
MATH 2121 — Linear algebra (Fall 2023) Lecture 24

This document is a transcript of the lecture, with extra summary and vocabulary sections for your
convenience. Due to time constraints, the notes may sometimes only contain limited illustrations, proofs,
and examples; for a more thorough discussion of the course content, consult the textbook.

Summary

Quick summary of today’s notes. Lecture starts on next page.

• The singular values of a symmetric matrix are the absolute values of its eigenvalues.

• Order the eigenvalues of A = A> such that |λ1| ≥ |λ2| ≥ · · · ≥ |λn| ≥ 0. Let

D =


λ1

λ2
. . .

λn

 .
We know from previous lectures that there is an orthogonal n×n matrix U such that A = UDU>.

Define εi = 1 if λi ≥ 0 and let εi = −1 of λi < 0. Then let

E =


ε1

ε2
. . .

εn

 .

A singular value decomposition for A = A> = UDU> is A = UΣV > where Σ = DE and V = UE.

• Every 2× 2 orthogonal matrix is a rotation matrix times a permutation matrix.

• The image of the unit disc
D = {v ∈ R2 : v • v ≤ 1}

under any linear transformation R2 → R2 is an ellipse.

• Suppose A = UΣV > is an SVD for a 2× 2 matrix.

Suppose the ellipse E = {Av : v ∈ D} has radii of lengths σ1 ≥ σ2 ≥ 0. Then Σ =

[
σ1 0
0 σ2

]
.

The columns of V =
[
v1 v2

]
are two orthogonal radii of the unit disc D.

These vectors have the property that Avi is a radius of E with length ri for each i = 1, 2.

The matrix U is always an orthogonal matrix whose inverse tranforms the ellipse E back to a
standard ellipse (whose radii belong to the x- and y-axes).
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1 Last time: definition of singular value decomposition

Let A be an m× n matrix.

Then A>A is a symmetric n× n matrix, whose eigenvalues are all nonnegative real numbers.

If λ is an eigenvalue of A>A and v ∈ Rn is a unit vector with A>Av = λv, then λ = ‖Av‖2.

Let λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0 be the eigenvalues of A>A arranged in decreasing order.

Define σi =
√
λi for i = 1, 2, . . . , n.

The nonnegative real numbers σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0 are the singular values of A.

Remember that a matrix U is orthogonal if U is invertible and U−1 = U>.

Theorem. Suppose σ1 ≥ σ2 ≥ · · · ≥ σr > 0 = σr+1 = σr+2 = · · · = σn.

Then rankA = r and we can write A = UΣV > where

U is some m×m orthogonal matrix.

V is some n× n orthogonal matrix.

Σ is the m× n matrix with σi in position (i, i) for i = 1, 2, . . . , r and zeros in all other positions.

The factorization A = UΣV > is called a singular value decomposition or SVD of A.

The columns of U are called left singular vectors of A.

The columns of V are called right singular vectors of A.

A matrix A may have more than one SVD, but the middle matrix Σ will be the same in all of these.

A pseudo-inverse of an m× n matrix A is an n×m matrix A+ such that

AA+A = A and A+AA+ = A+.

If A is a square, invertible matrix, then A+ = A−1 is the pseudo-inverse of A.

If A = UΣV > is a singular value decomposition, and Σ+ is the matrix formed by transposing Σ and then
replacing all of its nonzero entries by their reciprocals, then A+ = V Σ+U> is a pseudo-inverse for A.

To find a singular value decomposition for an m× n matrix A, do the following steps:

1. Find the nonnegative eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0 of A>A.

Find a basis of eigenvectors for A>A for each eigenspace.

Convert each basis to an orthonormal basis using the Gram-Schmidt process.

Combine these orthonormal bases to get an orthonormal list of eigenvectors v1, v2, . . . , vn.

2. Let V =
[
v1 v2 . . . vn

]
.

Form Σ as the m×n matrix with σi =
√
λi in position (i, i) for i = 1, 2, . . . ,m and zeros elsewhere.

3. Let ui = 1
σi
Avi for i = 1, 2, . . . , r where r = rankA is maximal such that σr 6= 0.

Find vectors ur+1, ur+2, . . . , um ∈ Rm such that u1, u2, . . . , um are orthonormal.

This can be done by finding the pivot columns of
[
u1 u2 . . . ur e1 e2 . . . em

]
and then

applying the Gram-Schmidt process. Finally let U =
[
u1 u2 . . . um

]
.
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2 SVDs for symmetric matrices

When we first introduced singular value decompositions we said that they generalized the notion of
“orthogonal diagonalization” for symmetric matrices. Let’s briefly explain how SVDs can be seen as a
generalization of the decomposition A = UDU> = UDU−1 that exists for a symmetric matrix.

Suppose A = A> is an n× n symmetric matrix.

We know there are real numbers λ1, λ2, . . . , λn ∈ R such that

det(A− xI) = (λ1 − x)(λ2 − x) · · · (λn − x).

These are the eigenvalues of A. Some of these numbers could be negative.

Suppose the eigenvalues are ordered such that |λ1| ≥ |λ2| ≥ · · · ≥ |λn| ≥ 0. Let

D =


λ1

λ2
. . .

λn

 .
We know from previous lectures that there is an orthogonal n× n matrix U such that A = UDU>.

Define εi = 1 if λi ≥ 0 and let εi = −1 of λi < 0. Then let

E =


ε1

ε2
. . .

εn

 .

Proposition. A singular value decomposition for the symmetric matrix A = A> = UDU> is

A = UΣV >

where Σ = DE and V = UE. The singular values of A are |λ1| ≥ |λ2| ≥ · · · ≥ |λn|.

In general, the singular values of any symmetric matrix are just the absolute values of its eigenvalues.

Proof. We have E = E> = E−1 so UΣV > = UDE(UE)> = UDEE>U> = UDU> = A.

Thus E is orthogonal, so V = UE is orthogonal since product of orthogonal matrices are orthogonal.

To show that A = UΣV > is a singular value decomposition, we just need to check that

|λ1| ≥ |λ2| ≥ · · · ≥ |λn|

are the singular values of A.

For this, it is enough to show that λ21 ≥ λ22 ≥ · · · ≥ λ2n are the eigenvalues of A>A = A2.

The follows since A2 = (UDU>)2 = (UDU−1)2 = UD2U−1 is similar to D2.

Now recall that similar matrices have the same eigenvalues; the eigenvalues of a diagonal matrix are its
diagonal entries; and the numbers λ21 ≥ λ22 ≥ · · · ≥ λ2n are the diagonal entries of D2.
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3 SVDs for 2× 2 matrices

To get some physical intuition for what an SVD means, let’s consider SVDs for 2× 2 matrices.

It is possible describe all 2× 2 orthogonal matrices in a simple way:

Proposition. Every orthogonal 2× 2 matrix is a rotation matrix times a permutation matrix.

Specifically, every 2× 2 orthogonal matrix has the form[
cos θ − sin θ
sin θ cos θ

]
or

[
cos θ sin θ
sin θ − cos θ

]
=

[
cos(θ − π

2 ) − sin(θ − π
2 )

sin(θ − π
2 ) cos(θ − π

2 )

] [
0 1
1 0

]
for an angle 0 ≤ θ < 2π.

Proof. Since (cos θ)2 + (sin θ)2 = 1 the given matrices are orthogonal.

Now suppose U =

[
u1 v1
u2 v2

]
is orthogonal, so that u21 + u22 = 1.

Every point (u1, u2) on the unit circle has the form (cos θ, sin θ) for some angle θ.

For the columns of U to be orthogonal,

[
v1
v2

]
must be a scalar multiple of

[
− sin θ

cos θ

]
.

Since both columns are unit vectors we must have

[
v1
v2

]
=

[
− sin θ

cos θ

]
or

[
v1
v2

]
=

[
sin θ

− cos θ

]
.

Suppose U is a 2× 2 orthogonal matrix. The columns of U are two perpendicular radii of the unit circle.

If the second column is 90 degrees counterclockwise from the first column, then

detU = 1 and U =

[
cos θ − sin θ
sin θ cos θ

]
for some angle θ. Otherwise, the second column must be 90 degrees clockwise from the first column, so

detU = −1 and U =

[
cos θ sin θ
sin θ − cos θ

]
for some angle θ.

We can also describe the effect of the mapping v 7→ Uv for v ∈ R2 as follows:

• If detU = 1 then v is rotated counter-clockwise by some angle.

• If detU = −1 then v is reflected across y = x and then rotated counter-clockwise by some angle.

In both cases the angle of rotation depends on U but not on v.

The unit disc D is the set of vectors

[
v1
v2

]
∈ R2 with v21 + v22 ≤ 1.

Fix real numbers r1, r2 ≥ 0.

Consider the set E of vectors

[
v1
v2

]
∈ R2 with (v1/r1)2 + (v2/r2)2 ≤ 1.

When ri = 0 we consider (vi/ri)
2 to be zero if vi = 0 and +∞ if vi 6= 0.

We call E a (solid) standard ellipse.
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Proposition. It holds that E =

{[
r1 0
0 r2

]
v : v ∈ D

}
.

Proof. We have

[
r1 0
0 r2

]
v =

[
r1v1
r2v2

]
∈ E if and only if (r1v1/r1)2 + (r2v2/r2)2 = v21 + v22 ≤ 1.

This is equivalent to having v ∈ D.

The radii of E are the vectors ±
[
r1
0

]
and ±

[
0
r2

]
. These vectors are allowed to be zero.

For each radius there is a choice of direction, but any two orthogonal radii uniquely determine E .

More generally, we refer to any rotation of the region E as a (solid) ellipse.

The radii of an ellipse formed by rotating E by some angle θ counterclockwise are the vectors

±
[
r1 cos θ
r1 sin θ

]
and ±

[
−r2 sin θ
r2 cos θ

]
formed by rotating the radii of E counterclockwise by the same angle.

Any two orthogonal radii once again completely determine the ellipse.

Proposition. Suppose U is some orthogonal 2× 2 matrix and Σ =

[
r1 0
0 r2

]
. Then the set of vectors

{
UΣv ∈ R2 : v ∈ D

}
is an ellipse whose radii have lengths r1 and r2, and every such ellipse arises as a set of this form.

Proof. Reflecting a standard ellipse across the line y = x gives another standard ellipse. The result follows
since {Σv : v ∈ D} is a standard ellipse and U is a rotation matrix times a permutation matrix.
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Proposition. Let A be a 2× 2 matrix. Then the region {Av : v ∈ D} is an ellipse.

The lengths of the radii of this ellipse are the singular values of A.

Proof. Let A = UΣV > be a singular value decomposition.

Then {V >v : v ∈ D} = D since multiplication by orthogonal matrices preserves lengths.

Therefore {Av : v ∈ D} = {UΣv : v ∈ D} so the result follows by the previous proposition.

Let’s now try to say what a singular value decomposition A = UΣV > means physically for a 2×2 matrix.

Suppose the ellipse E = {Av : v ∈ D} has radii of lengths σ1 ≥ σ2 ≥ 0.

As noted in the proposition, we then have Σ =

[
σ1 0
0 σ2

]
.

The columns of V =
[
v1 v2

]
are two orthogonal radii of the unit disc D.

These vectors have the property that Avi is a radius of E with length ri for each i = 1, 2.

This holds since Av1 = UΣV >v1 = UΣV −1v1 = UΣe1 = U

[
σ1
0

]
and likewise Av2 = U

[
0
σ2

]
.

The matrix U is always an orthogonal matrix whose inverse transforms the ellipse E back to a standard
ellipse (whose radii belong to the x- and y-axes). If detA and detV have the same sign then U is a
rotation matrix. Otherwise U is a rotation matrix with its columns interchanged.

A 2× 2 matrix A parametrizes a linear transformation R2 → R2 by telling us the images of the standard
basis elements e1, e2 ∈ R2 (these images are the columns of A).

The SVD of A parametrizes a linear transformation R2 → R2 in a different way, by telling us which
orthogonal radii of the unit disc (the columns of V ) are mapped to which orthogonal radii of the image
ellipse (the columns of UΣ).

We can extend this interpretation of the SVD to higher dimensions, after setting

Dn = {v ∈ Rn : v • v ≤ 1}

defining an m-dimensional ellipse to be a set of the form {UΣv : v ∈ Dn} where U is an orthogonal m×m
matrix and Σ is an m× n matrix with nonzero entries only on the main diagonal.

If A is m× n, then the first r = rankA columns of V in an SVD A = UΣV > are still orthogonal vectors
of the unit disc that are transformed to orthogonal radii of some m-dimensional ellipse (in which m− r
radii have length zero), while the last n− r columns are an orthogonal basis for NulA.
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