Jian-Feng Cai

Associate Professor,
Department of Mathematics,
Hong Kong University of Science and Technology.

E-mail: jfcai@ust.hk        Phone: +852 3469 2248        Office: 3443

Short Vita


Teaching

  • Fall 2018: MATH 3332 Data Analytic Tools
  • Fall 2018: MSBD 5007 Optimization and Matrix Computation

Research Interests

My research mainly focuses on the design and analysis of efficient algorithms for real-world problems (e.g., data analysis, signal/image processing, machine learning), using tools from computational harmonic analysis, approximation theory, numerical linear algebra, optimization, and probability.


Publications (Search for my publications and citations at Google Scholar)

Preprints

  • Z. Li, J.-F. Cai, and K. Wei, Towards the Optimal Construction of a Loss Function without Spurious Local Minima for Solving Quadratic Equations, preprint. pdf
  • J.-F. Cai and K. Wei, Solving Systems of Phaseless Equations via Riemannian Optimization with Optimal Sampling Complexity, preprint. pdf
  • J. Li, J.-F. Cai, and H. Zhao, Scalable Incremental Nonconvex Optimization Approach for Phase Retrieval from Minimal Measurements, preprint. pdf
  • K. Wei, J.-F. Cai, T.F. Chan and S. Leung, Guarantees of Riemannian Optimization for Low Rank Matrix Completion, preprint. pdf

Journal Papers

  1. H.Q. Cai, J.-F. Cai, and K. Wei, Accelerated Alternating Projections for Robust Principal Component Analysis, Journal of Machine Learning Research, accepted with minor revision. pdf
  2. J.-F. Cai, H. Liu, and Y. Wang, Fast Rank One Alternating Minimization Algorithm for Phase Retrieval, Journal of Scientific Computing, to appear. pdf
  3. J.-F. Cai, T. Wang, and K. Wei, Fast and Provable Algorithms for Spectrally Sparse Signal Reconstruction via Low-Rank Hankel Matrix Completion, Appl. Comput. Harmon. Anal., 46(1):94--121, 2019. pdf Supplementary Material
  4. J. Ying, J.-F. Cai, D. Guo, G. Tang, Z. Chen, X. Qu, Vandermonde Factorization of Hankel Matrix for Complex Exponential Signal Recovery -- Application in Fast NMR Spectroscopy, IEEE Trans. Signal Process., 66(21), 5520--5533, 2018. pdf
  5. J.-F. Cai, T. Wang, and K. Wei, Spectral Compressed Sensing via Projected Gradient Descent, SIAM J. Optim., 28(3):2625--2653, 2018. pdf
  6. J.-F. Cai, Y. Rong, Y. Wang, and Z. Xu, Data Recovery on a Manifold from Linear Samples: Theory and Computation, Annals of Mathematical Sciences and Applications, 3(1):337--365, 2018. pdf
  7. J. Ying, H. Lu, Q. Wei, J.-F. Cai, D. Guo, J. Wu, Z. Chen, X. Qu, Hankel matrix nuclear norm regularized tensor completion for N-dimensional exponential signals, IEEE Trans. Signal Process., 65(14):3702--3717, 2017. pdf
  8. H. Liu, J.-F. Cai, and Y. Wang, Subspace Clustering by (k, k)-sparse Matrix Factorization, Inverse Probl. Imaging, 11(3):539--551, 2017.
  9. Y. Wang, G. Wang, S. Mao, W. Cong, Z. Ji, J.-F. Cai, and Y. Ye, A Spectral Interior CT by a Framelet-Based Reconstruction Algorithm, Journal of X-Ray Science and Technology, 24(6): 771--785, 2016.
  10. Y. Wang, G. Wang, S. Mao, W. Cong, Z. Ji, J.-F. Cai, and Y. Ye, A framelet-based iterative maximum-likelihood reconstruction algorithm for spectral CT, Inverse Problems, 32(11):115021(16pp), 2016.
  11. K. Wei, J.-F. Cai, T.F. Chan and S. Leung, Guarantees of Riemannian Optimization for Low Rank Matrix Recovery, SIAM J. Matrix Anal. & Appl., 37(3):1198--1222, 2016. pdf
  12. Y. Liu, Z. Zhan, J.-F. Cai, D. Guo, Z. Chen, and X. Qu, Projected Iterative Soft-thresholding Algorithm for Tight Frames in Compressed Sensing Magnetic Resonance Imaging, IEEE Trans. Med. Imag., 35(9): 2130--2140, 2016. pdf
  13. J.-F. Cai, X. Qu, W. Xu, and G.-B. Ye, Robust Recovery of Complex Exponential Signals from Random Gaussian Projections via Low Rank Hankel Matrix Reconstruction, Appl. Comput. Harmon. Anal., 41(2):470--490, 2016. pdf
  14. Z. Zhan, J.-F. Cai, D. Guo, Y. Liu, Z. Chen, and X. Qu, Fast Multi-class Dictionaries Learning with Geometrical Directions in MRI Reconstruction, IEEE Trans. Biomed. Eng., 63(9):1850--1861, 2016. Code
  15. J.-F. Cai, B. Dong, and Z. Shen, Image Restorations: A Wavelet Frame Based Model for Piecewise Smooth Functions and Beyond, Appl. Comput. Harmon. Anal., 41(1):94--138, 2016. pdf
  16. J.-F. Cai and W. Xu, Guarantees of Total Variation Minimization for Signal Recovery, Inf. Inference, 4(4):328--353, 2015. pdf (A preliminary short version is published in Allerton 2013)
  17. M. Cho, K.V. Mishra, J.-F. Cai, and W. Xu, Block Iterative Reweighted Algorithms for Super-Resolution of Spectrally Sparse Signals, IEEE Signal Process. Lett., 22(12): 2319--2323, 2015. pdf
  18. Y. Liu, J.-F. Cai, Z. Zhan, D. Guo, J. Ye, Z. Chen, X. Qu, Balanced sparse model for tight frames in compressed sensing magnetic resonance imaging, PLoS One, Vol. 10, e0119584, 2015. Code
  19. J. Wang, and J.-F. Cai, Data-Driven Tight Frame for Multi-Channel Images and Its Application to Joint Color-Depth Image Reconstruction, J. Oper. Res. Soc. China, 3(2):99--115, 2015. pdf
  20. X. Qu, M. Mayzel, J.-F. Cai, Z. Chen, and V. Orekhov, Accelerated NMR Spectroscopy with Low-Rank Reconstruction, Angew. Chem. Int. Ed., 54(3):852--854, 2015.
  21. J.-F. Cai, X. Jia, H. Gao, S. Jiang, Z. Shen, and H. Zhao, Cine cone beam CT reconstruction using low-rank matrix factorization: algorithm and a proof-of-princple study, IEEE Trans. Med. Imag., 33(8):1581--1591, 2014. pdf
  22. J.-F. Cai, H. Ji, Z. Shen, and G.-B. Ye, Data-driven tight frame construction and image denoising, Appl. Comput. Harmon. Anal., 37(1):89--105, 2014. pdf Code
  23. J.-F. Cai, and S. Osher, Fast Singular Value Thresholding without Singular Value Decomposition, Methods Appl. Anal., 20(4):335--352, 2013. pdf
  24. W. Zhou, J.-F. Cai, and H. Gao, Adaptive tight frame based medical image reconstruction: proof-of-concept study in computed tomography, Inverse Probl., 29(12):125006(pp. 1--18), 2013. pdf
  25. G. Ye, M. Tang, J.-F. Cai, Q. Nie, and X. Xie, Low-Rank Regularization for Learning Gene Expression Programs, PLoS One, 8(12):e82146(pp. 1--9), 2013.
  26. W. Xu, M. Wang, J.-F. Cai, and K. Tang, Sparse Error Correction from Nonlinear Measurements with Applications in Bad Data Detection for Power Networks, IEEE Trans. Signal Processing, 61(24):6175--6187, 2013. pdf
  27. H. Zhang, J.-F. Cai, L. Cheng, and J. Zhu, Strongly Convex Programming for Exact Matrix Completion and Robust Principal Component Analysis, Inverse Probl. Imaging, 6(2):357--372, 2012. pdf
  28. J.-F. Cai, B. Dong, S. Osher, and Z. Shen, Image Restoration: Total Variation; Wavelet Frames; and Beyond, J. Amer. Math. Soc., 25(4):1033-1089, 2012. pdf
  29. J.-F. Cai, H. Ji, C. Liu, and Z. Shen, Framelet Based Blind Motion Deblurring from a Single Image, IEEE Trans. Image Process., 21(2):562--572, 2012. pdf Code
  30. J.-F. Cai, Z. Shen, and G.-B. Ye, Approximation of Frame Based Missing Data Recovery, Appl. Comput. Harmon. Anal., 31(2):185--204, 2011. pdf
  31. H. Gao, J.-F. Cai, Z. Shen, and H. Zhao, Robust Principle Component Analysis Based Four-Dimensional Computed Tomography, Phys. Med. Biol., 56(11):3181--3198, 2011. pdf
  32. S.-L. Yang, J.-F. Cai, and H.-W. Sun, Multigrid algorithm from cyclic reduction for Markovian queueing networks, Appl. Math. Comput., 217(16): 6990--7000, 2011.
  33. J.-F. Cai, R.H. Chan, and Z. Shen, Simultaneous Cartoon and Texture Inpainting, Inverse Probl. Imaging, 4(3):379--395, 2010. pdf
  34. J.-F. Cai, H. Ji, F. Shang and Z. Shen, Inpainting for Compressed Images, Appl. Comput. Harmon. Anal., 29(3): 368--381, 2010. pdf
  35. J.-F. Cai, E.J. Candès and Z. Shen, A singular value thresholding algorithm for matrix completion, SIAM J. Optim., 20(4): 1956--1982, 2010. pdf Code
  36. J.-F. Cai, and Z. Shen, Framelet based deconvolution, J. Comput. Math., 28(3): 289--308, 2010. pdf
  37. J.-F. Cai, R.H. Chan, and M. Nikolova, Fast Two-Phase Image Deblurring under Impulse Noise, J. Math. Imaging Vis., 36(1): 46--53, 2010. pdf Code
  38. J.-F. Cai, S. Osher and Z. Shen, Split Bregman Methods and Frame Based Image Restoration, Multiscale Model. Simul., 8(2):337--369, 2010. pdf Code Code
  39. J.-F. Cai, S. Osher and Z. Shen, Convergence of the Linearized Bregman Iteration for $\ell_1$-Norm Minimization, Math. Comp., 78(268):2127--2136, 2009. pdf
  40. J.-F. Cai, H. Ji, C. Liu and Z. Shen, Blind motion deblurring using multiple images, J. Comput. Physics, 228(14):5057--5071, 2009. pdf
  41. J.-F. Cai, R.H. Chan, L. Shen, and Z. Shen, Simultaneously Inpainting in Image and Transformed Domains, Numer. Math., 112(4):509--533, 2009. pdf
  42. J.-F. Cai, R.H. Chan, L. Shen, and Z. Shen, Convergence Analysis of Tight Framelet Approach for Missing Data Recovery, Adv. Comput. Math., 31(1--3):87--113, 2009. pdf
  43. J.-F. Cai, S. Osher and Z. Shen, Linearized Bregman Iterations for Compressed Sensing, Math. Comp., 78(267):1515--1536, 2009. pdf
  44. J.-F. Cai, S. Osher and Z. Shen, Linearized Bregman Iterations for Frame-Based Image Deblurring, SIAM J. Imaging Sci., 2(1):226--252, 2009. pdf Code
  45. J.-F. Cai, R.H. Chan, and M. Nikolova, Two-phase Approach for Deblurring Images Corrupted by Impulse Plus Gaussian Noise, Inverse Probl. Imaging, 2(2):187--204, 2008. pdf Code
  46. J.-F. Cai, R.H. Chan, L. Shen, and Z. Shen, Restoration of Chopped and Nodded Images by Framelets, SIAM J. Sci. Comput., 30(3):1205--1227, 2008. pdf
  47. J.-F. Cai, R.H. Chan, and Z. Shen, A Framelet-Based Image Inpaiting Algorithm, Appl. Comput. Harmon. Anal., 24(2):131--149, 2008. pdf
  48. J.-F. Cai, R.H. Chan, and C. Di Fiore, Minimization of a Detail-preserving Regularization Functional for Impulse Noise Removal, J. Math. Imaging Vis., 29(1):79--91, 2007. pdf Code
  49. X. Zhang, J. Cai, and Y. Wei, Interval Iterative Methods for Computing Moore-Penrose Inverse, Appl. Math. Comput., 183(1):522--532, 2006. pdf
  50. J.-F. Cai, M.K. Ng, and Y.-M. Wei, Modified Newton's Algorithm for Computing the Group Inverses of Singular Toeplitz Matrices, J. Comput. Math., 24(5):647--656, 2006. pdf
  51. Y. Wei, J. Cai, and M.K. Ng, Computing Moore-Penrose Inverses of Toeplitz Matrices by Newton's Iteration, Math. Comput. Modelling, 40(1--2):181--191, 2004. pdf
  52. J. Cai, and Y. Wei, Displacement Structure of Weighted Pseudoinverses, Appl. Math. Comput., 153(2):317--335, 2004. pdf

Proceeding Papers and Book Chapters

  1. J.-F. Cai and K. Wei, Exploiting the Structure Effectively and Efficiently in Low Rank Matrix Recovery, Handbook of Numerical Analysis, Volume 19, to appear. pdf
  2. W. Xu, J. Yi, S. Dasgupta, J.-F. Cai, M. Jacob, and M. Cho, Separation-Free Super-Resolution from Compressed Measurements is Possible: an Orthonormal Atomic Norm Minimization Approach, 2018 IEEE International Symposium on Information Theory (ISIT), 2018. pdf
  3. J.-F. Cai, W. Xu, and Y. Yang, Large Scale 2D Spectral Compressed Sensing in Continuous Domain, 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5905--5909, 2017.
  4. M. Cho, J.-F. Cai, S. Liu, Y.C. Eldar, and W. Xu, Fast Alternating Projected Gradient Descent Algorithms for Recovering Spectrally Sparse Signals, 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 4638--4642, 2016.
  5. B. Zhang, W. Xu, J.-F. Cai, and L. Lai, Precise Phase Transition of Total Variation Minimization, 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 4518--4522, 2016. pdf
  6. J.-F. Cai, S. Liu, and W. Xu, A fast algorithm for reconstruction of spectrally sparse signals in super-resolution, Proc. SPIE 9597, Wavelets and Sparsity XVI, 95970A, 2015. pdf
  7. J. Wang, J.-F. Cai, Y. Shi, and B. Yin, Incoherent Dictionary Learning for Sparse Representation Based Image Denoising, IEEE International Conference on Image Processing (ICIP), Paris, 2014. pdf
  8. W. Xu, J.-F. Cai, K.V. Mishra, M. Cho, and A. Kruger, Precise semidefinite programming formulation of atomic norm minimization for recovering d-dimensional (D>=2) off-the-grid frequencies, Information Theory and Applications Workshop (ITA), San Diego, 2014. pdf
  9. C. Bao, J.-F. Cai, and H. Ji, Fast sparsity-based orthogonal dictionary learning and image restoration, 2013 International Conference on Computer Vision (ICCV), pp. 3384--3391, 2013. pdf
  10. J.-F. Cai and W. Xu, Guarantees of Total Variation Minimization for Signal Recovery, Proceedings of 51st Annual Allerton Conference on Communication, Control, and Computing, pp. 1266--1271, 2013.
  11. J.-F. Cai, R. Chan, L.X. Shen, and Z.W. Shen, Tight Frame Based Method for High-Resolution Image Reconstruction, Proceedings to the Conference on Wavelet Analysis and its Application, Zhuhai, China, August, 2007, Contemporary Applied Mathematics, Vol 14, pp. 1--36, 2010. pdf
  12. J.-F. Cai, H. Ji, C. Liu and Z. Shen, High-quality curvelet-based motion deblurring using an image pair, 2009 IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pp. 1566--1573, Miami, 2009. pdf
  13. J.-F. Cai, H. Ji, C. Liu and Z. Shen, Blind motion deblurring from a single image using sparse approximation, 2009 IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pp. 104--111, Miami, 2009. pdf
  14. J.-F. Cai, R.H. Chan, and B. Morini, Minimization of an Edge-Preserving Regularization Functional by Conjugate Gradient Type Methods, Image Processing Based on Partial Differential Equations, in Series: Mathematics and Visualization, Springer Berlin Heidelberg, pp. 107--120, 2007. pdf

Awards

Research Grants

Graduate Students

  • HanQin Cai, PhD in Applied Mathematical & Computational Sciences, University of Iowa, 05/2018. First job: PIC Assistant Adjunct Professor, Department of Mathematics, University of California, Los Angeles.
  • Tianming Wang, PhD in Applied Mathematical & Computational Sciences, University of Iowa, 05/2018. First job: Postdoctoral Fellow, Institute for Computational Engineering & Sciences, University of Texas at Austin.
  • Suhui Liu, PhD in Mathematics, University of Iowa, 05/2017. First job: Lecturer, Wuhan Institute of Technology.
  • Tianyi Zhang, PhD in Applied Mathematical & Computational Sciences, University of Iowa, 08/2015. First job: Algorithmic Trader, Shanghai Cyndi Investment Co. Ltd.