
Week 12-13: Discrete Probability

April 22, 2021

1 Probability Space

There are many problems about chances or possibilities, called probability in

mathematics. When we roll two dice there are possible outcomes (i, j), where

1 ≤ i, j ≤ 6. The collection {(i, j) : 1 ≤ i, j ≤ 6} is know as a sample space.

A sample space is just a collection Ω of all possible outcomes. A subset

S ⊆ Ω is a called an event of Ω. A sample space is called discrete if it is

finite or countably infinite.

A finite probability space is a finite sample space Ω together with a

probability function P : P(Ω) → [0, 1] satisfying

(P1) P (Ω) = 1.

(P2) If A and B are disjoint events, then P (A ∪B) = P (A) + P (B).

We often call finite sample space and finite probability space just as sample

space and probability space without mentioning their finiteness.

Each probability function P : P(Ω) → [0, 1] induces a function P : Ω →
[0, 1] defined by

P (ω) = P ({ω}), ω ∈ Ω.

Clearly,
∑

ω∈Ω P (ω) = 1. Conversely, each function P : Ω → [0, 1] satisfying
∑

ω∈Ω P (ω) = 1 induces a probability function P : P(Ω) → [0, 1] defined by

P (A) =
∑

ω∈A
P (ω), A ⊆ Ω.

We can redefine a finite probability space as a finite sample space Ω to-

gether with a probability function P : Ω → [0, 1] such that
∑

ω∈Ω P (ω) = 1.
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Example 1.1. For a probability space (Ω, P ), if P (ω) = 1/|Ω| for each ω ∈ Ω,

we say that P is equally likely distributed. Then

P (A) = |A|/|Ω|, A ⊆ Ω.

Example 1.2. Consider rolling of two fair dice, one blue and one red. The

collection of possible ordered pairs of numbers in the top faces of the dice is the

space Ω = {(i, j) : 1 ≤ i, j ≤ 6}, and the probability function P is given by

P (i, j) = 1/36. The event E that i + j is even is the subset

E =
{

(1, 1), (1, 3), (1, 5), (2, 2), 2, 4), (2, 6), (3, 1), (3, 3), (3, 5),

(4, 2), (4, 4), (4, 6), (5, 1), (5, 3), (5, 5), (6, 2), (6, 4), (6, 6)
}

.

It turns out that P (E) = 18/36 = 1/2.

2 Independence in Probability

Let (Ω, P ) be a probability space. Given an event S such that P (S) > 0. The

conditional probability of an event E given S is defined as

P (E|S) = P (E ∩ S)

P (S)
, E ⊆ Ω.

It is easy to see that the function P ( · |S) on P(S) is a probability function.

If P (S) = 0, the above definition of conditional probability P (E|S) does not
make sense; instead, we define P (E|S) = 0.

Two eventsA andB are said to be independent if P (A∩B) = P (A)P (B).

If P (B) > 0, then independence of A and B is equivalent to

P (A|B) = P (A).

If events A and B are independent, so are the events A and the complement

Bc of B. In fact,

P (A ∩Bc) = P (A− A ∩ B) = P (A)− P (A ∩B)

= P (A)− P (A)P (B) = P (A)(1− P (B))

= P (A)P (Bc).
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Events A1, . . . , An are said to be independent if

P (A1 ∩ · · · ∩An) = P (A1) · · ·P (An).

Example 2.1. A TV show has three rooms, one room contains a car, each of

the other two rooms contains a sheep, unknowing to the audience. The game

is to choose a person from the audience, and the person is asked to select a

room by luck, if a room with a car is selected, the person wins the car; if a

room with a sheep is selected, the person wins nothing. At the time the person

has selected a room, one of the other two rooms is opened with a sheep, and

the person is asked if he/she would like to change mind to select the room

unopened. Question: Is it worth for the person to change his/her mind to

select the other unopened room? Let c and s denote Car and Sheep. The

sample space is Ω = {(c, s, s), (s, c, s), (s, s, c)}.
Clearly, the probability is 1/3 if the person doesn’t change. However, if he

changes mind, the only case he lost the car is that he had selected the room

with a car. Then if he changes his mind, the probability to win the car is 2/3.

Example 2.2. Given a fair HK dollar coin whose number-side is denoted by

1 and whose flower-side is denoted by 0. Tossed the coin n times, the possible

outcomes form the sample space Ω = {0, 1}n. What is the probability that the

number-side appeared exactly r times.

P (number-side appreas r times in n tosses) =
(n

r

)

· 1

2n
.

Let Ek denote the event that the kth toss is the number-side. Then Ēk is

the event that the kth toss is the flower-side. Since E1, . . . , En are independent

and P (Ek) = P (Ēk) = 1/2, we have

P

(

n
⋂

k=1

Ek

)

=

n
∏

k=1

P (Ek) =
1

2n
.

Example 2.3. A company purchases cables from three firms and keep a record

of how many are defective. The facts are summarized as the table:

Firm A B C

Fraction of cables purchased 0.50 0.20 0.30

Fraction of defective cables 0.01 0.04 0.02
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From the table 30% of the cables are purchased from firm C and 2% percent of

them are defective, i.e.,

P (A) = 0.50, P (B) = 0.20, P (C) = 0.30.

Let D denote the event of defect cables.

(a) The probabilities that a cable was purchased from firm and was defective

are given as follows:

P (A ∩D) = P (A)P (D|A) = 0.50× 0.01 = 0.005,

P (B ∩D) = P (B)P (D|B) = 0.20× 0.04 = 0.008,

P (C ∩D) = P (C)P (D|C) = 0.30× 0.02 = 0.006.

(b) The probability that a random cable is defective is

P (D) = P (A)P (D|A) + P (B)P (D|B) + P (C)P (D|C)

= 0.005 + 0.008 + 0.006 = 0.019.

Theorem 2.1 (Total Probability Formula). Let A1, . . . , An be a partition of

the sample space Ω and P (Ai) > 0 for all i. Then for each event B we

have

P (B) =
n
∑

i=1

P (B|Ai)P (Ai).

Proof. Since P (B|Ai) = P (B∩Ai)/P (Ai), we have P (B∩Ai) = P (B|Ai)P (Ai).

Note that B =
⊔n

i=1(B ∩Ai) (disjoint union). Thus

P (B) =

n
∑

i=1

P (B ∩Ai) =

n
∑

i=1

P (B|Ai)P (Ai).

Theorem 2.2 (Bayes’ Formula). Let Ω be a sample space partitioned into

events A1, . . . , An such that P (Ai) > 0 for all i. If S is an event with

P (S) > 0, then

P (Ai|S) =
P (S|Ai)P (Ai)

P (S)
, i = 1, . . . , n

where P (S) =
∑n

i=1 P (S|Ai)P (Ai).
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Proof. Since P (S|Ai) = P (S ∩ Ai)/P (Ai), i.e., P (Ai ∩ S) = P (S|Ai)P (Ai),

we have

P (Ai|S) =
P (Ai ∩ S)

P (S)
=

P (S|Ai)P (Ai)

P (S)
.

Example 2.4. In the previous example, assume that defective cables are 19

per thousand in record. Now when a defective cable happens in someday. What

are the chances that the particular defective cable comes from the three firms

A, B, C respectively?

We are to computer the conditional probabilities given P (D) = 0.019:

P (A|D) =
P (D|A)P (A)

P (D)
=

0.01× 0.5

0.019
≈ 0.26,

P (B|D) =
P (D|B)P (B)

P (D)
=

0.04× 0.2

0.019
≈ 0.42,

P (C|D) =
P (D|A)P (A)

P (D)
=

×0.02× 0.3

0.019
≈ 0.32.

3 Random Variable

A random variable is a function from the sample space Ω to the set R of real

numbers, usually denoted by capital letters X, Y, Z, etc. A random variable X

is said to be discrete if the set of values

X(Ω) = {X(ω) : ω ∈ Ω}

can be listed as a (finite or infinite) sequence.

A coin is said to be unfair (or biased) if the probability p of the number-

side is different from 1
2. We imagine an experiment with one possible outcome

of interest, traditionally called success; the complementary event is called

failure. We assume that P (success) = p for some p, 0 < p < 1. We set

q = P (failure), so that p + q = 1.

The sample space of a HK dollar coin tossed n times is Ω = {0, 1}n. Assume

that the number-side appears at probability p, 0 < p < 1. Then the probability
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function on Ω is given by

P (a1, . . . , an) =

n
∏

i=1

paiq1−ai, (a1, . . . , an) ∈ Ω.

The probability of the event A that the number-side appears exactly k times is

P (A) =
(n

k

)

pkqn−k, k = 0, 1, . . . , n.

Let X be a random variable on a sample space Ω. Let C be a condition

on the values X(ω). We adopt the following standard convention (notation) of

probability theory:

P (X ∈ C) = P ({ω ∈ Ω : X(ω) satisfies C}).

Example 3.1. (a) A natural random variable X on the sample space Ω of

outcomes when two dice are tossed is the one that gives the sum of the values

shown on the top faces of two dice, i.e.,

X(i, j) = i + j, (i, j) ∈ Ω.

The probability that the sum is 8 is

P (X = 8) = P ({(i, j) ∈ Ω : i + j = 8})
= P ({(2, 6), (3, 5), (4, 4), (5, 3), (6, 2)}) = 5

36
.

(b) Consider the sample space Ω of tossing a fair coin n times. One natural

random variable X is the count of the number-sides come up. Thus

X(a1, . . . , an) = a1 + · · · + an.

Let Xi denote the indicator function on Ω such that Xi(ω) = 1 if the ith toss

is the number-side and Xi(ω) = 0 otherwise. Then X = X1 + · · · +Xn and

P (X = k) =
(n

k

)

· 1

2n
, k ∈ {0, 1, . . . , n}.

(c) Consider the sample space Ω of words of 0 and 1 of length n and X

counts the number of times that consecutive 1’s appeared. Then X has values
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0, 1, 2, . . . , ⌈n/2⌉. For instance, for n = 5, we have X(00000) = 0, X(10101) =

3, X(01100) = 1, X(01101) = 2, etc. The event {X = 1} has 15 members as

10000, 01000, 00100, 00010, 00001; 11000, 01100, 00110, 00011;

11100, 01110, 00111; 11110, 01111; 11111.

The event {X = 2} has 15 members as

10100, 10010, 10001, 01010, 01001, 00101;

11010, 11001, 10110, 10011, 01101, 01011; 11101, 11011, 10111.

(d) Joke: Random variable is neither random nor a variable.

Two random variablesX and Y on a sample space Ω are said to be indepen-

dent if any two events, described by X and Y respectively, are independent,

more specifically,

{X ∈ I} = {ω ∈ Ω : X(ω) ∈ I}, {ω ∈ Ω : Y (ω) ∈ J} = {Y ∈ J}

are independent for all choices of intervals I and J of R. This definition is

equivalent to saying that the events

{X ≤ a} = {ω ∈ Ω : X(ω) ≤ a}, {Y ≤ b} = {ω ∈ Ω : Y (ω) ≤ b}

are independent for all real numbers a and b. In case that X(Ω) and Y (Ω) are

finite, then X and Y are independent if and only if the events

{X = a} = {ω ∈ Ω : X(ω) = a}, {Y = b} = {ω ∈ Ω : Y (ω) = b}

are independent for all real numbers a and b.

4 Expectation and Standard Deviation

Experience suggests that, if we toss a fair die many times, then the various

possible outcomes 1, 2, 3, 4, 5, and 6 will each happen about the same number

of times, and the average value of these outcomes will be about the average of

six numbers 1, 2, . . . , 6, i.e., (1 + · · · + 6)/6 = 3.5. More generally, if X is a
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random variable on a finite sample space Ω with all outcomes equally likely,

then the average value

A =
1

|Ω|
∑

ω∈Ω
X(ω)

of X on Ω has a probabilistic interpretation: If members ω of Ω are selected

at random many times and the values X(ω) are recorded, then the average of

these values will probably close to a number A. This statement is actually a

theorem that needs proof, but we accept it reasonably intuitive at the moment.

The expectation (or expected value or mean) of a random variable X

on a finite sample space Ω is defined as

E(X) = µ =
∑

ω∈Ω
X(ω)P (ω). (1)

If all outcomes are equally likely, then P (ω) = 1/|Ω| for all ω ∈ Ω, so E(X) is

exactly the average value A discussed above.

In Example 3.1(c) with n = 5, the expectation of the random variable X is

E(X) = 0 · 1

32
+ 1 · 15

32
+ 2 · 15

32
+ 3 · 1

32
=

3

2
.

For random variables X and Y on a sample space Ω, there are random

variables aX , X + Y and XY on Ω defined by

(aX)(w) = aX(ω), (X + Y )(ω) = X(ω) + Y (ω),

(XY )(ω) = X(ω)Y (ω), ω ∈ Ω.

Theorem 4.1. (a) E(X + Y ) = E(X) + E(Y ).

(b) E(aX) = aE(X) for real numbers a.

(c) E(c) = c for any constant random variable c on Ω.

(d) E(X − µ) = 0, where µ = E(X).
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Proof.

E(X + Y ) =
∑

ω∈Ω
(X + Y )(ω)P (ω)

=
∑

ω∈Ω

(

X(ω) + Y (ω)
)

P (ω)

=
∑

ω∈Ω
X(ω)P (ω) +

∑

ω∈Ω
Y (ω)P (ω)

= E(X) + E(Y ).

E(aX) =
∑

ω∈Ω
(aX)(ω)P (ω) =

∑

ω∈Ω
aX(ω)P (ω)

= a
∑

ω∈Ω
X(ω)P (ω) = aE(X).

E(c) =
∑

ω∈Ω
cP (ω) = c

∑

ω∈Ω
P (ω) = cP (Ω) = c.

E(X − µ) = E(X)− E(µ) = E(X)− µ = 0.

Theorem 4.2. Let X be a random variable on a finite sample space Ω. If

f : R → R be a function, then f(X) = f ◦X is a random variable on Ω,

and

E(f(X)) =
∑

k∈X(Ω)

f(k) · P (X = k). (2)

Proof. Notice that {X = k} = {ω ∈ Ω : X(ω) = k} is an event and

Ω =
⋃

k∈X(Ω)

{X = k} (disjoint).
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We have

E(f(X)) =
∑

ω∈Ω
f(X(ω)) · P (ω)

=
∑

k∈X(Ω)

∑

ω∈{X=k}
f
(

X(ω)
)

· P (ω)

=
∑

k∈X(Ω)

f(k)
∑

ω∈{X=k}
P (ω)

=
∑

k∈X(Ω)

f(k) · P (X = k).

The expectation of a random variable X gives us its probabilistic average.

However, it doesn’t tell us how close the average we are likely to be. We need

another measurement describe this. A natural choice is the probabilistic average

distance ofX from its mean µ. This is the “mean deviation”E(|X−µ|), i.e., the
mean of all deviations |X(ω)−µ|, ω ∈ Ω. While the measurement is sometimes

used, it turns out that a similar measure, called the standard deviation, is much

more manageable and useful technically.

The standard deviation of a random variable X on a sample space Ω is

σX =
√

E((X − µ)2) (3)

and the variance of X is

V (X) = σ2
X = E((X − µ)2). (4)

Theorem 4.3. For a discrete random variable X with mean µ, we have

V (X) =
∑

k∈X(Ω)

(k − µ)2 · P (X = k) = E(X2)− µ2.

Proof. Since (X − µ)2 = X2 − 2µX − µ2, we have

V (X) = E((X − µ)2) = E(X2)− 2µE(X) + µ2

= E(X2)− 2µ2 + µ2

= E(X2)− µ2.
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Theorem 4.4. If X and Y are independent random variables, then

E(XY ) = E(X) · E(Y ). (5)

Proof. We restrict to discrete random variables. We have

E(XY ) =
∑

m∈XY (Ω)

m · P (XY = m)

=
∑

m∈XY (Ω)

m
∑

k∈X(Ω), l∈Y (Ω), kl=m

P (X = k, Y = l)

=
∑

k∈X(Ω), l∈Y (Ω)

kl · P (X = k, Y = l)

=
∑

k∈X(Ω), l∈Y (Ω)

kl · P
(

(X = k) ∩ (Y = l)
)

=
∑

k∈X(Ω), l∈Y (Ω)

kl · P (X = k) · P (Y = l)

=
∑

k∈X(Ω)

k · P (X = k)
∑

l∈Y (Ω)

l · P (Y = l)

= E(X) · E(Y ).

Theorem 4.5. If X1, . . . , Xn are independent random variables, then

V (a1X1 + · · · + anXn) = a21V (X1) + · · · + a2nV (Xn).

Proof. Note that E(aX) = aµ with µ = E(X). We see that

V (aX) = E((aX − aµ)2) = E(a2(X − µ)2) = a2E((X − µ)2) = a2V (X).

We only give proof for two independent random variables X and Y . Let µX

denote the mean of X and µY the mean of Y . Then

V (aX + bY ) = E((aX + bY )2 − (aµX + bµY )
2)

= E(a2X2 + 2abXY + b2Y 2)

−(a2µ2
X + 2abµXµY + b2µ2

Y )

= a2E(X2) + 2abE(X)E(Y ) + b2E(Y 2)

−a2µ2
X − 2abµXµY − b2µ2

Y .
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Since V (X) = E(X2)−µ2
X, V (Y ) = E(Y 2)−µ2

Y , and E(XY ) = E(X)E(Y ),

we have

V (aX + bY ) = a2V (X) + b2V (Y ).

Example 4.1. Let Sn denote denote the random variable on the sample space

of a biased HK dollar coin tossed n times with probability p of the number-side,

counting the number of times that the number-side appeared in the n tosses.

Then

E(Sn) = np, V (Sn) = npq.

Proof. Let Xi denote the indicator function that the ith toss is success, i =

1, . . . , n. Note that

E(Xi) = 1 · P (Xi = 1) + 0 · P (Xi = 0) = p,

V (Xi) = E(X2
i )− (E(Xi))

2 = p− p2 = p(1− p) = pq,

and Sn = X1 + · · · +Xn. We have

E(Sn) =
n
∑

i=1

E(Xi) = np,

V (Sn) =

n
∑

i=1

V (Xi) = npq.

5 Probability Distributions

For a random variable X on a probability space Ω, the cumulative distri-

bution function (cdf) of X is a function F : R → [0, 1] defined by

F (y) = P (X ≤ y), y ∈ R.

If X is a discrete random variable, then F sums the values, i.e.,

F (y) =
∑

k≤y

P (X = k).
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It is clear that F (+∞) = F (X < +∞) = 1. The function F is a non-

decreasing function, i.e., F (x) ≤ F (y) for x ≤ y. In fact,

F (x) = P (X ≤ x)

≤ P (X ≤ x) + P (x < X ≤ y)

= P (X ≤ y) = F (y).

Example 5.1. Consider the sample space of rolling a pair of dice, one is

colored black and the other white. Let Xb denote the number on the top face

of the black die, Xw the number on the top face of the white die, and Xs the

sum of two numbers on the top faces of the dice, i.e., Xs = Xb+Xw. Then Xb

and Xw has the cdf

F (y) =







0 for y < 1

k/6 for k ≤ y < k + 1 (k = 1, . . . , 5)

1 for y ≥ 6

The random variable Xs = Xb +Xw has the cdf

F (y) =



































0 for y < 2

1/36 for 2 ≤ y < 3

3/36 for 3 ≤ y < 4

6/36 for 4 ≤ y < 5

10/36 for 5 ≤ y < 6

15/36 for 6 ≤ y < 7

F (y) =



































21/36 for 7 ≤ y < 8

26/36 for 8 ≤ y < 9

30/36 for 9 ≤ y < 10

33/36 for 10 ≤ y < 11

35/36 for 11 ≤ y < 12

1 for y ≥ 12

Example 5.2 (Cumulative Binomial Distribution). Let Sn denote

the random variable on the sample space of tossing a coin n times with success

probability p, counting the number of successes in the n experiments. The

probability function P is given by

P (Sn = k) =
(n

k

)

pkqn−k, k = 0, 1, . . . , n, where q = 1− p.

The cdf for Sn is

F (y) =
∑

k≤y

(n

k

)

pkqn−k, −∞ < y < ∞.
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Example 5.3 (Uniform Distribution). What it means when people talk

about choosing a random number on the interval [0, 1)? One may state it, of

course, as that all numbers in [0, 1] are equally likely to be chosen? But this

doesn’t make sense, since the the probability of choosing a given number in

the interval is 0. What we mean instead is that the probability of choosing a

number in any given sub-interval [a, b) is proportional to the length of the sub-

interval. The probability of choosing the number in [0, 1) is 1, so the probability

of choosing it in [a, b) is b− a. Let U denote the random variable on [0, 1) that

gives the value of the number chosen. Then P (U ∈ [0, x)) = x for 0 ≤ x < 1.

Since P (U = x) = 0, we see that P (U ∈ [0, x]) = P (U ∈ [0, x)). Thus the cdf

FU is given by

FU(y) = P (U ≤ y) =







0 for y < 0

y for 0 ≤ y < 1

1 for y ≥ 1

Example 5.4. (a) Consider the random variable X that records the value

obtained when a single fair die is tossed. Thus P (X = k) = 1/6, k = 1, . . . , 6.

Let us define f(k) = P (X = k), k = 1, . . . , 6. Consider the function

f(x) =







0 for x < 0

1/6 for 0 ≤ x ≤ 6

0 for x > 6

We see that the cdf F is given by

F (k) = P (X ≤ k) = area under f over (−∞, k]

=

∫ k

−∞
f(x)dx, k = 1, . . . , 6.

However, F (y) = P (X ≤ y) does not hold for non-integer y ∈ [0, 6].

(b) Consider the random variable Sn on the sample space of tossing a coin

n times with success probability p. Setting f(k) = P (Sn = k) =
(

n
k

)

pkqn−k,

k = 0, 1, . . . , n, where q = 1− p. Define the function f by

f(x) =







0 for x ≤ −1
(

n
k

)

pkqn−k for k − 1 < x ≤ k ∈ [0, n] ∩ Z

0 for x > n
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The cdf F of X can be given by integration

F (k) = P (Sn ≤ k) = area under f over (−∞, x]

=

∫ k

−∞
f(x)dx, k = 0, 1, . . . , n.

For p = 1/2, n = 6, we have

f(0) = 1/64, f(1) = 6/64, f(2) = 15/64, f(3) = 20/64,

f(4) = 15/64, f(5) = 6/64, f(6) = 1/64.

The the graph of the function f is

6543210−1

For p = 1/2 and n = 12, we have

x 0 1 2 3 4 5 6 7 8 9 10

f(x) 1
512

10
512

45
512

120
512

210
512

252
512

210
512

120
512

45
512

10
512

1
512

8543210−1 6 7

(c) The uniform distribution FU on [0, 1) can be given as an integral of a

function f as FU(y) =
∫ y

−∞ f(x)dx, where is defined by

f(x) =







0 for x < 0

1 for 0 ≤ x < 1

0 for x ≥ 1

which is known as the density function of the random variable U .

Definition 5.1. The normalization of a random variable X on a sample

space Ω, having mean µ and standard deviation σ > 0, is the random variable

X̃ =
X − µ

σ
.
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Theorem 5.2. Let X be a random variable with mean µ, standard devi-

ation σ > 0, and cumulative distribution function F . Let X̃ denote the

normalization of X, and let F̃ denote the cdf for X̃. Then

(a) E(X̃) = 0, V (X̃) = 1, and σX̃ = 1.

(b) F (y) = F̃ (y−µ
σ ) for all y ∈ R.

(c) F̃ (y) = F (σy + µ) for all y ∈ R.

Proof. (a) E(X̃) = E
(

X−µ
σ

)

= 1
σE(X − µ) = 1

σ

(

E(X)− µ
)

= 1
σ(µ− µ) = 0.

Note that

V (X + c) = E
(

((X + c)− (µ + c))2
)

= E
(

(X − µ)2
)

= V (X)

and

V (aX) = E
(

(aX − aµ)2
)

= E
(

a2(X − µ)
)

= a2E
(

(X − µ)2
)

= a2V (X).

We have

V (X̃) = V
(X − µ

σ

)

= V
(X

σ

)

=
1

σ2
V (X) = 1.

(b) Since X ≤ y iff X − µ ≤ y − µ iff X−µ
σ ≤ y−µ

σ iff X̃ ≤ y−µ
σ , we have

F (y) = P (X ≤ y) = P
(

X̃ ≤ y − µ

σ

)

= F̃
(y − µ

σ

)

.

(c) Since X̃ ≤ y iff X−µ
σ

≤ y iff X ≤ σy + µ, we have

F̃ (y) = P (X̃ ≤ y) = P (X ≤ σy + µ) = F (σy + µ).

Example 5.5. Let Sn be the random variable on the sample space of tossing a

biased coin n times with success probability p, and failure probability q = 1−p.

The corresponding normalized random variable is

S̃n =
Sn − µ

σ
=

Sn − np√
npq

.

The value set of Sn is {0, 1, . . . , n}. While the value set of S̃n is more compli-

cated:
{ −np√

npq
,
−np + 1√

npq
,
−np + 2√

npq
, . . . ,

−np+ n√
npq

}

.

16



For p = 1/2 and n = 6, we have
{ −3
√

3/2
,

−2
√

3/2
,

−1
√

3/2
, 0,

1
√

3/2
,

2
√

3/2
,

3
√

3/2

}

≈ {−2.45,−2.31,−0.816, 0, 0.816, 2.31, 2.45}
Let Fn and F̃n denote the cdf’s of Sn and S̃n respectively. There exists a

function fn(x) such that

F̃n(y) = P (S̃n ≤ y) =

∫ y

−∞
fn(x)dx.

Definition 5.3. The Gaussian distribution (or standard normal dis-

tribution) is the function Φ defined by

Φ(y) =

∫ y

−∞
φ(x)dx, y ∈ R, where φ(x) =

1√
2π

e−x2/2, x ∈ R.

1/2

0 1 2 3 4 5 6−1−2−3−4−5−6

1

0 1 2 3 4 5 6−1−2−3−4−5−6

A central result of probability theory is that F̃n(y) ≈ Φ(y) for large n and

for all y ∈ R. The distribution Φ does not depend on the success probability p.

The following theorem states a much more general phenomena similar to the

limit of F̃n.

Example 5.6. In the Bernoulli space Ω = {0, 1}n with n = 10, 000 and

success probability p = 1/10, the expected number of success is µ = np = 1000.

Estimate the chance that number of success is between 950 and 1050.

This is to compute Fn(1050)− Fn(950). Note that

σ =
√
npq =

√

10, 000 · 1

10
· 9

10
= 30.
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We have

Fn(1050) = F̃n

(1050− 1000

30

)

= F̃n(1.7) ≈ Φ(1.7) ≈ 0.955,

Fn(949) = F̃n

(949− 1000

30

)

= F̃n(−1.7) ≈ Φ(−1.7) ≈ 0.045.

Thus

P (950 ≤ number of success ≤ 1050) ≈ 0.955− 0.045 = 0.91.

6 Covariance

Definition 6.1. The covariance of two random variables X, Y on a sam-

ple space Ω is the expected product of their deviations from their individual

expected values, i.e.,

cov(X, Y ) = E
(

(X − E(X))(Y − E(Y ))
)

,

a measure of the linear correlation between two random variables.

cov(X, Y ) = E(XY −XE(Y )− E(X)Y + E(X)E(Y ))

= E(XY )− E(X)E(Y )− E(X)E(Y ) + E(X)E(Y )

= E(XY )− E(X)E(Y ).

So X, Y are independent if and only if cov(X, Y ) = 0.

7 Limit Theorem

Proposition 7.1 (Markov’s Inequality). If X is a nonnegative random vari-

able, then for any value ε > 0,

P{X ≥ ε} ≤ E(X)

ε
.
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Proof.

E(X) =
∑

v≥0

vP{X = v} ≥
∑

v≥ε

vP{X = v}

≥ ε
∑

v≥ε

P{X = v} = εP{X ≥ ε}.

Proposition 7.2 (Chebyshev’s Inequality). If X is a random variable with

finite mean µ and variance σ2, then for any value ε > 0,

P{|X − µ| ≥ ε} ≤ σ2

ε2
.

Proof. Since (X − µ)2 is a nonnegative random variable, Markov’s inequality

implies

P{(X − µ)2 ≥ ε2} ≥ E((X − µ)2)

ε2
.

Note that (X − µ)2 ≥ ε2 if and only if |X − µ| ≥ ε. The desired inequality

follows.

Theorem 7.3 (Central Limit Theorem). Let X1, X2, . . . be a sequence of

independent and identically distributed random variables on a sample space

Ω, each having mean µ and variance σ2. Then the random variable

X1 + · · · +Xn − nµ

σ
√
n

tends to the standard normal distribution as n → ∞. That is

lim
n→∞

P

(

X1 + · · · +Xn − nµ

σ
√
n

≤ y

)

=
1√
2π

∫ y

−∞
e−x2/2dx.

Proof. See any book on (advanced) probability theory.

8 Page Rank

Internet can be viewed as a huge directed graph G = (V,E) whose vertices are

web pages and whose directed edges are links from one web page to the other.

19



A page rank is a kind of measure of importance of web pages. In practice,

this measure is only given to a part of web pages of special interest. Anyway,

we assume G is a subgraph of the huge internet graph. The importance of a

page depends proportional to the number of pages linked to the page and the

importance of those page linked the page.

Let A be the V × V adjacency matrix of digraph G, where (u, v)-entry of

A, written auv, is the number of directed edges from u to v. A page rank is

a nonnegative function p : V → R such that
{

p(v) =
∑

u∈V
auv

odeg (u)
· p(u), v ∈ V,

∑

v∈V p(v) = 1,

where odeg (u) is the out-degree of vertex u, the number of directed edges

pointing away from u to all possible vertices, including u itself. If odeg (u) = 0,

i.e., u is not linked to any page, of course auv = 0, we assume auv
odeg (u) = 0.

5

V V

V V

1 2

34 V

We introduce stochastic matrix V ×V matrix P = [puv] whose all row sums

are 1, where

puv =











auv
odeg (u) if odeg (u) 6= 0,

1 if odeg (u) = 0, u = v,

0 if odeg (u) = 0, u 6= v.

Let p = (p(v) : v ∈ V ) be a row vector. Then the page rank problem is to find

a vector in the simplex spanned by the coordinate vectors ev, v ∈ V , satisfying

p = pP, i.e., p(P − I) = 0.

So p is a left eigenvector of P for the eigenvalue 1.

Theorem 8.1 (Fundamental Theorem of Markov Chains). Let P be stochas-

tic matrix whose row sums are 1. If every column of P is nonzero, then

there exists a unique distribution π such that π = πP .
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Proof. Given an initial distribution p0. Define pk = pk−1P , k ≥ 1. Then

pk = p0P
k are distibutions. Let 1 denote the vector whose all entries are 1.

Clearly, P1 = 1. Then

〈pk,1〉 = p0P
k1 = p01 = 1,

which shows that pk is a distribution. Consider the average distribution

ak = (p0 + p1 + · · · + pk−1)/k = p0(I + P + · · · + P k−1)/k.

Note that ak(P − I) = (p1 + · · · + pk)/k − (p0 + p1 + · · · + pk−1)/k. Then

ak(P − I) = (pk − p0)/k → 0 (k → ∞). Thus

ak[P − I,1] = [pk − p0, 1].

Recall that rank(P − I) = n − 1. Let B denote the n × n submatrix of

[P − I,1] by deleting its first column, and let ck be the (n−1)-vector obtained

from (pk−p0)/k by deleting its first entry. Then rankB = n and akB = [ck, 1].

Thus

ak = [ck, 1]B
−1 → [0, 1]B−1 (k → ∞).
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