
1 Mathematical Induction

We assume that the set Z of integers are well defined, and
we are familiar with the addition, subtraction, multiplication,
and division. In particular, we assume the following axiom for
subsets of integers bounded below.

Well-Ordering Principle. For every nonempty subset of
integers, if it is bounded below, then it has a unique minimum
number.

Example 1.1. The set A = {x | x integers, x ≥ π2} is a
subset of Z and is bounded below. Find the minimum number
in A. (The minimum number is 10.)

Example 1.2. The set A =
{

1
n | n ∈ P

}
is a bounded subset

of Q, the set of rational numbers, and also a bounded subset
of R. What is the minimum number inside A? (There is no
minimum number inside A.)

Proposition 1.1. For every nonempty subset of integers,
if it is bounded above, then it has a unique maximum num-
ber.

Proof. Let A be a nonempty subset of Z, bounded above.
Define the set

B = {−n ∈ Z | n ∈ A}.
Obviously, B is a nonempty subset of Z and bounded below.
By the Well-Ordering Principle, there is a minimum number
m in B. Then −m is the maximum number in A.

1



Theorem 1.2. Let S be a subset of P satisfying the con-
ditions:

(a) 1 ∈ S,

(b) for each k ∈ P, if k ∈ S then k + 1 ∈ S.

Then it follows that S = P.
Proof. Suppose the conclusion is false, i.e., S 6= P. Then the
complement S̄, defined by

S̄ = {r ∈ P | r 6∈ S},
is nonempty. By the Well-Ordering Principle, S̄ has a mini-
mum integer m. Since 1 ∈ S, m 6= 1. It follows that m− 1 is
a positive integer; so m− 1 ∈ P. Since m is the minimum in
S̄, m− 1 belongs to S. Putting k = m− 1 in Condition (b),
we conclude that m ∈ S, which is contradictory to m ∈ S̄.
This means that S 6= P leads to a contradiction. So we must
have S = P.

ε

S1 Sk+1implies Sεk

S2 3εS εS4
S=P

εε
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Mathematical Induction or MI. Let P (n) be a family
of problems indexed by the set P of positive integers. If,

(a) (Induction Basis or IB) the problem for n = 1 is true,

(b) (Induction Hypothesis or IH) if P (n) is true then P (n+1)
is true;

then the whole problem P (n) is true for all n ∈ P.

Note. In the Induction Hypothesis, the symbol n is arbitrar-
ily fixed and required n ≥ 1, but there is only one assumption,
i.e., P (n) is true. This information will be used in the process
of proving P (n + 1) to be true.

Example 1.3. The integer sequence xn is defined recursively
by

x1 = 2, xn = xn−1 + 2n (n ≥ 2).

Show that xn = n(n + 1) for all n ∈ P.

Proof. For n = 1, n(n + 1) = 1 · (1 + 1) = 2 = x1, it is true.
(Induction Basis)

Suppose it is true for n, i.e., xn = n(n + 1). We need to
show xn+1 = (n + 1)((n + 1) + 1). In fact,

xn+1 = xn + 2(n + 1) (By Recursive Definition)

= n(n + 1) + 2(n + 1) (By Induction Hypothesis)

= n2 + 3n + 2

= (n + 1)(n + 2) = (n + 1)((n + 1) + 1).

So the formula is true for n + 1. By MI, it is true for all
n ∈ P.
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Example 1.4. A wrong MI proof for the following statement.

1 + 2 + 3 + · · · + n =
1

2

(
2n3 − 11n2 + 23n− 12

)
.

“Proof:” Let Sn = 1
2

(
2n3 − 11n2 + 23n− 12

)
.

For n = 1, S1 = (2− 11 + 23− 12)/2 = 1; it is true.
For n = 2, S2 = (16− 44 + 46− 12)/2 = 3; it is true.
For n = 3, S3 = (54− 99 + 69− 12)/2 = 6; it is true.
So the statement is true for all positive integers. What is

wrong with the proof? (Induction Hypothesis is not applied.)

Example 1.5. Another wrong MI proof for the following
statement

Sn =

n∑

k=1

(2k + 1) = (n + 1)2, n ≥ 1.

“Proof:” Suppose it is true for n, i.e., Sn = (n + 1)2. Then,
for n + 1,

Sn+1 = Sn + (2(n + 1) + 1)

= (n + 1)2 + (2n + 3)

= n2 + 4n + 4

= (n + 2)2 = ((n + 1) + 1)2.

Thus, by MI, the statement is true for all n ≥ 1. What is
wrong with the proof? (Induction Basis is not verified.)
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Example 1.6. Let f : X → X be an invertible function.
Using MI to prove f k ◦ f−k = f 0, where k ∈ Z, f 0 = idX .

The conclusion can be stated into two statements:
(1) f k ◦ f−k = f 0 for all k ≥ 1;
(2) f−k ◦ f k = f 0 for all k ≥ 0.
MI Proof: We only prove statement (1).

Proof. For k = 1, f 1 ◦ f−1 = f 0, it is true. (by definition of
invertibility)

Suppose it is true for k ≥ 1 and consider the case k + 1.

f k+1 ◦ f−(k+1) = f ◦ · · · ◦ f︸ ︷︷ ︸
k

◦f ◦ f−1 ◦ f−1 ◦ · · · ◦ f−1

︸ ︷︷ ︸
k

= f ◦ · · · ◦ f︸ ︷︷ ︸
k

◦f 0 ◦ f−1 ◦ · · · ◦ f−1

︸ ︷︷ ︸
k

= f k ◦ f 0 ◦ f−k

= f k ◦ f−k = f 0. (By Induction Hypothesis)

It is true for k+1. By MI, it is true for all integers k ≥ 1.

The MI may be stated as follows: For problems P (n),
where n are integers and n ≥ m. If,

(a) (Induction Basis or IB) the problem for n = m is true,

(b) (Induction Hypothesis or IH) if the problem is true for
case n then it is true for the case n + 1;

then P (n) is true for all integers n ≥ m.
Note. In the Induction Hypothesis, the symbol n is required
n ≥ m in the process of proving P (n + 1) to be true.
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Example 1.7. Try to show that n! ≥ 2n for n ≥ 0 by MI.

For n = 0, 0! = 1 ≥ 1, it is OK. Suppose it is true for case
n; consider the case n + 1. Then

(n + 1)! = (n + 1) · n! ≥ 2 · n! ≥ 2 · 2n = 2n+1.

Thus by MI, we proved that n! ≥ 2n for all n ≥ 0. Anything
wrong? (The inequality n + 1 ≥ 2 is wrong when n = 0.)

So n! ≥ 2n is not true for n ≥ 0. However, n! ≥ 2n is true
for n ≥ 4.

2 Second Form of Mathematical Induction

Second Form of MI. Let P (n) be a family of problems
indexed by the set P of positive integers. If,

(a) (Induction Basis or IB) the problem for n = 1 is true,

(b) (Induction Hypothesis or IH) if P (1), P (2), . . . , P (n) are
true then P (n + 1) is true;

then P (n) is true for all n ∈ P.

Example 2.1. Let Sn be a sequence defined by

S1 = 1; Sn = S1 + S2 + · · · + Sn−1, n ≥ 2.

Show that Sn = 2n−2 for n ≥ 2.

Proof. For n = 2, S2 = S1 = 1 = 22−2; it is true. Assume
that it is true for k = 2, 3, . . . , n; that is,

Sk = 2k−2, k = 2, 3, . . . , n.
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Consider the case n + 1.

Sn+1 = S1 + S2 · · · + Sn

= 1 +

n∑

k=2

2k−2

= 1 + (1 + 2 + 22 + · · · + 2n−2)[
by 1 + x + · · · + xm = xm+1−1

x−1

]

= 1 +
2n−1 − 1

2− 1
= 2(n+1)−2.

So it is true for n + 1. By MI, it is true for all integers
n ≥ 2.

(x− 1)(1 + x + x2 + · · · + xn)

= (x + x2 + · · · + xn+1)− (1 + x + · · · + xn)

= xn+1 − 1.

Then

1 + x + x2 + · · · + xn =
xn+1 − 1

x− 1
, x 6= 1.
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Summary of MI

1. Do the basis step, say, for n = 1.

2. Write “Let n be a fixed but arbitrary integer ≥ 1, assume
P (n) is true, try to prove P (n + 1).”

3. Express the job P (n + 1).

4. Prove P (n + 1).

5. Write “Therefore the induction step is proved, and by MI,
P (n) is true for all positive integers n.”
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