^{+}=\left(V \Sigma^{+} U^{\top}\right)\left(U \Sigma V^{\top}\right)\left(V \Sigma^{+} U^{\top}\right)=V \Sigma^{+} \Sigma \Sigma^{+} U^{\top}
$$

so it suffices to check that $\Sigma \Sigma^{+} \Sigma=\Sigma$ and $\Sigma^{+} \Sigma \Sigma^{+}=\Sigma^{+}$. This is easy to check because of the simple form Σ and Σ^{+}(they only have nonzero entries in diagonal positions). Rather than write down a formal argument, here is an example which captures the main idea: when $a \neq 0$ and $b \neq 0$ we have

$$
\left[\begin{array}{lll}
a & 0 & 0 \\
0 & b & 0
\end{array}\right]\left[\begin{array}{rr}
1 / a & 0 \\
0 & 1 / b \\
0 & 0
\end{array}\right]\left[\begin{array}{lll}
a & 0 & 0 \\
0 & b & 0
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{lll}
a & 0 & 0 \\
0 & b & 0
\end{array}\right]=\left[\begin{array}{lll}
a & 0 & 0 \\
0 & b & 0
\end{array}\right]
$$

and

$$
\left[\begin{array}{rr}
1 / a & 0 \\
0 & 1 / b \\
0 & 0
\end{array}\right]\left[\begin{array}{lll}
a & 0 & 0 \\
0 & b & 0
\end{array}\right]\left[\begin{array}{rr}
1 / a & 0 \\
0 & 1 / b \\
0 & 0
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{rr}
1 / a & 0 \\
0 & 1 / b \\
0 & 0
\end{array}\right]=\left[\begin{array}{rr}
1 / a & 0 \\
0 & 1 / b \\
0 & 0
\end{array}\right]
$$

3 Vocabulary

Keywords from today's lecture:

1. Singular values of an $m \times n$ matrix A.

The square roots of the eigenvalues of $A^{\top} A$, which are all nonnegative real numbers.
Example: if A is diagonal then its singular values are the absolute values of its diagonal entries.
2. Singular value decomposition of an $m \times n$ matrix A.

A decomposition $A=U \Sigma V^{\top}$ where U is an $m \times m$ matrix with $U^{-1}=U^{\top}, V$ is an $n \times n$ matrix with $V^{-1}=V^{\top}$, and Σ is the $m \times n$ matrix whose first r diagonal entries are the singular values of A in decreasing order, and whose other entries are all zero.
There may be more than one singular value decomposition for A.
Example:

$$
\underbrace{\left[\begin{array}{rrr}
4 & 11 & 14 \\
8 & 7 & -2
\end{array}\right]}_{=A}=\underbrace{\left[\begin{array}{rr}
3 / \sqrt{10} & 1 / \sqrt{10} \\
1 / \sqrt{10} & -3 / \sqrt{10}
\end{array}\right]}_{=U} \underbrace{\left[\begin{array}{rrr}
\sqrt{360} & 0 & 0 \\
0 & \sqrt{90} & 0
\end{array}\right]}_{=\Sigma} \underbrace{\left[\begin{array}{rrr}
1 / 3 & -2 / 3 & 2 / 3 \\
2 / 3 & -1 / 3 & -2 / 3 \\
2 / 3 & 2 / 3 & 1 / 3
\end{array}\right]^{\top}}_{=V^{\top}} .
$$

3. Pseudo-inverse of an $m \times n$ matrix A.

An $n \times m$ matrix A^{+}with $A A^{+} A=A$ and $A^{+} A A^{+}=A^{+}$.
Example: a pseudo-inverse for $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 0\end{array}\right]$ is $\left[\begin{array}{rrr}1 & 0 & 0 \\ 0 & 1 / 2 & 0 \\ 0 & 0 & 0\end{array}\right]$.

