Homework 3

§4.1: 2, 8, 16, 18, 20
§4.2: 6, 8, 24, 32
§4.3: 10, 14, 20, 24
§4.4: 4, 8, 14, 30
§4.5: 12, 14, 30
§4.6: 4, 6, 14, 28

Supplementary exercises for determinants

1. Let \(\sigma = 364152, \tau = 246513, \rho = 413562 \) be permutations of \(\{1, 2, 3, 4, 5, 6\} \).
 (a) Find parity of \(\sigma, \tau, \rho \).
 (b) Find \(\tau \circ \sigma, \rho \circ \tau \circ \sigma \), and \(\sigma^{-1} \).

2. Let \(g = g(x_1, \ldots, x_n) = \prod_{i<j}(x_i - x_j) \). Let
 \[
 \sigma(g) = \prod_{i<j}(x_{\sigma(i)} - x_{\sigma(j)}).
 \]
 Show that \(\sigma(g) = (\text{sgn} \sigma)g \).

3. Find the determinant of each of the following matrices.
 \[
 A = \begin{bmatrix}
 7 & 6 & 5 \\
 2 & 1 & 1 \\
 3 & 2 & 1
 \end{bmatrix}, \quad
 B = \begin{bmatrix}
 -2 & -1 & 4 \\
 6 & -3 & -2 \\
 4 & 1 & 2
 \end{bmatrix}, \quad
 C = \begin{bmatrix}
 2 & 1 & 3 & 2 \\
 3 & 0 & 1 & -2 \\
 1 & -1 & 4 & 3 \\
 2 & -2 & -1 & 1
 \end{bmatrix}
 \]

 Then find the adjoint \(\text{adj} A \), \(\text{adj} B \), \(A^{-1} \), and \(B^{-1} \) if \(A \) and \(B \) are invertible.

4. Let \(T : \mathbb{R}^3 \to \mathbb{R}^3 \) be defined by \(T(x_1, x_2, x_3) = (x_1 + x_2 - x_3, x_1 - x_2 + x_3, -x_1 + x_2 + x_3) \). Let \(P \) be the parallelepiped spanned by the three vectors
 \[
 \mathbf{v}_1 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \quad
 \mathbf{v}_2 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \quad
 \mathbf{v}_3 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix},
 \]
 i.e., \(P = \{c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + c_3 \mathbf{v}_3 \mid 0 \leq c_1, c_2, c_3 \leq 1\} \). Find the volume of \(P \) and the volume of \(T(P) = \{T(x) \mid x \in P\} \).

Supplementary exercises for matrices of linear transformations

1. Let \(\mathbb{P}_n(t) \) be the vector space of all polynomials of degree at most \(n \). Let
 \[
 \mathcal{B} = \{1, t, t(t+1), t(t+1)(t+2)\}, \quad \mathcal{B}' = \{1, t, t(t-1), t(t-1)(t-2)\}.
 \]
 (a) Show that \(\mathcal{B} \) and \(\mathcal{B}' \) are bases of \(\mathbb{P}_3(t) \).
 (b) Find the transition matrix from \(\mathcal{B} \) to \(\mathcal{B}' \).
 (c) Show that \(T : \mathbb{P}_3(t) \to \mathbb{P}_3(t) \), defined by \(T(p(t)) = p(t) + tp'(t) \), is a linear transformation.
 (d) Find the matrix \(A \) of \(T \) relative to the basis \(\mathcal{B} \), and the matrix \(B \) of \(T \) relative to the basis \(\mathcal{B}' \).
 (e) Find the relation between the matrices \(A \) and \(B \).

2. Let \(\mathcal{M}_{m,n} \) be the vector space of all \(m \times n \) matrices. Note that
 \[
 \mathcal{B} = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \\ 1 & 0 \end{bmatrix} \right\}
 \]
 is a basis of \(\mathcal{M}_{3,2} \), and
 \[
 \mathcal{C} = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \right\}
 \]
 is a basis of \(\mathcal{M}_{2,2} \).
(a) Show that the set
\[B' = \left\{ \begin{bmatrix} 1 & 1 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\} \]
is a basis of \(M_{3,2} \), and that
\[C' = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \right\} \]
is a basis of \(M_{2,2} \).

(b) Show that \(F : M_{3,2} \rightarrow M_{2,2} \), defined by
\[F \left(\begin{bmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \\ x_{31} & x_{32} \end{bmatrix} \right) = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \begin{bmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \\ x_{31} & x_{32} \end{bmatrix}, \]
is a linear transformation.

(c) Find the matrix \(A \) of \(F \) relative to the bases \(B \) and \(C \), and the matrix \(B \) of \(F \) relative to the bases \(B' \) and \(C' \).

(d) Find the relation between the matrices \(A \) and \(B \).

3. Let \(F : M_{2,2} \rightarrow \mathbb{P}_2(t) \) be defined by
\[F \left(\begin{bmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{bmatrix} \right) = (x_{11} + x_{12}) + (x_{12} + x_{21})t + (x_{21} + x_{22})t^2. \]

(a) Find the matrix \(A \) of \(F \) relative to the basis
\[B = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\} \]
of \(M_{2,2} \) and the basis \(C = \{1, t, t^2\} \) of \(\mathbb{P}_2 \).

(b) Find the matrix \(B \) of \(F \) relative to the basis
\[B' = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \right\} \]
of \(M_{2,2} \) and the basis \(C' = \{1, t, t(t+1)\} \) of \(\mathbb{P}_2 \).

(c) Find the relation between \(A \) and \(B \).

4. Let \(T : \mathbb{R}^5 \rightarrow \mathbb{R}^3 \) be a linear transformation defined by
\[T(x_1, x_2, x_3, x_4, x_5) = (x_1 + x_2 + x_4, x_2 - x_3 + x_5, 3x_1 + 3x_3 - 2x_4 + 2x_5). \]

(a) Find the matrix \(B \) of \(T \) relative to the basis
\[B = \left\{ \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 0 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} \right\} \]
of \(\mathbb{R}^5 \) and the basis
\[C = \left\{ \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix} \right\} \]
of \(\mathbb{R}^3 \).
(b) Let V be the subspace of \mathbb{R}^5 defined by the linear system

\[
\begin{align*}
&x_1 + x_2 + x_3 + x_4 + x_5 = 0 \\
&x_1 + x_2 - x_3 - x_4 + x_5 = 0
\end{align*}
\]

and let W be the subspace of \mathbb{R}^3 defined by the linear equation $2x_1 + 3x_2 + x_3 = 0$. Show that T defines a linear transformation from V to W.

(c) Find the matrix of T from V to W relative to the basis B of V, consisting of the basic solutions of the linear system (*), and the basis C of W, consisting of the basic solutions of the linear equation $2x_1 + 3x_2 + x_3 = 0$.

5. Let V be an n-dimensional vector space, and let W be an m-dimensional vector space. Let $\text{Hom}(V, W)$ denote the set of all linear transformations from V to W. For $F, G \in \text{Hom}(V, W)$, define the addition and scalar multiplication as

\[
(F + G)(v) = F(v) + G(v),
\]

\[
(cF)(v) = cF(v).
\]

(a) Show that $\text{Hom}(V, W)$ is a vector space.

(b) Given a basis B of V and a basis C of W. Let $T : \text{Hom}(V, W) \longrightarrow M_{m,n}$ be defined by

\[
T(F) = \text{the matrix of } F \text{ relative to the bases } B \text{ and } C.
\]

Show that T is a one-to-one and onto linear transformation.

6. Let V be the set of functions $f : \mathbb{R} \longrightarrow \mathbb{R}$ of the form $f(t) = (a_0 + a_1t + a_2t^2)e^{2t}$, where $a_0, a_1, a_2 \in \mathbb{R}$.

(a) Show that V is a subspace of the vector space of all functions from \mathbb{R} to \mathbb{R}.

(b) Let $D : V \longrightarrow V$ be defined by $D(f(t)) = f'(t)$. Find the matrix of D relative to the basis \{\(e^{2t}, te^{2t}, t^2e^{2t}\}\).

(c) Is D invertible? If yes, find the inverse transformation of D.

3