
1 Divisibility

Given two integers a, b with a 6= 0. We say that a divides
b, written

a | b,
if there exists an integer q such that

b = qa.

When this is true, we say that a is a factor (or divisor) of
b, and b is a multiple of a. If a is not a factor of b, we write

a - b.
Any integer n has divisors ±1 and ±n, called the trivial

divisors of n. If a is a divisor of n, so is −a. A positive divi-
sor of n other than the trivial divisors is called a nontrivial
divisor of n. Every integer is a divisor of 0.

A positive integer p ( 6= 1) is called a prime if it has no
nontrivial divisors, i.e., its positive divisors are only the trivial
divisors 1 and p.

A positive integer is called composite if it is not a prime.
The first few primes are listed as

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59.

Proposition 1.1. Every composite number n has a prime
factor p ≤ √

n.

Proof. Since n is composite, there are primes p and q such
that n = pqk, where k ∈ P. Note that for primes p and
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q, one is less than or equal to the other, say p ≤ q. Then
p2 ≤ pqk = n. Thus p ≤ √

n.

Example 1.1. 6 has the prime factor 2 ≤ √
6;

9 has the prime factor 3 =
√

9;
35 has the prime factor 5 ≤ √

35.
Is 143 a prime?

We find
√

143 <
√

144 = 12. For i = 2, 3, 5, 7, 11, check
whether i divides 143. We find out i - 143 for i = 2, 3, 5, 7,
and 11 | 143. So 143 is a composite number.

Is 157 a prime?
Since

√
157 <

√
169 = 13. For i = 2, 3, 5, 7, 11, we find out

i - 157. We see that 157 has no prime factor less or equal to√
157. So 157 is not a composite; 157 is a prime.

Proposition 1.2. Let a, b, c be nonzero integers.

(a) If a | b and b | a, then a = ±b.

(b) If a | b and b|c, then a | c.
(c) If a | b and a | c, then a | (bx + cy) for any x, y ∈ Z.

Proof. (a) Write b = q1a, a = q2b for some q1, q2 ∈ Z. Then

b = q1q2b.

Dividing both sides by b, we have q1q2 = 1. This forces that
q1 = q2 = ±1. Thus b = ±a.

(b) Write b = q1a, c = q2b for some integers q1, q2 ∈ Z.
Then c = q1q2a. This means that a | c.
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(c) Write b = q1a, c = q2a for some q1, q2 ∈ Z. Then, for
any x, y ∈ Z,

bx + cy = q1ax + q2ay = (q1x + q2y)a.

This means that a | (bx + cy).

Theorem 1.3. There are infinitely many prime numbers.

Proof. Suppose there are finitely many primes, say, they are
listed as follows

p1, p2, . . . , pk.

Then the integer

a = p1p2 · · · pk + 1

is not divisible by any of the primes p1, p2, . . . , pk because the
remainders of a divided by any pi is always 1, 1 ≤ i ≤ k. This
means that a has no prime factors. By definition of primes,
the integer a is a prime, and this prime is larger than all primes
p1, p2, . . . , pk. So it is larger than itself, a contradiction.

Theorem 1.4 (Division Algorithm). For any a, b ∈ Z
with a > 0, there exist unique integers q, r such that

b = qa + r, 0 ≤ r < a.

Proof. Define the set S = {b − ta ≥ 0 : t ∈ Z}. Then
S is nonempty and bounded below. By the Well-Ordering
Principle, S has the unique minimum integer r. Then there
is a unique integer q such that b− qa = r. Thus

b = qa + r.
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Clearly, r ≥ 0. We claim that r < a. Suppose r ≥ a, then

b− (q + 1)a = r − a ≥ 0.

This means that r− a is an element of S, but smaller than r.
This is contrary to that r is the minimum element in S.

Example 1.2. For integers a = 24 and b = 379, we have

379 = 15 · 24 + 19, q = 15, r = 19.

For integers a = 24 and b = −379, we have

−379 = −14 · 24 + 5, q = −14, r = 5.

2 Greatest Common Divisor

For integers a and b, not simultaneously 0, a common di-
visor of a and b is an integer c such that c|a and c|b.
Definition 2.1. Let a, b ∈ Z, not simultaneously 0. A pos-
itive integer d is called the greatest common divisor of
a and b, denoted by gcd(a, b), if

(a) d | a, d | b, and

(b) If c | a and c | b, then c | d.

Two integers a and b are called coprime (or relatively
prime) if gcd(a, b) = 1.

Theorem 2.2. For any integers a, b ∈ Z, if

b = qa + r
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for some integers q, r ∈ Z, then

gcd(a, b) = gcd(a, r).

Proof. Write d1 = gcd(a, b), d2 = gcd(a, r).
Since d1 | a and d1 | b, then d1 | r because r = b − qa.

So d1 is a common divisor of a and r. Thus, by definition of
gcd(a, r), d1 divides d2. Similarly, since d2 | a and d2 | r,
then d2 | b because b = qa + r. So d2 is a common divisor of
a and b. By definition of gcd(a, b), d2 divides d1. Hence, by
Proposition 1.2 (a), d1 = ±d2. Thus d1 = d2.

The above proposition gives rise to a simple constructive
method to calculate gcd by repeating the Division Algorithm.

Example 2.1. Find gcd(297, 3627).

3627 = 12 · 297 + 63,
297 = 4 · 63 + 45,
63 = 1 · 45 + 18,
45 = 2 · 18 + 9,
18 = 2 · 9;

gcd(297, 3627) = gcd(63, 297)
= gcd(45, 63)
= gcd(18, 45)
= gcd(9, 18)
= 9.

The procedure to calculate gcd(297, 3627) applies to any
pair of positive integers.

Let a, b ∈ N be nonnegative integers. Write d = gcd(a, b).
Repeating the Division Algorithm, we find nonnegative inte-
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gers qi, ri ∈ N such that

b = q0a + r0, 0 ≤ r0 < a,
a = q1r0 + r1, 0 ≤ r1 < r0,
r0 = q2r1 + r2, 0 ≤ r2 < r1,
r1 = q3r2 + r3, 0 ≤ r3 < r2,

...
rk−2 = qkrk−1 + rk, 0 ≤ rk < rk−1,
rk−1 = qk+1rk + rk+1, rk+1 = 0.

The nonnegative sequence {ri} is strictly decreasing. It
must end to 0 at some step, say, rk+1 = 0 for the very first
time. Then ri 6= 0, 0 ≤ i ≤ k. Reverse the sequence {ri}k

i=0

and make substitutions as follows:

d = rk,
rk = rk−2 − qkrk−1,
rk−1 = rk−3 − qk−1rk−2,

...
r1 = a− q1r0,
r0 = b− q0a.

We see that gcd(a, b) can be expressed as an integral linear
combination of a and b. This procedure is known as the Eu-
clidean Algorithm.

We summarize the above argument into the following the-
orem.

Theorem 2.3. For any integers a, b ∈ Z, there exist in-
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tegers x, y ∈ Z such that

gcd(a, b) = ax + by.

Example 2.2. Express gcd(297, 3627) as an integral linear
combination of 297 and 3627.

Dy the Division Algorithm, we have gcd(297, 3627) = 9.
By the Euclidean Algorithm,

9 = 45− 2 · 18
= 45− 2(63− 45)
= 3 · 45− 2 · 63
= 3(297− 4 · 63)− 2 · 63
= 3 · 297− 14 · 63
= 3 · 297− 14(3627− 12 · 297)
= 171 · 297− 14 · 3627.

Example 2.3. Find gcd(119, 45) and express it as an integral
linear combination of 45 and 119.

Applying the Division Algorithm,

119 = 2 · 45 + 29
45 = 29 + 16
29 = 16 + 13
16 = 13 + 3
13 = 4 · 3 + 1
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So gcd(119, 45) = 1. Applying the Euclidean Algorithm,

1 = 13− 4 · 3 = 13− 4(16− 13)
= 5 · 13− 4 · 16 = 5(29− 16)− 4 · 16
= 5 · 29− 9 · 16 = 5 · 29− 9(45− 29)
= 14 · 29− 9 · 45 = 14(119− 2 · 45)− 9 · 45
= 14 · 119− 37 · 45

Example 2.4. Find gcd(119,−45) and express it as linear
combination of 119 and -45.

We have gcd(119,−45) = gcd(119, 45) = 1. Since

1 = 14 · 119− 37 · 45,

we have gcd(119,−45) = 14 · 119 + 37 · (−45).

Remark. For any a, b ∈ Z, gcd(a,−b) = gcd(a, b). Ex-
pressing gcd(a,−b) in terms of a and −b is the same as that
of expressing gcd(a, b) in terms of a and b.

Proposition 2.4. If a | bc and gcd(a, b) = 1, then a | c.
Proof. By the Euclidean Algorithm, there are integers x, y ∈
Z such that ax + by = 1. Then

c = 1 · c = (ax + by)c = acx + bcy.

Since a | ac and a | bc, thus c | (acx+bcy) by Proposition 1.2
(c). Therefore a | c.
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Theorem 2.5 (Unique Factorization). Every integer
a ≥ 2 can be uniquely factorized into the form

a = pe1
1 pe2

2 · · · pem
m ,

where p1, p2, . . . , pm are distinct primes, e1, e2, . . . , em are
positive integers, and p1 < p2 < · · · < ps.

Proof. (Not required) We first show that a has a factorization
into primes. If a has only the trivial divisors, then a itself is
a prime, and it obviously has unique factorization. If a has
some nontrivial divisors, then

a = bc

for some positive integers b, c ∈ P other than 1 and a. So
b < a, c < a. By induction, the positive integers b and c have
factorizations into primes. Consequently, a has a factorization
into primes.

Next we show that the factorization of a is unique in the
sense of the theorem.

Let a = qf1
1 qf2

2 · · · afn
n be any factorization, where q1, q2, . . . , qn

are distinct primes, f1, f2, . . . , fn are positive integers, and
q1 < q2 < · · · < qn. We claim that m = n, pi = qi, ei = fi

for all 1 ≤ i ≤ m.
Suppose p1 < q1. Then p1 is distinct from the primes

q1, q2, . . . , qn. It is clear that gcd(p1, qi) = 1, and so

gcd(p1, q
fi
i ) = 1 for all 1 ≤ i ≤ n.
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Note that p1 | qf1
1 qf2

2 · · · afn
n . Since gcd(p1, q

f1
1 ) = 1, by Propo-

sition 2.4, we have p1 | qf2
2 · · · afn

n . Since gcd(p1, q
f2
2 ) = 1,

again by Proposition 2.4, we have p1 | qf2
3 · · · afn

n . Repeating
the argument, eventually we have p1 | qfn

n , which is contrary
to gcd(p1, q

fn
n ) = 1. We thus conclude p1 ≥ q1. Similarly,

q1 ≥ p1. Therefore p1 = q1. Next we claim e1 = f1.
Suppose e1 < f1. Then

pe2
2 · · · pem

m = pf1−e1
1 qf2

2 · · · qfn
n .

This implies that p1|pe2
2 · · · pem

m . If m = 1, then pe2
2 · · · pem

m =
1. So p1 | 1. This is impossible because p1 is a prime. If
m ≥ 2, since gcd(p1, pi) = 1, we have gcd(p1, p

ei
i ) = 1 for

all 2 ≤ i ≤ m. Applying Proposition 2.4 repeatedly, we
have p1|pem

m , which is contrary to gcd(p1, p
em
m ) = 1. We thus

conclude e1 ≥ f1. Similarly, f1 ≥ e1. Therefore e1 = f1.
Now we have obtained pe2

2 · · · pem
m = qf2

2 · · · qfn
n . If m < n,

then by induction we have p1 = q1, . . . , pm = qm and e1 =
f1, . . . , em = fm. Thus 1 = q

fm+1
m+1 · · · qfn

n . This is impossible
because qm+1, . . . , qn are primes. So m ≥ n. Similarly, n ≥
m. Hence we have m = n. By induction, we have e2 =
f2, . . . , em = fm.

Our proof is finished.

Example 2.5. Factorize the numbers 180 and 882, and find
gcd(180, 882).

Solution. 180/2=90, 90/2=45, 45/3=15, 15/3=5, 5/5=1.
Then 360 = 22 · 32 · 5. Similarly, 882/2=441, 441/3=147,
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147/3=49, 49/7=7, 7/7=1. We have 882 = 2 · 32 · 72. Thus
gcd(180, 882) = 2 · 32 = 18.

3 Least Common Multiple

For two integers a and b, a positive integer m is called a
common multiple of a and b if a | m and b | m.

Definition 3.1. Let a, b ∈ Z. The least common mul-
tiple of a and b, denoted by lcm(a, b), is a positive integer m
such that

(a) a | m, b | m, and

(b) If a | c and b | c, then m | c.
Proposition 3.2. For any nonnegative integers a, b ∈ N,

ab = gcd(a, b) · lcm(a, b).

Proof. Let a = pe1
1 pe2

2 · · · pen
n and b = pf1

1 pf2
2 · · · pfn

n , where
p1 < p2 < · · · < pn, ei and fi are nonnegative integers,
1 ≤ i ≤ n. Then by the Unique Factorization Theorem,

gcd(a, b) = pg1
1 pg2

2 · · · pgn
n ,

lcm(a, b) = ph1
1 ph2

2 · · · phn
n ,

where gi = min(ei, fi), hi = max(ei, fi), 1 ≤ i ≤ n. Note
that for any real numbers x, y ∈ R,

min(x, y) + max(x, y) = x + y.
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Thus
gi + hi = ei + fi, 1 ≤ i ≤ n.

Therefore

ab = pe1+f1
1 pe2+f2

2 · · · pen+fn
n

= pg1+h1
1 pg2+h2

2 · · · pgn+hn
n

= gcd(a, b) · lcm(a, b).

4 Solving ax + by = c

Example 4.1. Find an integer solution for the equation

25x + 65y = 10.

Solution. Applying the Division Algorithm,

65 = 2 · 25 + 15,
25 = 15 + 10,
15 = 10 + 5.

Then gcd(25, 65) = 5. Applying the Euclidean Algorithm,

5 = 15− 10
= 15− (25− 15)
= −25 + 2 · 15
= −25 + 2 · (65− 2 · 25)
= −5 · 25 + 2 · 65.
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By inspection, (x, y) = (−5, 2) is a solution for the equation

25x + 65y = 5.

Since 10
5 = 2, then (x, y) = 2(−5, 2) = (−10, 4) is a solution

for 25x + 65y = 10.

Example 4.2. Find an integer solution for the equation

25x + 65y = 18.

Solution. Since gcd(25, 65) = 5, if the equation has a solu-
tion, then 5 | (25x + 65y). So 5 | 18 by Proposition 1.2 (c).
This is a contradiction. Hence the equation has no solution.

Theorem 4.1. The linear Diophantine equation

ax + by = c,

has a solution if and only if gcd(a, b) | c.
Theorem 4.2. Let S be the set of solutions of the equation

ax + by = c. (1)

Let S0 be the set of solutions of the homogeneous equation

ax + by = 0. (2)

If (x, y) = (u0, v0) is a solution of (2), then S is given by

S = {(u0 + s, v0 + t) : (s, t) ∈ S0}.
In other words, all solutions of (1) are given by{

x = u0 + s
y = v0 + t

, (s, t) ∈ S0. (3)
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Proof. Since (x, y) = (u0, v0) is a solution of (1), then au0 +
bv0 = c. For any solution (x, y) = (s, t) of (2), we have
as + bt = 0. Thus

a(u0 + s) + b(v0 + t) = (au0 + bv0) + (as + bt) = c.

This means that (x, y) = (u0 + s, v0 + t) is a solution of (1).
Conversely, for any solution (x, y) = (u, v) of (1), we have

au + bv = c. Let (s0, t0) = (u− u0, v − v0). Then

as0 + bt0 = a(u− u0) + b(v − v0)

= (au + bv)− (au0 + bv0)

= c− c = 0.

This means that (s0, t0) is a solution of (2). Note that

(u, v) = (u0 + s0, v0 + t0).

This shows that the solution (x, y) = (u, v) is a solution of
the form in (3). Our proof is finished.

Theorem 4.3. Let d = gcd(a, b). The solution set S0 of

ax + by = 0

is given by

S0 =

{
k

(
b

d
, − a

d

)
: k ∈ Z

}
.

In other words,{
x = (b/d)k
y = −(a/d)k

, k ∈ Z.
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Proof. The equation ax + by = 0 can be written as

ax = −by.

Write m = ax = −by. Then a | m and b | m, i.e., m is a
multiple of a and b. Thus m = k · lcm(a, b) for some k ∈ Z.
Therefore ax = k · lcm(a, b) implies

x =
k · lcm(a, b)

a
=

kab

da
=

kb

d
.

Similarly, −by = k · lcm(a, b) implies

y =
k · lcm(a, b)

−b
=

kab

−db
= −ka

d
.

Theorem 4.4. Let d = gcd(a, b) and d | c. Let (u0, v0) be
a particular solution of the equation

ax + by = c.

The all solutions of the above equation are given by
{

x = u0 + bk/d
y = v0 − ak/d

, k ∈ Z.

Proof. It follows from Theorem 4.2 and Theorem 4.3.

Example 4.3. Find all integer solutions for the equation

25x + 65y = 10.
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Solution. Find gcd(25, 65) = 5 and have got a special solu-
tion (x, y) = (−10, 4) in a previous example. Now consider
the equation 25x + 65y = 0. Divide both sides by 5 to have,

5x + 13y = 0.

Since gcd(5, 13) = 1, all solutions for the above equation are
given by (x, y) = k(−13, 5), k ∈ Z. Thus all solutions of
25x + 65y = 10 are given by

{
x = −10− 13k
y = 4 + 5k

, k ∈ Z.
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Example 4.4.
168x + 668y = 888.

Solution. Find gcd(168, 668) = 4 by the Division Algorithm

668 = 3 · 168 + 164
168 = 164 + 4
164 = 41 · 4

By the Euclidean Algorithm,

4 = 168− 164
= 168− (668− 3 · 168)
= 4 · 168 + (−1) · 668.

Dividing 888
4 = 222, we obtain a special solution

(x, y) = 222(4,−1) = (888,−222)

Solve 168x + 668y = 0. Dividing both sides by 4,

42x + 167y = 0 i.e. 42x = −167y.

The general solutions for 168x + 668y = 0 are given by

(x, y) = k(167,−42), k ∈ Z.

The general solutions for 168x + 668y = 888 are given by

(x, y) = (888,−222) + k(167,−42), k ∈ Z.

i.e.

{
x = 888 +167k
y = −222 −42k

, k ∈ Z.
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5 Modulo Integers

Let n be a fixed positive integer. Two integers a and b are
said to be congruent modulo n, written

a ≡ b (mod n)

and read “a equals b modulo n,” if n | (b− a).

For all k, l ∈ Z, a ≡ b (mod n) is equivalent to

a + kn ≡ b + ln (mod n).

In fact, the difference

(b + ln)− (a + kn) = (b− a) + (l − k)n

is a multiple of n if and only if b− a is a multiple of n.

Example 5.1.

3 ≡ 5 (mod 2), 368 ≡ 168 (mod 8),

−8 ≡ 10 (mod 9), 3 6≡ 5 (mod 3),

368 6≡ 268 (mod 8), −8 6≡ 18 (mod 9).

Proposition 5.1. Let n be a fixed positive integer. If

a1 ≡ b1 (mod n), a2 ≡ b2 (mod n),

then
a1 + a2 ≡ b1 + b2 (mod n),

a1 − a2 ≡ b1 − b2 (mod n),
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a1a2 ≡ b1b2 (mod n).

If a ≡ b (mod n), d | n, then

a ≡ b (mod d).

Proof. Since a1 ≡ b1 (mod n), a2 ≡ b2 (mod n), there are
integers k1, k2 such that

b1 − a1 = k1n, b2 − a2 = k2n.

Then
(b1 + b2)− (a1 + a2) = (k1 + k2)n;

(b2 − b1)− (a1 − a2) = (k1 − k2)n;

b1b2 − a1a2 = b1b2 − b1a2 + b1a2 − a1a2

= b1(b2 − a2) + (b1 − a1)a2

= bk′n + kna′

= (b1k2 + a2k1)n.

Thus
a1 ± a2 ≡ b1 ± b2 (mod n);

a1a2 ≡ b1b2 (mod n).

If d | n, then n = dl for some l ∈ Z. Thus

b− a = kn = (kl)d.

Therefore, a ≡ b (mod d).
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Example 5.2.

6 ≡ 14 (mod 8) =⇒ 2 · 6 ≡ 2 · 14 (mod 8);

6 ≡ 14 (mod 8) ⇐⇒ 6

2
≡ 14

2

(
mod

8

2

)
;

However,

2 · 3 ≡ 2 · 7 (mod 8) 6=⇒ 3 ≡ 7 (mod 8).

In fact,
3 6≡ 7 (mod 8).

Theorem 5.2. Let c | a, c | b, and c | n. Then

a ≡ b (mod n) ⇐⇒ a

c
≡ b

c

(
mod

n

c

)
.

Proof. Write a = ca1, b = cb1, n = cn1. Then

a ≡ b (mod n) ⇐⇒ b− a = kn for an integer k
⇐⇒ c(b1 − a1) = kcn1

⇐⇒ b/c− a/c = b1 − a1 = kn1

⇐⇒ a/c ≡ b/c (mod n/c).

Theorem 5.3.

a ≡ b (mod m), a ≡ b (mod n),
⇐⇒

a ≡ b (mod lcm(m,n)).

In particular,

gcd(m,n) = 1 ⇐⇒ a ≡ b (mod mn).
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Proof. Write l = lcm(m,n). If a ≡ b (mod m), a ≡ b (mod n),
then m | (b − a) and n | (b − a). Thus l | (b − a), i.e.,
a ≡ b (mod l).

Conversely, if a ≡ b (mod l), then l | (b − a). Since m | l,
n | l, we have m | (b− a), n | (b− a). Thus a ≡ b (mod m),
a ≡ b (mod n).

In particular, if gcd(m,n) = 1, then l = mn.

Definition 5.4. An integer a is called invertible modulo
n if there exists an integer b such that

ab ≡ 1 (mod n).

If so, b is called the inverse of a modulo n.

Proposition 5.5. An integer a is invertible modulo n if
and only if gcd(a, n) = 1

Proof. “⇒”: If a is invertible modulo n, say its inverse is b,
then exists an integer k such that ab = 1 + kn, i.e.,

1 = ab− kn.

Thus gcd(a, n) divides 1. Hence gcd(a, n) = 1.
“⇐”: By the Euclidean Algorithm, there exist integers u, v

such that 1 = au + nv. Then au ≡ 1 (mod n).

Example 5.3. The invertible integers modulo 12 are the
following numbers

1, 5, 7, 11.

Numbers 0, 2, 3, 4, 6, 8, 9, 10 are not invertible modulo 12.
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Theorem 5.6. Let gcd(c, n) = 1. Then

a ≡ b (mod n) ⇐⇒ ca ≡ cb (mod n)

Proof. By the Euclidean Algorithm, there are integers u, v
such that

1 = cu + nv.

Then 1 ≡ cu (mod n); i.e., a and u are inverses of each other
modulo n

“⇒”: c ≡ c (mod n) and a ≡ b (mod n) imply

ca ≡ cb (mod n).

This true without gcd(c, n) = 1.
“⇐”: ca ≡ cb (mod n) and u ≡ u (mod n) imply that

uca ≡ ucb (mod n).

Replace uc = 1− vn; we have a− avn ≡ b− bvn (mod n).
This means a ≡ b (mod n).

Example 5.4. Find the inverse modulo 15 for each of the
numbers 2, 4, 7, 8, 11, 13.

Solution. Since 2 · 8 ≡ 1 (mod 15), 4 · 4 ≡ 1 (mod 15). Then
2 and 8 are inverses of each other; 4 is the inverse of itself.

Write 15 = 2 · 7 + 1. Then 15 − 2 · 7 = 1. Thus −2 · 7 ≡
1 (mod 15). The inverse of 7 is -2. Since −2 ≡ 13 (mod 15),
the inverse of 7 is also 13. In fact,

7 · 13 ≡ 1 (mod 15).
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Similarly, 15 = 11 + 4, 11 = 2 · 4 + 3, 4 = 3 + 1, then

1 = 4− 3 = 4− (11− 2 · 4)
= 3 · 4− 11 = 3 · (15− 11)− 11
= 15− 4 · 11.

Thus the inverse of 11 is −4. Since −4 ≡ 11 (mod 15), the
inverse of 11 is also itself, i.e., 11 · 11 ≡ 1 (mod 15).

6 Solving ax ≡ b (mod n)

Theorem 6.1. The congruence equation

ax ≡ b (mod n)

has a solution if and only if gcd(a, n) divides b.

Proof. Let d = gcd(a, n). The congruence equation has a
solution if and only if there exist integers x and k such that
b = ax + kn. This is equivalent to d | b.
Remark. For all k, l ∈ Z, we have

ax ≡ b (mod n) ⇐⇒ (a + kn)x ≡ b + ln (mod n).

In fact, the difference

(b + ln)− (a + kn)x = (b− ax) + (l − kx)n

is a multiple of n if and only if b− ax is a multiple of n.

Theorem 6.2. Let gcd(a, n) = 1. Then there exists an
integer u such that au ≡ 1 (mod n); the solutions for the
equation ax ≡ b (mod n) are given by

x ≡ ub (mod n).
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Proof. Since gcd(a, n) = 1, there exist u, v ∈ Z such that
1 = au + nv. So 1 ≡ au (mod n), i.e., au ≡ 1 (mod n).
Since u is invertible modulo n, we have

ax ≡ b (mod n) ⇐⇒ uax ≡ ub (mod n).

Since au = 1− nv, then uax = (1− nv)x = x− vxn. Thus

ax ≡ b (mod n) ⇐⇒ x− vxn ≡ ub (mod n).

Therefore

ax ≡ b (mod n) ⇐⇒ x ≡ ub (mod n).

Example 6.1. Find all integers x for

9x ≡ 27 (mod 15).

Solution. Find gcd(9, 15) = 3. Dividing both sides by 3,

3x ≡ 9 (mod 5) ⇐⇒ 3x ≡ 4 (mod 5).

Since gcd(3, 5) = 1, the integer 3 is invertible and its inverse
is 2. Multiplying 2 to both sides,

6x ≡ 8 (mod 5).

Since 6 ≡ 1 (mod 5), 8 ≡ 3 (mod 5), then

x ≡ 3 (mod 5).

In other words,
x = 3 + 5k, k ∈ Z.
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Example 6.2. Solve the equation 668x ≡ 888 (mod 168).

Solution. Find gcd(668, 168) = 4, then

167x ≡ 222 (mod 42).

By the Division Algorithm,

167 = 3 · 42 + 41; 42 = 41 + 1.

By the Euclidean Algorithm,

1 = 42− 41 = 42− (167− 3 · 42) = 4 · 42− 167.

Then −167 ≡ 1 (mod 42); the inverse of 167 is −1. Multi-
plying −1 to both sides, we have x ≡ −222 (mod 42). Thus

x ≡ −12 (mod 42) or x ≡ 30 (mod 42); i.e.

x = 30 + 42k, k ∈ Z.

Algorithm for solving ax ≡ b (mod n).
Step 1. Find d = gcd(a, n) by the Division Algorithm.
Step 2. If d = 1, apply the Euclidean Algorithm to find

u, v ∈ Z such that 1 = au + nv.
Step 3. Do the multiplication uax ≡ ub (mod n). All

solutions x ≡ ub (mod n) are obtained. Stop.
Step 4. If d > 1, check whether d | b. If d - b, there is no

solution. Stop. If d | b, do the division

a

d
x ≡ b

d

(
mod

n

d

)
.

Rewrite a/d as a, b/d as b, and n/d as n. Go to Step 1.
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Proof. Since 1 = au + nv, we have au ≡ 1 (mod n). This
means that a and u are inverses of each other modulo n. So

ax ≡ b (mod n) ⇐⇒ uax ≡ ub (mod n).

Since ua = 1− vn, then uax = (1− vn)x = x− vxn. Thus

uax ≡ ub (mod n) ⇐⇒ x ≡ ub (mod n).

Example 6.3. Solve the equation 245x ≡ 49 (mod 56).

Solution. Applying the Division Algorithm,

245 = 4 · 56 + 21
56 = 2 · 21 + 14
21 = 14 + 7

Applying the Euclidean Algorithm,

7 = 21− 14 = 21− (56− 2 · 21)
= 3 · 21− 56 = 3 · (245− 4 · 56)− 56
= 3 · 245− 13 · 56

Dividing both sides by 7, we have

1 = 3 · 35− 13 · 8.
Thus 3 · 35 ≡ 1 (mod 8). Dividing the original equation by
7, we have 35x ≡ 7 (mod 8). Multiplying 3 to both sides, we
obtain solutions

x ≡ 21 ≡ 5 (mod 8)
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7 Chinese Remainder Theorem

Example 7.1. Solve the system{
x ≡ 0 (mod n1)
x ≡ 0 (mod n2)

Solution. By definition of solution, x is a common multiple of
n1 and n2. So x is a multiple of lcm(n1, n2). Thus the system
is equivalent to

x ≡ 0 (mod lcm(n1, n2)).

Theorem 7.1. Let S be the solution set of the system{
a1x ≡ b1 (mod n1)
a2x ≡ b2 (mod n2)

(4)

Let S0 be the solution set of the homogeneous system{
a1x ≡ 0 (mod n1)
a2x ≡ 0 (mod n2)

(5)

If x = x0 is a solution of (4), then all solutions of (4) are
given by

x = x0 + s, s ∈ S0. (6)

Proof. We first show that x = x0 + s, where s ∈ S0, are
indeed solutions of (4). In fact, since x0 is a solution for (4)
and s is a solution for (5), we have

{
a1x0 ≡ b1 (mod n1)
a2x0 ≡ b2 (mod n2)

,

{
a1s ≡ 0 (mod n1)
a2s ≡ 0 (mod n2)

;
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i.e., n1 divides (b1 − a1x0) and a1s; n2 divides (b2 − a2x0)
and a2s. Then n1 divides [(b1 − a1x0)− a1s], and n2 divides
[(b2 − a2x0) − a2s]; i.e., n1 divides [b1 − a1(x0 + s)], and n2

divides [b2 − a2(x0 + s)]. This means that x = x0 + s is a
solution of (4).

Conversely, let x = t be any solution of (4). We will see that
s0 = t−x0 is a solution of (5). Hence the solution t = x0 +s0

is of the form in (6).

Algorithm for solving the system{
a1x ≡ b1 (mod n1)
a2x ≡ b2 (mod n2)

(7)

Step 1. Reduced the system to the form{
x ≡ c1 (mod m1)
x ≡ c2 (mod m2)

(8)

Step 2. Set x = c1 + ym1 = c2 + zm2, where y, z ∈ Z.
Find a solution (y, z) = (y0, z0) for the equation

m1y −m2z = c2 − c1.

Consequently, x0 = c1 + m1y0 = c2 + m2z0.
Step 3. Set m = lcm(m1,m2). The system (7) becomes

x ≡ x0 (mod m).

Proof. It follows from Theorem 7.1.

Example 7.2. Solve the system{
10x ≡ 6 (mod 4)
12x ≡ 30 (mod 21)
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Solution. Applying the Division Algorithm,

gcd(10, 4) = 2, gcd(12, 21) = 3.

Dividing the 1st equation by 2 and the second equation by 3,{
5x ≡ 3 (mod 2)
4x ≡ 10 (mod 7)

⇐⇒
{

x ≡ 1 (mod 2)
4x ≡ 3 (mod 7)

The system is equivalent to{
x ≡ 1 (mod 2)
x ≡ 6 (mod 7)

Set x = 1 + 2y = 6 + 7z, y, z ∈ Z. Then

2y − 7z = 5.

Applying the Division Algorithm, 7 = 3 · 2 + 1. Applying the
Euclidean Algorithm, 1 = −3 ·2+7. Then 5 = −15 ·2+5 ·7.
We obtain a solution (y0, z0) = (−15,−5). Thus

x0 = 1 + 2y0 = 6 + 7z0 = −29

is a special solution. The general solution for{
x ≡ 0 (mod 2)
x ≡ 0 (mod 7)

is x ≡ 0 (mod 14). Hence the solution is given by

x ≡ −29 ≡ −1 ≡ 13 (mod 14)

Example 7.3. Solve the system{
12x ≡ 96 (mod 20)
20x ≡ 70 (mod 30)
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Solution. Applying the Division Algorithm to find,

gcd(12, 20) = 4, gcd(20, 30) = 10.

Then {
3x ≡ 24 (mod 5)
2x ≡ 7 (mod 3)

Applying the Euclidean Algorithm,

gcd(3, 5) = 1 = 2 · 3− 1 · 5.
Then 2 · 3 ≡ 1 (mod 5). Similarly,

gcd(2, 3) = 1 = −1 · 2 + 1 · 3
and −1 · 2 = 1 (mod 3). (Equivalently, 2 · 2 ≡ 1 (mod 3).)
Then, 2 is the inverse of 3 modulo 5; −1 or 2 is the inverse of
2 modulo 3. Thus{

2 · 3x ≡ 2 · 24 (mod 5)
−1 · 2x ≡ −1 · 7 (mod 3){

x ≡ 48 ≡ 3 (mod 5)
x ≡ −7 ≡ 2 (mod 3)

Set x = 3 + 5y = 2 + 3z, where y, z ∈ Z. That is,

5y − 3z = −1.

We find a special solution (y0, z0) = (1, 2). So x0 = 3+5y0 =
2 + 3z0 = 8. Thus the original system is equivalent to

x ≡ 8 (mod 15)

and all solutions are given by

x = 8 + 15k, k ∈ Z.
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Example 7.4. Find all integer solutions for the system{
x ≡ 486 (mod 186)
x ≡ 386 (mod 286)

Solution. The system can be reduced to{
x ≡ 114 (mod 186)
x ≡ 100 (mod 286)

Set x = 114 + 186y = 100 + 286z, i.e.,

186y − 286z = −14.

Applying the Division Algorithm,

286 = 186 + 100,
186 = 100 + 86,
100 = 86 + 14,
86 = 6 · 14 + 2.

Then gcd(186, 286) = 2. Applying the Euclidean Algorithm,

2 = 86− 6 · 14
= 86− 6(100− 86) = 7 · 86− 6 · 100
= 7(186− 100)− 6 · 100 = 7 · 186− 13 · 100
= 7 · 186− 13(286− 186) = 20 · 186− 13 · 286.

Note that −14
2 = −7. So we get a special solution

(y0, z0) = −7(20, 13) = (−140,−91).

Thus x0 = 114 + 186y0 = 100 + 286z0 = −25926. Note that
lcm(186, 286) = 26598. The general solutions are given by

x ≡ −25926 ≡ 672 (mod 26598).
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Theorem 7.2 (Chinese Remainder Theorem). Let
n1, n2, . . . , nk ∈ P. If gcd(ni, nj) = 1 for all i 6= j, then the
system of congruence equations

x ≡ b1 (mod n1)

x ≡ b2 (mod n2)
...

x ≡ bk (mod nk).

has a unique solution modulo n1n2 · · ·nk.

Thinking Problem. In the Chinese Remainder Theorem,
if

gcd(ni, nj) = 1,

is not satisfied, does the system have solutions? Assuming it
has solutions, are the solutions unique modulo some integers?

8 Important Facts

1. a ≡ b (mod n) ⇐⇒ a + kn ≡ b + ln (mod n) for all
k, l ∈ Z.

2. If c | a, c | b, c | n, then

a ≡ b (mod n) ⇐⇒ a/c ≡ b/c (mod n/c).

3. An integer a is called invertible modulo n if there exists
an integer b such that

ab ≡ 1 (mod n).
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If so, b is called the inverse of a modulo n.

4. An integer a is invertible modulo n ⇐⇒ gcd(a, n) = 1.

5. If gcd(c, n) = 1, then

a ≡ b (mod n) ⇐⇒ ca ≡ cb (mod n).

6. Equation ax ≡ b (mod n) has solution ⇐⇒ gcd(a, n) | b.
7. For all k, l ∈ Z,

ax ≡ b (mod n) ⇐⇒ (a + kn)x ≡ b + ln (mod n).
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