1 Divisibility

Given two integers a, b with $a \neq 0$. We say that a divides b, written

 $a \mid b$,

if there exists an integer q such that

b = qa.

When this is true, we say that a is a **factor** (or **divisor**) of b, and b is a **multiple** of a. If a is not a factor of b, we write

$a \nmid b$.

Any integer n has divisors ± 1 and $\pm n$, called the **trivial divisors** of n. If a is a divisor of n, so is -a. A positive divisor of n other than the trivial divisors is called a **nontrivial divisor** of n. Every integer is a divisor of 0.

A positive integer $p \ (\neq 1)$ is called a **prime** if it has no nontrivial divisors, i.e., its positive divisors are only the trivial divisors 1 and p.

A positive integer is called **composite** if it is not a prime. The first few primes are listed as

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59.

Proposition 1.1. Every composite number n has a prime factor $p \leq \sqrt{n}$.

Proof. Since n is composite, there are primes p and q such that n = pqk, where $k \in \mathbb{P}$. Note that for primes p and

q, one is less than or equal to the other, say $p \leq q$. Then $p^2 \leq pqk = n$. Thus $p \leq \sqrt{n}$.

Example 1.1. 6 has the prime factor $2 \le \sqrt{6}$; 9 has the prime factor $3 = \sqrt{9}$; 35 has the prime factor $5 \le \sqrt{35}$. Is 143 a prime?

We find $\sqrt{143} < \sqrt{144} = 12$. For i = 2, 3, 5, 7, 11, check whether *i* divides 143. We find out $i \nmid 143$ for i = 2, 3, 5, 7, and 11 | 143. So 143 is a composite number.

Is 157 a prime?

Since $\sqrt{157} < \sqrt{169} = 13$. For i = 2, 3, 5, 7, 11, we find out $i \nmid 157$. We see that 157 has no prime factor less or equal to $\sqrt{157}$. So 157 is not a composite; 157 is a prime.

Proposition 1.2. Let a, b, c be nonzero integers.

(a) If $a \mid b$ and $b \mid a$, then $a = \pm b$.

(b) If $a \mid b$ and $b \mid c$, then $a \mid c$.

(c) If $a \mid b$ and $a \mid c$, then $a \mid (bx + cy)$ for any $x, y \in \mathbb{Z}$.

Proof. (a) Write $b = q_1 a$, $a = q_2 b$ for some $q_1, q_2 \in \mathbb{Z}$. Then

 $b = q_1 q_2 b.$

Dividing both sides by b, we have $q_1q_2 = 1$. This forces that $q_1 = q_2 = \pm 1$. Thus $b = \pm a$.

(b) Write $b = q_1 a$, $c = q_2 b$ for some integers $q_1, q_2 \in \mathbb{Z}$. Then $c = q_1 q_2 a$. This means that $a \mid c$. (c) Write $b = q_1 a$, $c = q_2 a$ for some $q_1, q_2 \in \mathbb{Z}$. Then, for any $x, y \in \mathbb{Z}$,

$$bx + cy = q_1ax + q_2ay = (q_1x + q_2y)a.$$

This means that $a \mid (bx + cy)$.

Theorem 1.3. There are infinitely many prime numbers. Proof. Suppose there are finitely many primes, say, they are listed as follows

$$p_1, p_2, \ldots, p_k.$$

Then the integer

$$a = p_1 p_2 \cdots p_k + 1$$

is not divisible by any of the primes p_1, p_2, \ldots, p_k because the remainders of a divided by any p_i is always $1, 1 \leq i \leq k$. This means that a has no prime factors. By definition of primes, the integer a is a prime, and this prime is larger than all primes p_1, p_2, \ldots, p_k . So it is larger than itself, a contradiction. \Box

Theorem 1.4 (Division Algorithm). For any $a, b \in \mathbb{Z}$ with a > 0, there exist unique integers q, r such that

 $b = qa + r, \qquad 0 \le r < a.$

Proof. Define the set $S = \{b - ta \ge 0 : t \in \mathbb{Z}\}$. Then S is nonempty and bounded below. By the Well-Ordering Principle, S has the unique minimum integer r. Then there is a unique integer q such that b - qa = r. Thus

$$b = qa + r.$$

Clearly, $r \ge 0$. We claim that r < a. Suppose $r \ge a$, then

$$b - (q+1)a = r - a \ge 0.$$

This means that r - a is an element of S, but smaller than r. This is contrary to that r is the minimum element in S. \Box

Example 1.2. For integers a = 24 and b = 379, we have

$$379 = 15 \cdot 24 + 19, \qquad q = 15, r = 19.$$

For integers a = 24 and b = -379, we have

 $-379 = -14 \cdot 24 + 5, \qquad q = -14, \ r = 5.$

2 Greatest Common Divisor

For integers a and b, not simultaneously 0, a **common divisor** of a and b is an integer c such that c|a and c|b.

Definition 2.1. Let $a, b \in \mathbb{Z}$, not simultaneously 0. A positive integer d is called the **greatest common divisor** of a and b, denoted by gcd(a, b), if

(a) $d \mid a, d \mid b, and$

(b) If $c \mid a$ and $c \mid b$, then $c \mid d$.

Two integers a and b are called **coprime** (or **relatively prime**) if gcd(a, b) = 1.

Theorem 2.2. For any integers $a, b \in \mathbb{Z}$, if

$$b = qa + r$$

for some integers $q, r \in \mathbb{Z}$, then

$$gcd(a,b) = gcd(a,r).$$

Proof. Write $d_1 = \gcd(a, b), d_2 = \gcd(a, r).$

Since $d_1 \mid a$ and $d_1 \mid b$, then $d_1 \mid r$ because r = b - qa. So d_1 is a common divisor of a and r. Thus, by definition of gcd(a, r), d_1 divides d_2 . Similarly, since $d_2 \mid a$ and $d_2 \mid r$, then $d_2 \mid b$ because b = qa + r. So d_2 is a common divisor of a and b. By definition of gcd(a, b), d_2 divides d_1 . Hence, by Proposition 1.2 (a), $d_1 = \pm d_2$. Thus $d_1 = d_2$.

The above proposition gives rise to a simple constructive method to calculate gcd by repeating the Division Algorithm.

Example 2.1. Find gcd(297, 3627).

 $\begin{array}{rll} 3627 &=& 12 \cdot 297 + 63, & \gcd(297, 3627) \\ 297 &=& 4 \cdot 63 + 45, \\ 63 &=& 1 \cdot 45 + 18, \\ 45 &=& 2 \cdot 18 + 9, \\ 18 &=& 2 \cdot 9; \end{array} \qquad \begin{array}{rll} \gcd(297, 3627) \\ =& \gcd(63, 297) \\ =& \gcd(45, 63) \\ =& \gcd(45, 63) \\ =& \gcd(18, 45) \\ =& \gcd(9, 18) \\ =& 9. \end{array}$

The procedure to calculate gcd(297, 3627) applies to any pair of positive integers.

Let $a, b \in \mathbb{N}$ be nonnegative integers. Write d = gcd(a, b). Repeating the Division Algorithm, we find nonnegative integers $q_i, r_i \in \mathbb{N}$ such that

$$b = q_0 a + r_0, \qquad 0 \le r_0 < a,$$

$$a = q_1 r_0 + r_1, \qquad 0 \le r_1 < r_0,$$

$$r_0 = q_2 r_1 + r_2, \qquad 0 \le r_2 < r_1,$$

$$r_1 = q_3 r_2 + r_3, \qquad 0 \le r_3 < r_2,$$

$$\vdots$$

$$r_{k-2} = q_k r_{k-1} + r_k, \qquad 0 \le r_k < r_{k-1},$$

$$r_{k-1} = q_{k+1} r_k + r_{k+1}, \qquad r_{k+1} = 0.$$

The nonnegative sequence $\{r_i\}$ is strictly decreasing. It must end to 0 at some step, say, $r_{k+1} = 0$ for the very first time. Then $r_i \neq 0, 0 \leq i \leq k$. Reverse the sequence $\{r_i\}_{i=0}^k$ and make substitutions as follows:

$$d = r_k, r_k = r_{k-2} - q_k r_{k-1}, r_{k-1} = r_{k-3} - q_{k-1} r_{k-2}, \vdots r_1 = a - q_1 r_0, r_0 = b - q_0 a.$$

We see that gcd(a, b) can be expressed as an integral linear combination of a and b. This procedure is known as the **Euclidean Algorithm**.

We summarize the above argument into the following theorem.

Theorem 2.3. For any integers $a, b \in \mathbb{Z}$, there exist in-

tegers $x, y \in \mathbb{Z}$ such that

$$gcd(a, b) = ax + by.$$

Example 2.2. Express gcd(297, 3627) as an integral linear combination of 297 and 3627.

Dy the Division Algorithm, we have gcd(297, 3627) = 9. By the Euclidean Algorithm,

$$9 = 45 - 2 \cdot 18$$

= 45 - 2(63 - 45)
= 3 \cdot 45 - 2 \cdot 63
= 3(297 - 4 \cdot 63) - 2 \cdot 63
= 3 \cdot 297 - 14 \cdot 63
= 3 \cdot 297 - 14(3627 - 12 \cdot 297)
= 171 \cdot 297 - 14 \cdot 3627.

Example 2.3. Find gcd(119, 45) and express it as an integral linear combination of 45 and 119.

Applying the Division Algorithm,

$$119 = 2 \cdot 45 + 29$$

$$45 = 29 + 16$$

$$29 = 16 + 13$$

$$16 = 13 + 3$$

$$13 = 4 \cdot 3 + 1$$

So gcd(119, 45) = 1. Applying the Euclidean Algorithm,

$$1 = 13 - 4 \cdot 3 = 13 - 4(16 - 13)$$

= 5 \cdot 13 - 4 \cdot 16 = 5(29 - 16) - 4 \cdot 16
= 5 \cdot 29 - 9 \cdot 16 = 5 \cdot 29 - 9(45 - 29)
= 14 \cdot 29 - 9 \cdot 45 = 14(119 - 2 \cdot 45) - 9 \cdot 45
= 14 \cdot 119 - 37 \cdot 45

Example 2.4. Find gcd(119, -45) and express it as linear combination of 119 and -45.

We have gcd(119, -45) = gcd(119, 45) = 1. Since $1 = 14 \cdot 119 - 37 \cdot 45$,

we have $gcd(119, -45) = 14 \cdot 119 + 37 \cdot (-45)$.

Remark. For any $a, b \in \mathbb{Z}$, gcd(a, -b) = gcd(a, b). Expressing gcd(a, -b) in terms of a and -b is the same as that of expressing gcd(a, b) in terms of a and b.

Proposition 2.4. If $a \mid bc \text{ and } gcd(a, b) = 1$, then $a \mid c$.

Proof. By the Euclidean Algorithm, there are integers $x, y \in \mathbb{Z}$ such that ax + by = 1. Then

$$c = 1 \cdot c = (ax + by)c = acx + bcy.$$

Since $a \mid ac$ and $a \mid bc$, thus $c \mid (acx+bcy)$ by Proposition 1.2 (c). Therefore $a \mid c$.

Theorem 2.5 (Unique Factorization). Every integer $a \ge 2$ can be uniquely factorized into the form

$$a = p_1^{e_1} p_2^{e_2} \cdots p_m^{e_m},$$

where p_1, p_2, \ldots, p_m are distinct primes, e_1, e_2, \ldots, e_m are positive integers, and $p_1 < p_2 < \cdots < p_s$.

Proof. (Not required) We first show that a has a factorization into primes. If a has only the trivial divisors, then a itself is a prime, and it obviously has unique factorization. If a has some nontrivial divisors, then

$$a = bc$$

for some positive integers $b, c \in \mathbb{P}$ other than 1 and a. So b < a, c < a. By induction, the positive integers b and c have factorizations into primes. Consequently, a has a factorization into primes.

Next we show that the factorization of a is unique in the sense of the theorem.

Let $a = q_1^{f_1} q_2^{f_2} \cdots a_n^{f_n}$ be any factorization, where q_1, q_2, \ldots, q_n are distinct primes, f_1, f_2, \ldots, f_n are positive integers, and $q_1 < q_2 < \cdots < q_n$. We claim that $m = n, p_i = q_i, e_i = f_i$ for all $1 \le i \le m$.

Suppose $p_1 < q_1$. Then p_1 is distinct from the primes q_1, q_2, \ldots, q_n . It is clear that $gcd(p_1, q_i) = 1$, and so

 $gcd(p_1, q_i^{f_i}) = 1$ for all $1 \le i \le n$.

Note that $p_1 \mid q_1^{f_1}q_2^{f_2}\cdots a_n^{f_n}$. Since $gcd(p_1, q_1^{f_1}) = 1$, by Proposition 2.4, we have $p_1 \mid q_2^{f_2}\cdots a_n^{f_n}$. Since $gcd(p_1, q_2^{f_2}) = 1$, again by Proposition 2.4, we have $p_1 \mid q_3^{f_2}\cdots a_n^{f_n}$. Repeating the argument, eventually we have $p_1 \mid q_n^{f_n}$, which is contrary to $gcd(p_1, q_n^{f_n}) = 1$. We thus conclude $p_1 \geq q_1$. Similarly, $q_1 \geq p_1$. Therefore $p_1 = q_1$. Next we claim $e_1 = f_1$.

Suppose $e_1 < f_1$. Then

$$p_2^{e_2}\cdots p_m^{e_m} = p_1^{f_1-e_1}q_2^{f_2}\cdots q_n^{f_n}.$$

This implies that $p_1|p_2^{e_2}\cdots p_m^{e_m}$. If m = 1, then $p_2^{e_2}\cdots p_m^{e_m} = 1$. So $p_1 \mid 1$. This is impossible because p_1 is a prime. If $m \geq 2$, since $gcd(p_1, p_i) = 1$, we have $gcd(p_1, p_i^{e_i}) = 1$ for all $2 \leq i \leq m$. Applying Proposition 2.4 repeatedly, we have $p_1|p_m^{e_m}$, which is contrary to $gcd(p_1, p_m^{e_m}) = 1$. We thus conclude $e_1 \geq f_1$. Similarly, $f_1 \geq e_1$. Therefore $e_1 = f_1$.

Now we have obtained $p_2^{e_2} \cdots p_m^{e_m} = q_2^{f_2} \cdots q_n^{f_n}$. If m < n, then by induction we have $p_1 = q_1, \ldots, p_m = q_m$ and $e_1 = f_1, \ldots, e_m = f_m$. Thus $1 = q_{m+1}^{f_{m+1}} \cdots q_n^{f_n}$. This is impossible because q_{m+1}, \ldots, q_n are primes. So $m \ge n$. Similarly, $n \ge m$. Hence we have m = n. By induction, we have $e_2 = f_2, \ldots, e_m = f_m$.

Our proof is finished.

Example 2.5. Factorize the numbers 180 and 882, and find gcd(180, 882).

Solution. 180/2=90, 90/2=45, 45/3=15, 15/3=5, 5/5=1. Then $360 = 2^2 \cdot 3^2 \cdot 5$. Similarly, 882/2=441, 441/3=147, 147/3=49, 49/7=7, 7/7=1. We have $882 = 2 \cdot 3^2 \cdot 7^2$. Thus $gcd(180, 882) = 2 \cdot 3^2 = 18$.

3 Least Common Multiple

For two integers a and b, a positive integer m is called a **common multiple** of a and b if $a \mid m$ and $b \mid m$.

Definition 3.1. Let $a, b \in \mathbb{Z}$. The **least common multiple** of a and b, denoted by lcm(a, b), is a positive integer m such that

- (a) $a \mid m, b \mid m,$ and
- (b) If $a \mid c$ and $b \mid c$, then $m \mid c$.

Proposition 3.2. For any nonnegative integers $a, b \in \mathbb{N}$,

 $ab = \gcd(a, b) \cdot \operatorname{lcm}(a, b).$

Proof. Let $a = p_1^{e_1} p_2^{e_2} \cdots p_n^{e_n}$ and $b = p_1^{f_1} p_2^{f_2} \cdots p_n^{f_n}$, where $p_1 < p_2 < \cdots < p_n$, e_i and f_i are nonnegative integers, $1 \le i \le n$. Then by the Unique Factorization Theorem,

$$gcd(a,b) = p_1^{g_1} p_2^{g_2} \cdots p_n^{g_n}, lcm(a,b) = p_1^{h_1} p_2^{h_2} \cdots p_n^{h_n},$$

where $g_i = \min(e_i, f_i), h_i = \max(e_i, f_i), 1 \leq i \leq n$. Note that for any real numbers $x, y \in \mathbb{R}$,

$$\min(x, y) + \max(x, y) = x + y.$$

Thus

$$g_i + h_i = e_i + f_i, \quad 1 \le i \le n.$$

Therefore

$$ab = p_1^{e_1+f_1} p_2^{e_2+f_2} \cdots p_n^{e_n+f_n} = p_1^{g_1+h_1} p_2^{g_2+h_2} \cdots p_n^{g_n+h_n} = \gcd(a,b) \cdot \operatorname{lcm}(a,b).$$

4 Solving ax + by = c

Example 4.1. Find an integer solution for the equation

$$25x + 65y = 10.$$

Solution. Applying the Division Algorithm,

$$65 = 2 \cdot 25 + 15, 25 = 15 + 10, 15 = 10 + 5.$$

Then gcd(25, 65) = 5. Applying the Euclidean Algorithm,

$$5 = 15 - 10$$

= 15 - (25 - 15)
= -25 + 2 \cdot 15
= -25 + 2 \cdot (65 - 2 \cdot 25)
= -5 \cdot 25 + 2 \cdot 65.

By inspection, (x, y) = (-5, 2) is a solution for the equation 25x + 65y = 5.

Since $\frac{10}{5} = 2$, then (x, y) = 2(-5, 2) = (-10, 4) is a solution for 25x + 65y = 10.

Example 4.2. Find an integer solution for the equation

25x + 65y = 18.

Solution. Since gcd(25, 65) = 5, if the equation has a solution, then $5 \mid (25x + 65y)$. So $5 \mid 18$ by Proposition 1.2 (c). This is a contradiction. Hence the equation has no solution.

Theorem 4.1. The linear Diophantine equation

ax + by = c,

has a solution if and only if $gcd(a, b) \mid c$.

Theorem 4.2. Let S be the set of solutions of the equation

$$ax + by = c. \tag{1}$$

Let S_0 be the set of solutions of the homogeneous equation

$$ax + by = 0. (2)$$

If $(x, y) = (u_0, v_0)$ is a solution of (2), then S is given by $S = \{(u_0 + s, v_0 + t) : (s, t) \in S_0\}.$

In other words, all solutions of (1) are given by

$$\begin{cases} x = u_0 + s \\ y = v_0 + t \end{cases}, \quad (s, t) \in S_0.$$
 (3)

Proof. Since $(x, y) = (u_0, v_0)$ is a solution of (1), then $au_0 + bv_0 = c$. For any solution (x, y) = (s, t) of (2), we have as + bt = 0. Thus

$$a(u_0 + s) + b(v_0 + t) = (au_0 + bv_0) + (as + bt) = c.$$

This means that $(x, y) = (u_0 + s, v_0 + t)$ is a solution of (1).

Conversely, for any solution (x, y) = (u, v) of (1), we have au + bv = c. Let $(s_0, t_0) = (u - u_0, v - v_0)$. Then

$$as_0 + bt_0 = a(u - u_0) + b(v - v_0)$$

= $(au + bv) - (au_0 + bv_0)$
= $c - c = 0.$

This means that (s_0, t_0) is a solution of (2). Note that

$$(u, v) = (u_0 + s_0, v_0 + t_0).$$

This shows that the solution (x, y) = (u, v) is a solution of the form in (3). Our proof is finished.

Theorem 4.3. Let d = gcd(a, b). The solution set S_0 of

$$ax + by = 0$$

is given by

$$S_0 = \left\{ k\left(\frac{b}{d}, -\frac{a}{d}\right) : k \in \mathbb{Z} \right\}.$$

In other words,

$$\begin{cases} x = (b/d)k \\ y = -(a/d)k \end{cases}, \quad k \in \mathbb{Z}$$

Proof. The equation ax + by = 0 can be written as

ax = -by.

Write m = ax = -by. Then $a \mid m$ and $b \mid m$, i.e., m is a multiple of a and b. Thus $m = k \cdot \text{lcm}(a, b)$ for some $k \in \mathbb{Z}$. Therefore $ax = k \cdot \text{lcm}(a, b)$ implies

$$x = \frac{k \cdot \operatorname{lcm}(a, b)}{a} = \frac{kab}{da} = \frac{kb}{d}$$

Similarly, $-by = k \cdot \operatorname{lcm}(a, b)$ implies

$$y = \frac{k \cdot \operatorname{lcm}(a, b)}{-b} = \frac{kab}{-db} = -\frac{ka}{d}.$$

Theorem 4.4. Let d = gcd(a, b) and $d \mid c$. Let (u_0, v_0) be a particular solution of the equation

$$ax + by = c$$

The all solutions of the above equation are given by

$$\begin{cases} x = u_0 + bk/d \\ y = v_0 - ak/d \end{cases}, \quad k \in \mathbb{Z}.$$

Proof. It follows from Theorem 4.2 and Theorem 4.3.

Example 4.3. Find all integer solutions for the equation

$$25x + 65y = 10.$$

Solution. Find gcd(25, 65) = 5 and have got a special solution (x, y) = (-10, 4) in a previous example. Now consider the equation 25x + 65y = 0. Divide both sides by 5 to have,

$$5x + 13y = 0.$$

Since gcd(5, 13) = 1, all solutions for the above equation are given by $(x, y) = k(-13, 5), k \in \mathbb{Z}$. Thus all solutions of 25x + 65y = 10 are given by

$$\begin{cases} x = -10 - 13k \\ y = 4 + 5k \end{cases}, \quad k \in \mathbb{Z}$$

Example 4.4.

168x + 668y = 888.

Solution. Find gcd(168, 668) = 4 by the Division Algorithm

$$668 = 3 \cdot 168 + 164$$

$$168 = 164 + 4$$

$$164 = 41 \cdot 4$$

By the Euclidean Algorithm,

$$4 = 168 - 164$$

= 168 - (668 - 3 \cdot 168)
= 4 \cdot 168 + (-1) \cdot 668.

Dividing $\frac{888}{4} = 222$, we obtain a special solution (m, w) = 222(4 - 1) = (888 - 222)

$$(x, y) = 222(4, -1) = (888, -222)$$

Solve 168x + 668y = 0. Dividing both sides by 4,

$$42x + 167y = 0$$
 i.e. $42x = -167y$.

The general solutions for 168x + 668y = 0 are given by

$$(x,y) = k(167, -42), \quad k \in \mathbb{Z}.$$

The general solutions for 168x + 668y = 888 are given by

$$(x,y) = (888, -222) + k(167, -42), \quad k \in \mathbb{Z}.$$

i.e.
$$\begin{cases} x = 888 + 167k \\ y = -222 - 42k \end{cases}, \quad k \in \mathbb{Z}.$$

5 Modulo Integers

Let n be a fixed positive integer. Two integers a and b are said to be **congruent** modulo n, written

 $a \equiv b \pmod{n}$

and read "a equals b modulo n," if $n \mid (b-a)$.

For all $k, l \in \mathbb{Z}$, $a \equiv b \pmod{n}$ is equivalent to

$$a + kn \equiv b + ln \pmod{n}$$
.

In fact, the difference

$$(b+ln) - (a+kn) = (b-a) + (l-k)n$$

is a multiple of n if and only if b - a is a multiple of n.

Example 5.1.

$$3 \equiv 5 \pmod{2}, \quad 368 \equiv 168 \pmod{8},$$

 $-8 \equiv 10 \pmod{9}, \quad 3 \not\equiv 5 \pmod{3},$
 $368 \not\equiv 268 \pmod{8}, \quad -8 \not\equiv 18 \pmod{9}.$

Proposition 5.1. Let n be a fixed positive integer. If

$$a_1 \equiv b_1 \pmod{n}, \quad a_2 \equiv b_2 \pmod{n},$$

then

$$a_1 + a_2 \equiv b_1 + b_2 \pmod{n},$$

$$a_1 - a_2 \equiv b_1 - b_2 \pmod{n},$$

 $a_1 a_2 \equiv b_1 b_2 \pmod{n}.$ If $a \equiv b \pmod{n}$, $d \mid n$, then $a \equiv b \pmod{d}$

 $a \equiv b \pmod{d}$.

Proof. Since $a_1 \equiv b_1 \pmod{n}$, $a_2 \equiv b_2 \pmod{n}$, there are integers k_1, k_2 such that

$$b_1 - a_1 = k_1 n, \quad b_2 - a_2 = k_2 n.$$

Then

$$(b_1 + b_2) - (a_1 + a_2) = (k_1 + k_2)n;$$

 $(b_2 - b_1) - (a_1 - a_2) = (k_1 - k_2)n;$

$$b_1b_2 - a_1a_2 = b_1b_2 - b_1a_2 + b_1a_2 - a_1a_2$$

= $b_1(b_2 - a_2) + (b_1 - a_1)a_2$
= $bk'n + kna'$
= $(b_1k_2 + a_2k_1)n.$

Thus

$$a_1 \pm a_2 \equiv b_1 \pm b_2 \pmod{n};$$
$$a_1 a_2 \equiv b_1 b_2 \pmod{n}.$$

If $d \mid n$, then n = dl for some $l \in \mathbb{Z}$. Thus

$$b - a = kn = (kl)d.$$

Therefore, $a \equiv b \pmod{d}$.

Example 5.2.

$$6 \equiv 14 \pmod{8} \implies 2 \cdot 6 \equiv 2 \cdot 14 \pmod{8};$$

$$6 \equiv 14 \pmod{8} \iff \frac{6}{2} \equiv \frac{14}{2} \pmod{\frac{8}{2}};$$

However,

$$2 \cdot 3 \equiv 2 \cdot 7 \pmod{8} \not\implies 3 \equiv 7 \pmod{8}.$$

In fact,

$$3 \not\equiv 7 \pmod{8}.$$
Theorem 5.2. Let $c \mid a, c \mid b, and c \mid n$. Then
 $a \equiv b \pmod{n} \iff \frac{a}{c} \equiv \frac{b}{c} \pmod{\frac{n}{c}}.$
Proof. Write $a = ca_1, b = cb_1, n = cn_1$. Then
 $a \equiv b \pmod{n} \iff b - a = kn$ for an integer k
 $\iff c(b_1 - a_1) = kcn_1$
 $\iff b/c - a/c = b_1 - a_1 = kn_1$
 $\iff a/c \equiv b/c \pmod{n/c}.$

Theorem 5.3.

$$a \equiv b \pmod{m}, \quad a \equiv b \pmod{n},$$
$$\iff$$
$$a \equiv b \pmod{\operatorname{lcm}(m, n)}.$$

In particular,

$$gcd(m,n) = 1 \iff a \equiv b \pmod{mn}.$$

Proof. Write l = lcm(m, n). If $a \equiv b \pmod{m}$, $a \equiv b \pmod{n}$, then $m \mid (b - a)$ and $n \mid (b - a)$. Thus $l \mid (b - a)$, i.e., $a \equiv b \pmod{l}$.

Conversely, if $a \equiv b \pmod{l}$, then $l \mid (b-a)$. Since $m \mid l$, $n \mid l$, we have $m \mid (b-a)$, $n \mid (b-a)$. Thus $a \equiv b \pmod{m}$, $a \equiv b \pmod{n}$.

In particular, if gcd(m, n) = 1, then l = mn.

Definition 5.4. An integer a is called **invertible** modulo n if there exists an integer b such that

$$ab \equiv 1 \pmod{n}$$
.

If so, b is called the **inverse** of a modulo n.

Proposition 5.5. An integer a is invertible modulo n if and only if gcd(a, n) = 1

Proof. " \Rightarrow ": If a is invertible modulo n, say its inverse is b, then exists an integer k such that ab = 1 + kn, i.e.,

$$1 = ab - kn.$$

Thus gcd(a, n) divides 1. Hence gcd(a, n) = 1.

" \Leftarrow ": By the Euclidean Algorithm, there exist integers u, v such that 1 = au + nv. Then $au \equiv 1 \pmod{n}$.

Example 5.3. The invertible integers modulo 12 are the following numbers

Numbers 0, 2, 3, 4, 6, 8, 9, 10 are not invertible modulo 12.

Theorem 5.6. Let gcd(c, n) = 1. Then

 $a \equiv b \pmod{n} \iff ca \equiv cb \pmod{n}$

Proof. By the Euclidean Algorithm, there are integers u, v such that

$$1 = cu + nv.$$

Then $1 \equiv cu \pmod{n}$; i.e., a and u are inverses of each other modulo n

" \Rightarrow ": $c \equiv c \pmod{n}$ and $a \equiv b \pmod{n}$ imply

$$ca \equiv cb \pmod{n}$$
.

This true without gcd(c, n) = 1.

" \Leftarrow ": $ca \equiv cb \pmod{n}$ and $u \equiv u \pmod{n}$ imply that

$$uca \equiv ucb \pmod{n}$$
.

Replace uc = 1 - vn; we have $a - avn \equiv b - bvn \pmod{n}$. This means $a \equiv b \pmod{n}$.

Example 5.4. Find the inverse modulo 15 for each of the numbers 2, 4, 7, 8, 11, 13.

Solution. Since $2 \cdot 8 \equiv 1 \pmod{15}$, $4 \cdot 4 \equiv 1 \pmod{15}$. Then 2 and 8 are inverses of each other; 4 is the inverse of itself.

Write $15 = 2 \cdot 7 + 1$. Then $15 - 2 \cdot 7 = 1$. Thus $-2 \cdot 7 \equiv 1 \pmod{15}$. The inverse of 7 is -2. Since $-2 \equiv 13 \pmod{15}$, the inverse of 7 is also 13. In fact,

$$7 \cdot 13 \equiv 1 \pmod{15}.$$

Similarly,
$$15 = 11 + 4$$
, $11 = 2 \cdot 4 + 3$, $4 = 3 + 1$, then
 $1 = 4 - 3 = 4 - (11 - 2 \cdot 4)$
 $= 3 \cdot 4 - 11 = 3 \cdot (15 - 11) - 11$
 $= 15 - 4 \cdot 11$.

Thus the inverse of 11 is -4. Since $-4 \equiv 11 \pmod{15}$, the inverse of 11 is also itself, i.e., $11 \cdot 11 \equiv 1 \pmod{15}$.

6 Solving $ax \equiv b \pmod{n}$

Theorem 6.1. The congruence equation

 $ax \equiv b \pmod{n}$

has a solution if and only if gcd(a, n) divides b.

Proof. Let d = gcd(a, n). The congruence equation has a solution if and only if there exist integers x and k such that b = ax + kn. This is equivalent to $d \mid b$.

Remark. For all $k, l \in \mathbb{Z}$, we have

 $ax \equiv b \pmod{n} \iff (a+kn)x \equiv b+ln \pmod{n}.$

In fact, the difference

$$(b+ln) - (a+kn)x = (b-ax) + (l-kx)n$$

is a multiple of n if and only if b - ax is a multiple of n.

Theorem 6.2. Let gcd(a, n) = 1. Then there exists an integer u such that $au \equiv 1 \pmod{n}$; the solutions for the equation $ax \equiv b \pmod{n}$ are given by

$$x \equiv ub \pmod{n}$$
.

Proof. Since gcd(a, n) = 1, there exist $u, v \in \mathbb{Z}$ such that 1 = au + nv. So $1 \equiv au \pmod{n}$, i.e., $au \equiv 1 \pmod{n}$. Since u is invertible modulo n, we have

 $ax \equiv b \pmod{n} \iff uax \equiv ub \pmod{n}.$

Since au = 1 - nv, then uax = (1 - nv)x = x - vxn. Thus

 $ax \equiv b \pmod{n} \iff x - vxn \equiv ub \pmod{n}.$

Therefore

 $ax \equiv b \pmod{n} \iff x \equiv ub \pmod{n}.$

Example 6.1. Find all integers x for

 $9x \equiv 27 \pmod{15}.$

Solution. Find gcd(9, 15) = 3. Dividing both sides by 3,

 $3x \equiv 9 \pmod{5} \iff 3x \equiv 4 \pmod{5}.$

Since gcd(3,5) = 1, the integer 3 is invertible and its inverse is 2. Multiplying 2 to both sides,

 $6x \equiv 8 \pmod{5}$. Since $6 \equiv 1 \pmod{5}$, $8 \equiv 3 \pmod{5}$, then $x \equiv 3 \pmod{5}$.

In other words,

 $x = 3 + 5k, \quad k \in \mathbb{Z}.$

Example 6.2. Solve the equation $668x \equiv 888 \pmod{168}$. Solution. Find $\gcd(668, 168) = 4$, then

 $167x \equiv 222 \pmod{42}.$

By the Division Algorithm,

 $167 = 3 \cdot 42 + 41; \quad 42 = 41 + 1.$

By the Euclidean Algorithm,

 $1 = 42 - 41 = 42 - (167 - 3 \cdot 42) = 4 \cdot 42 - 167.$

Then $-167 \equiv 1 \pmod{42}$; the inverse of 167 is -1. Multiplying -1 to both sides, we have $x \equiv -222 \pmod{42}$. Thus

$$x \equiv -12 \pmod{42}$$
 or $x \equiv 30 \pmod{42}$; i.e
 $x = 30 + 42k, \quad k \in \mathbb{Z}.$

Algorithm for solving $ax \equiv b \pmod{n}$.

Step 1. Find d = gcd(a, n) by the Division Algorithm.

Step 2. If d = 1, apply the Euclidean Algorithm to find $u, v \in \mathbb{Z}$ such that 1 = au + nv.

Step 3. Do the multiplication $uax \equiv ub \pmod{n}$. All solutions $x \equiv ub \pmod{n}$ are obtained. Stop.

Step 4. If d > 1, check whether $d \mid b$. If $d \nmid b$, there is no solution. Stop. If $d \mid b$, do the division

$$\frac{a}{d}x \equiv \frac{b}{d} \pmod{\frac{n}{d}}$$

Rewrite a/d as a, b/d as b, and n/d as n. Go to Step 1.

Proof. Since 1 = au + nv, we have $au \equiv 1 \pmod{n}$. This means that a and u are inverses of each other modulo n. So

$$ax \equiv b \pmod{n} \iff uax \equiv ub \pmod{n}.$$

Since ua = 1 - vn, then uax = (1 - vn)x = x - vxn. Thus $uax \equiv ub \pmod{n} \iff x \equiv ub \pmod{n}$.

Example 6.3. Solve the equation $245x \equiv 49 \pmod{56}$. Solution. Applying the Division Algorithm,

$$245 = 4 \cdot 56 + 21 56 = 2 \cdot 21 + 14 21 = 14 + 7$$

Applying the Euclidean Algorithm,

$$7 = 21 - 14 = 21 - (56 - 2 \cdot 21)$$

= 3 \cdot 21 - 56 = 3 \cdot (245 - 4 \cdot 56) - 56
= 3 \cdot 245 - 13 \cdot 56

Dividing both sides by 7, we have

$$1 = 3 \cdot 35 - 13 \cdot 8.$$

Thus $3 \cdot 35 \equiv 1 \pmod{8}$. Dividing the original equation by 7, we have $35x \equiv 7 \pmod{8}$. Multiplying 3 to both sides, we obtain solutions

$$x \equiv 21 \equiv 5 \pmod{8}$$

7 Chinese Remainder Theorem

Example 7.1. Solve the system

 $\begin{cases} x \equiv 0 \pmod{n_1} \\ x \equiv 0 \pmod{n_2} \end{cases}$

Solution. By definition of solution, x is a common multiple of n_1 and n_2 . So x is a multiple of $lcm(n_1, n_2)$. Thus the system is equivalent to

 $x \equiv 0 \pmod{\operatorname{lcm}(n_1, n_2)}.$

Theorem 7.1. Let S be the solution set of the system

$$\begin{cases} a_1 x \equiv b_1 \pmod{n_1} \\ a_2 x \equiv b_2 \pmod{n_2} \end{cases}$$
(4)

Let S_0 be the solution set of the homogeneous system

$$\begin{cases} a_1 x \equiv 0 \pmod{n_1} \\ a_2 x \equiv 0 \pmod{n_2} \end{cases}$$
(5)

If $x = x_0$ is a solution of (4), then all solutions of (4) are given by

$$x = x_0 + s, \quad s \in S_0. \tag{6}$$

Proof. We first show that $x = x_0 + s$, where $s \in S_0$, are indeed solutions of (4). In fact, since x_0 is a solution for (4) and s is a solution for (5), we have

$$\begin{cases} a_1 x_0 \equiv b_1 \pmod{n_1} \\ a_2 x_0 \equiv b_2 \pmod{n_2} \end{cases}, \quad \begin{cases} a_1 s \equiv 0 \pmod{n_1} \\ a_2 s \equiv 0 \pmod{n_2} \end{cases}$$

i.e., n_1 divides $(b_1 - a_1x_0)$ and a_1s ; n_2 divides $(b_2 - a_2x_0)$ and a_2s . Then n_1 divides $[(b_1 - a_1x_0) - a_1s]$, and n_2 divides $[(b_2 - a_2x_0) - a_2s]$; i.e., n_1 divides $[b_1 - a_1(x_0 + s)]$, and n_2 divides $[b_2 - a_2(x_0 + s)]$. This means that $x = x_0 + s$ is a solution of (4).

Conversely, let x = t be any solution of (4). We will see that $s_0 = t - x_0$ is a solution of (5). Hence the solution $t = x_0 + s_0$ is of the form in (6).

Algorithm for solving the system

$$\begin{cases} a_1 x \equiv b_1 \pmod{n_1} \\ a_2 x \equiv b_2 \pmod{n_2} \end{cases}$$
(7)

Step 1. Reduced the system to the form

$$\begin{cases} x \equiv c_1 \pmod{m_1} \\ x \equiv c_2 \pmod{m_2} \end{cases}$$
(8)

Step 2. Set $x = c_1 + ym_1 = c_2 + zm_2$, where $y, z \in \mathbb{Z}$. Find a solution $(y, z) = (y_0, z_0)$ for the equation

 $m_1 y - m_2 z = c_2 - c_1.$

Consequently, $x_0 = c_1 + m_1 y_0 = c_2 + m_2 z_0$. **Step 3.** Set $m = \operatorname{lcm}(m_1, m_2)$. The system (7) becomes

 $x \equiv x_0 \pmod{m}$.

Proof. It follows from Theorem 7.1.

Example 7.2. Solve the system

$$\begin{cases} 10x \equiv 6 \pmod{4} \\ 12x \equiv 30 \pmod{21} \end{cases}$$

Solution. Applying the Division Algorithm,

gcd(10, 4) = 2, gcd(12, 21) = 3.

Dividing the 1st equation by 2 and the second equation by 3,

$$\begin{cases} 5x \equiv 3 \pmod{2} \\ 4x \equiv 10 \pmod{7} \end{cases} \iff \begin{cases} x \equiv 1 \pmod{2} \\ 4x \equiv 3 \pmod{7} \end{cases}$$

The system is equivalent to

$$\begin{cases} x \equiv 1 \pmod{2} \\ x \equiv 6 \pmod{7} \end{cases}$$

Set $x = 1 + 2y = 6 + 7z, y, z \in \mathbb{Z}$. Then

$$2y - 7z = 5.$$

Applying the Division Algorithm, $7 = 3 \cdot 2 + 1$. Applying the Euclidean Algorithm, $1 = -3 \cdot 2 + 7$. Then $5 = -15 \cdot 2 + 5 \cdot 7$. We obtain a solution $(y_0, z_0) = (-15, -5)$. Thus

 $x_0 = 1 + 2y_0 = 6 + 7z_0 = -29$

is a special solution. The general solution for

$$\begin{cases} x \equiv 0 \pmod{2} \\ x \equiv 0 \pmod{7} \end{cases}$$

is $x \equiv 0 \pmod{14}$. Hence the solution is given by

 $x \equiv -29 \equiv -1 \equiv 13 \pmod{14}$

Example 7.3. Solve the system

$$\begin{cases} 12x \equiv 96 \pmod{20} \\ 20x \equiv 70 \pmod{30} \end{cases}$$

Solution. Applying the Division Algorithm to find, gcd(12, 20) = 4, gcd(20, 30) = 10.

Then

$$\begin{cases} 3x \equiv 24 \pmod{5} \\ 2x \equiv 7 \pmod{3} \end{cases}$$

Applying the Euclidean Algorithm,

$$gcd(3,5) = 1 = 2 \cdot 3 - 1 \cdot 5.$$

Then $2 \cdot 3 \equiv 1 \pmod{5}$. Similarly,

$$\gcd(2,3) = 1 = -1 \cdot 2 + 1 \cdot 3$$

and $-1 \cdot 2 \equiv 1 \pmod{3}$. (Equivalently, $2 \cdot 2 \equiv 1 \pmod{3}$.) Then, 2 is the inverse of 3 modulo 5; -1 or 2 is the inverse of 2 modulo 3. Thus

$$\begin{cases} 2 \cdot 3x \equiv 2 \cdot 24 \pmod{5} \\ -1 \cdot 2x \equiv -1 \cdot 7 \pmod{3} \\ \begin{cases} x \equiv 48 \equiv 3 \pmod{5} \\ x \equiv -7 \equiv 2 \pmod{3} \end{cases}$$

Set $x = 3 + 5y = 2 + 3z$, where $y, z \in \mathbb{Z}$. That is,
 $5y - 3z = -1$.

We find a special solution $(y_0, z_0) = (1, 2)$. So $x_0 = 3 + 5y_0 = 2 + 3z_0 = 8$. Thus the original system is equivalent to

$$x \equiv 8 \pmod{15}$$

and all solutions are given by

$$x = 8 + 15k, \quad k \in \mathbb{Z}.$$

Example 7.4. Find all integer solutions for the system

$$\begin{cases} x \equiv 486 \pmod{186} \\ x \equiv 386 \pmod{286} \end{cases}$$

Solution. The system can be reduced to
$$\begin{cases} x \equiv 114 \pmod{186} \\ x \equiv 100 \pmod{286} \end{cases}$$

Set $x = 114 + 186y = 100 + 286z$, i.e.,
 $186y - 286z = -14$.

Applying the Division Algorithm,

$$286 = 186 + 100,$$

$$186 = 100 + 86,$$

$$100 = 86 + 14,$$

$$86 = 6 \cdot 14 + 2.$$

Then gcd(186, 286) = 2. Applying the Euclidean Algorithm,

$$2 = 86 - 6 \cdot 14$$

= 86 - 6(100 - 86) = 7 \cdot 86 - 6 \cdot 100
= 7(186 - 100) - 6 \cdot 100 = 7 \cdot 186 - 13 \cdot 100
= 7 \cdot 186 - 13(286 - 186) = 20 \cdot 186 - 13 \cdot 286.

Note that $\frac{-14}{2} = -7$. So we get a special solution

$$(y_0, z_0) = -7(20, 13) = (-140, -91).$$

Thus $x_0 = 114 + 186y_0 = 100 + 286z_0 = -25926$. Note that lcm(186, 286) = 26598. The general solutions are given by

$$x \equiv -25926 \equiv 672 \pmod{26598}.$$

Theorem 7.2 (Chinese Remainder Theorem). Let $n_1, n_2, \ldots, n_k \in \mathbb{P}$. If $gcd(n_i, n_j) = 1$ for all $i \neq j$, then the system of congruence equations

$$x \equiv b_1 \pmod{n_1}$$
$$x \equiv b_2 \pmod{n_2}$$
$$\vdots$$
$$x \equiv b_k \pmod{n_k}.$$

has a unique solution modulo $n_1n_2\cdots n_k$.

Thinking Problem. In the Chinese Remainder Theorem, if

$$\gcd(n_i, n_j) = 1,$$

is not satisfied, does the system have solutions? Assuming it has solutions, are the solutions unique modulo some integers?

8 Important Facts

- 1. $a \equiv b \pmod{n} \iff a + kn \equiv b + ln \pmod{n}$ for all $k, l \in \mathbb{Z}$.
- 2. If $c \mid a, c \mid b, c \mid n$, then $a \equiv b \pmod{n} \iff a/c \equiv b/c \pmod{n/c}$.
- 3. An integer a is called **invertible** modulo n if there exists an integer b such that

$$ab \equiv 1 \pmod{n}$$
.

If so, b is called the **inverse** of a modulo n.

4. An integer a is invertible modulo $n \iff \gcd(a, n) = 1$.

5. If gcd(c, n) = 1, then

$$a \equiv b \pmod{n} \iff ca \equiv cb \pmod{n}.$$

6. Equation $ax \equiv b \pmod{n}$ has solution $\iff \gcd(a, n) \mid b$.

7. For all
$$k, l \in \mathbb{Z}$$
,

 $ax \equiv b \pmod{n} \iff (a + kn)x \equiv b + ln \pmod{n}.$