1 Divisibility

Given two integers a, b with $a \neq 0$. We say that a divides b, written

$$a \mid b,$$

if there exists an integer q such that

$$b = qa.$$

When this is true, we say that a is a factor (or divisor) of b, and b is a multiple of a. If a is not a factor of b, we write

$$a \nmid b.$$

Any integer n has divisors ± 1 and $\pm n$, called the trivial divisors of n. If a is a divisor of n, so is $-a$. A positive divisor of n other than the trivial divisors is called a nontrivial divisor of n. Every integer is a divisor of 0.

A positive integer $p \ (\neq 1)$ is called a prime if it has no nontrivial divisors, i.e., its positive divisors are only the trivial divisors 1 and p.

A positive integer is called composite if it is not a prime. The first few primes are listed as

Proposition 1.1. Every composite number n has a prime factor $p \leq \sqrt{n}$.

Proof. Since n is composite, there are primes p and q such that $n = pqk$, where $k \in \mathbb{P}$. Note that for primes p and
If \(q \), one is less than or equal to the other, say \(p \leq q \). Then \(p^2 \leq pqk = n \). Thus \(p \leq \sqrt{n} \). \(\square \)

Example 1.1. 6 has the prime factor \(2 \leq \sqrt{6} \);
9 has the prime factor \(3 = \sqrt{9} \);
35 has the prime factor \(5 \leq \sqrt{35} \).

Is 143 a prime? We find \(\sqrt{143} < \sqrt{144} = 12 \). For \(i = 2, 3, 5, 7, 11 \), check whether \(i \) divides 143. We find out \(i \mid 143 \) for \(i = 2, 3, 5, 7, \) and \(11 \mid 143 \). So 143 is a composite number.

Is 157 a prime? Since \(\sqrt{157} < \sqrt{169} = 13 \). For \(i = 2, 3, 5, 7, 11 \), we find out \(i \mid 157 \). We see that 157 has no prime factor less or equal to \(\sqrt{157} \). So 157 is not a composite; 157 is a prime.

Proposition 1.2. Let \(a, b, c \) be nonzero integers.

(a) If \(a \mid b \) and \(b \mid a \), then \(a = \pm b \).

(b) If \(a \mid b \) and \(b \mid c \), then \(a \mid c \).

(c) If \(a \mid b \) and \(a \mid c \), then \(a \mid (bx + cy) \) for any \(x, y \in \mathbb{Z} \).

Proof. (a) Write \(b = q_1a, a = q_2b \) for some \(q_1, q_2 \in \mathbb{Z} \). Then

\[
 b = q_1q_2b.
\]

Dividing both sides by \(b \), we have \(q_1q_2 = 1 \). This forces that \(q_1 = q_2 = \pm 1 \). Thus \(b = \pm a \).

(b) Write \(b = q_1a, c = q_2b \) for some integers \(q_1, q_2 \in \mathbb{Z} \). Then \(c = q_1q_2a \). This means that \(a \mid c \).
(c) Write \(b = q_1a, \) \(c = q_2a \) for some \(q_1, q_2 \in \mathbb{Z} \). Then, for any \(x, y \in \mathbb{Z} \),

\[
bx + cy = q_1ax + q_2ay = (q_1x + q_2y)a.
\]

This means that \(a \mid (bx + cy) \).

Theorem 1.3. There are infinitely many prime numbers.

Proof. Suppose there are finitely many primes, say, they are listed as follows

\[p_1, p_2, \ldots, p_k. \]

Then the integer

\[a = p_1p_2 \cdots p_k + 1 \]

is not divisible by any of the primes \(p_1, p_2, \ldots, p_k \) because the remainders of \(a \) divided by any \(p_i \) is always 1, \(1 \leq i \leq k \). This means that \(a \) has no prime factors. By definition of primes, the integer \(a \) is a prime, and this prime is larger than all primes \(p_1, p_2, \ldots, p_k \). So it is larger than itself, a contradiction. \(\Box \)

Theorem 1.4 (Division Algorithm). For any \(a, b \in \mathbb{Z} \) with \(a > 0 \), there exist unique integers \(q, r \) such that

\[
b = qa + r, \quad 0 \leq r < a.
\]

Proof. Define the set \(S = \{ b - ta \geq 0 : t \in \mathbb{Z} \} \). Then \(S \) is nonempty and bounded below. By the Well-Ordering Principle, \(S \) has the unique minimum integer \(r \). Then there is a unique integer \(q \) such that \(b - qa = r \). Thus

\[
b = qa + r.
\]
Clearly, $r \geq 0$. We claim that $r < a$. Suppose $r \geq a$, then

$$b - (q + 1)a = r - a \geq 0.$$

This means that $r - a$ is an element of S, but smaller than r. This is contrary to that r is the minimum element in S. □

Example 1.2. For integers $a = 24$ and $b = 379$, we have

$$379 = 15 \cdot 24 + 19, \quad q = 15, \ r = 19.$$

For integers $a = 24$ and $b = -379$, we have

$$-379 = -14 \cdot 24 + 5, \quad q = -14, \ r = 5.$$

2 Greatest Common Divisor

For integers a and b, not simultaneously 0, a **common divisor** of a and b is an integer c such that $c|a$ and $c|b$.

Definition 2.1. Let $a, b \in \mathbb{Z}$, not simultaneously 0. A positive integer d is called the **greatest common divisor** of a and b, denoted by gcd(a, b), if

(a) $d | a, \ d | b$, and

(b) If $c | a$ and $c | b$, then $c | d$.

Two integers a and b are called **coprime** (or relatively prime) if gcd$(a, b) = 1$.

Theorem 2.2. For any integers $a, b \in \mathbb{Z}$, if

$$b = qa + r$$
for some integers $q, r \in \mathbb{Z}$, then
\[\gcd(a, b) = \gcd(a, r). \]

Proof. Write $d_1 = \gcd(a, b)$, $d_2 = \gcd(a, r)$.

Since $d_1 \mid a$ and $d_1 \mid b$, then $d_1 \mid r$ because $r = b - qa$. So d_1 is a common divisor of a and r. Thus, by definition of $\gcd(a, r)$, d_1 divides d_2. Similarly, since $d_2 \mid a$ and $d_2 \mid r$, then $d_2 \mid b$ because $b = qa + r$. So d_2 is a common divisor of a and b. By definition of $\gcd(a, b)$, d_2 divides d_1. Hence, by Proposition 1.2 (a), $d_1 = \pm d_2$. Thus $d_1 = d_2$. \[\square \]

The above proposition gives rise to a simple constructive method to calculate \gcd by repeating the Division Algorithm.

Example 2.1. Find $\gcd(297, 3627)$.

\[
\begin{align*}
3627 &= 12 \cdot 297 + 63, \quad \gcd(297, 3627) = \gcd(63, 297) \\
297 &= 4 \cdot 63 + 45, \quad = \gcd(45, 63) \\
63 &= 1 \cdot 45 + 18, \quad = \gcd(18, 45) \\
45 &= 2 \cdot 18 + 9, \quad = \gcd(9, 18) \\
18 &= 2 \cdot 9; \quad = 9.
\end{align*}
\]

The procedure to calculate $\gcd(297, 3627)$ applies to any pair of positive integers.

Let $a, b \in \mathbb{N}$ be nonnegative integers. Write $d = \gcd(a, b)$. Repeating the Division Algorithm, we find nonnegative inte-
gers $q_i, r_i \in \mathbb{N}$ such that

\begin{align*}
b &= q_0a + r_0, \quad 0 \leq r_0 < a, \\
a &= q_1r_0 + r_1, \quad 0 \leq r_1 < r_0, \\
r_0 &= q_2r_1 + r_2, \quad 0 \leq r_2 < r_1, \\
r_1 &= q_3r_2 + r_3, \quad 0 \leq r_3 < r_2, \\
&\vdots \\
r_{k-2} &= q_kr_{k-1} + r_k, \quad 0 \leq r_k < r_{k-1}, \\
r_{k-1} &= q_{k+1}r_k + r_{k+1}, \quad r_{k+1} = 0.
\end{align*}

The nonnegative sequence $\{r_i\}$ is strictly decreasing. It must end to 0 at some step, say, $r_{k+1} = 0$ for the very first time. Then $r_i \neq 0, 0 \leq i \leq k$. Reverse the sequence $\{r_i\}_{i=0}^k$ and make substitutions as follows:

\begin{align*}
d &= r_k, \\
r_k &= r_{k-2} - q_kr_{k-1}, \\
r_{k-1} &= r_{k-3} - q_{k-1}r_{k-2}, \\
&\vdots \\
r_1 &= a - q_1r_0, \\
r_0 &= b - q_0a.
\end{align*}

We see that $\gcd(a, b)$ can be expressed as an integral linear combination of a and b. This procedure is known as the Euclidean Algorithm.

We summarize the above argument into the following theorem.

Theorem 2.3. For any integers $a, b \in \mathbb{Z}$, there exist in-
tegers }x, y \in \mathbb{Z}\text{ such that }
\gcd(a, b) = ax + by.

Example 2.2. Express }\gcd(297, 3627)\text{ as an integral linear combination of }297\text{ and }3627.

By the Division Algorithm, we have }\gcd(297, 3627) = 9.\text{ By the Euclidean Algorithm, }

\begin{align*}
9 &= 45 - 2 \cdot 18 \\
 &= 45 - 2(63 - 45) \\
 &= 3 \cdot 45 - 2 \cdot 63 \\
 &= 3(297 - 4 \cdot 63) - 2 \cdot 63 \\
 &= 3 \cdot 297 - 14 \cdot 63 \\
 &= 3 \cdot 297 - 14(3627 - 12 \cdot 297) \\
 &= 171 \cdot 297 - 14 \cdot 3627.
\end{align*}

Example 2.3. Find }\gcd(119, 45)\text{ and express it as an integral linear combination of }45\text{ and }119.

Applying the Division Algorithm,

\begin{align*}
119 &= 2 \cdot 45 + 29 \\
45 &= 29 + 16 \\
29 &= 16 + 13 \\
16 &= 13 + 3 \\
13 &= 4 \cdot 3 + 1
\end{align*}
So \(\gcd(119, 45) = 1 \). Applying the Euclidean Algorithm,

\[
1 = 13 - 4 \cdot 3 = 13 - 4(16 - 13)
= 5 \cdot 13 - 4 \cdot 16 = 5(29 - 16) - 4 \cdot 16
= 5 \cdot 29 - 9 \cdot 16 = 5 \cdot 29 - 9(45 - 29)
= 14 \cdot 29 - 9 \cdot 45 = 14(119 - 2 \cdot 45) - 9 \cdot 45
= 14 \cdot 119 - 37 \cdot 45
\]

Example 2.4. Find \(\gcd(119, -45) \) and express it as linear combination of 119 and -45.

We have \(\gcd(119, -45) = \gcd(119, 45) = 1 \). Since

\[
1 = 14 \cdot 119 - 37 \cdot 45,
\]
we have \(\gcd(119, -45) = 14 \cdot 119 + 37 \cdot (-45) \).

Remark. For any \(a, b \in \mathbb{Z} \), \(\gcd(a, -b) = \gcd(a, b) \). Expressing \(\gcd(a, -b) \) in terms of \(a \) and \(-b\) is the same as that of expressing \(\gcd(a, b) \) in terms of \(a \) and \(b \).

Proposition 2.4. If \(a \mid bc \) and \(\gcd(a, b) = 1 \), then \(a \mid c \).

Proof. By the Euclidean Algorithm, there are integers \(x, y \in \mathbb{Z} \) such that \(ax + by = 1 \). Then

\[
c = 1 \cdot c = (ax + by)c = acx + bcy.
\]

Since \(a \mid ac \) and \(a \mid bc \), thus \(c \mid (acx + bcy) \) by Proposition 1.2 (c). Therefore \(a \mid c \). \[\square\]
Theorem 2.5 (Unique Factorization). Every integer
\(a \geq 2 \) can be uniquely factorized into the form
\[
a = p_1^{e_1} p_2^{e_2} \cdots p_m^{e_m},
\]
where \(p_1, p_2, \ldots, p_m \) are distinct primes, \(e_1, e_2, \ldots, e_m \) are positive integers, and \(p_1 < p_2 < \cdots < p_s \).

Proof. (Not required) We first show that \(a \) has a factorization into primes. If \(a \) has only the trivial divisors, then \(a \) itself is a prime, and it obviously has unique factorization. If \(a \) has some nontrivial divisors, then
\[
a = bc
\]
for some positive integers \(b, c \in \mathbb{P} \) other than 1 and \(a \). So \(b < a, c < a \). By induction, the positive integers \(b \) and \(c \) have factorizations into primes. Consequently, \(a \) has a factorization into primes.

Next we show that the factorization of \(a \) is unique in the sense of the theorem.

Let \(a = q_1^{f_1} q_2^{f_2} \cdots a_n^{f_n} \) be any factorization, where \(q_1, q_2, \ldots, q_n \) are distinct primes, \(f_1, f_2, \ldots, f_n \) are positive integers, and \(q_1 < q_2 < \cdots < q_n \). We claim that \(m = n, p_i = q_i, e_i = f_i \) for all \(1 \leq i \leq m \).

Suppose \(p_1 < q_1 \). Then \(p_1 \) is distinct from the primes \(q_1, q_2, \ldots, q_n \). It is clear that \(\gcd(p_1, q_i) = 1 \), and so
\[
\gcd(p_1, q_i^{f_i}) = 1 \quad \text{for all} \quad 1 \leq i \leq n.
\]
Note that \(p_1 \mid q_1^{f_1} q_2^{f_2} \cdots a_n^{f_n} \). Since \(\gcd(p_1, q_1^{f_1}) = 1 \), by Proposition 2.4, we have \(p_1 \mid q_2^{f_2} \cdots a_n^{f_n} \). Since \(\gcd(p_1, q_2^{f_2}) = 1 \), again by Proposition 2.4, we have \(p_1 \mid q_3^{f_3} \cdots a_n^{f_n} \). Repeating the argument, eventually we have \(p_1 \mid q_n^{f_n} \), which is contrary to \(\gcd(p_1, q_n^{f_n}) = 1 \). We thus conclude \(p_1 \geq q_1 \). Similarly, \(q_1 \geq p_1 \). Therefore \(p_1 = q_1 \). Next we claim \(e_1 = f_1 \).

Suppose \(e_1 < f_1 \). Then

\[
 p_2^{e_2} \cdots p_m^{e_m} = p_1^{f_1-e_1} q_2^{f_2} \cdots q_n^{f_n}.
\]

This implies that \(p_1 \mid p_2^{e_2} \cdots p_m^{e_m} \). If \(m = 1 \), then \(p_2^{e_2} \cdots p_m^{e_m} = 1 \). So \(p_1 \mid 1 \). This is impossible because \(p_1 \) is a prime. If \(m \geq 2 \), since \(\gcd(p_1, p_i) = 1 \), we have \(\gcd(p_1, p_i^{e_i}) = 1 \) for all \(2 \leq i \leq m \). Applying Proposition 2.4 repeatedly, we have \(p_1 \mid p_m^{e_m} \), which is contrary to \(\gcd(p_1, p_m^{e_m}) = 1 \). We thus conclude \(e_1 \geq f_1 \). Similarly, \(f_1 \geq e_1 \). Therefore \(e_1 = f_1 \).

Now we have obtained \(p_2^{e_2} \cdots p_m^{e_m} = q_2^{f_2} \cdots q_n^{f_n} \). If \(m < n \), then by induction we have \(p_1 = q_1, \ldots, p_m = q_m \) and \(e_1 = f_1, \ldots, e_m = f_m \). Thus \(1 = q_{m+1}^{f_{m+1}} \cdots q_n^{f_n} \). This is impossible because \(q_{m+1}, \ldots, q_n \) are primes. So \(m \geq n \). Similarly, \(n \geq m \). Hence we have \(m = n \). By induction, we have \(e_2 = f_2, \ldots, e_m = f_m \).

Our proof is finished.

\[\square \]

Example 2.5. Factorize the numbers 180 and 882, and find \(\gcd(180, 882) \).

Solution. 180/2=90, 90/2=45, 45/3=15, 15/3=5, 5/5=1. Then 360 = 2^2 \cdot 3^2 \cdot 5. Similarly, 882/2=441, 441/3=147,
147/3 = 49, 49/7 = 7, 7/7 = 1. We have 882 = 2 \cdot 3^2 \cdot 7^2. Thus \gcd(180, 882) = 2 \cdot 3^2 = 18.

3 Least Common Multiple

For two integers \(a\) and \(b\), a positive integer \(m\) is called a **common multiple** of \(a\) and \(b\) if \(a \mid m\) and \(b \mid m\).

Definition 3.1. Let \(a, b \in \mathbb{Z}\). The **least common multiple** of \(a\) and \(b\), denoted by \(\text{lcm}(a, b)\), is a positive integer \(m\) such that

(a) \(a \mid m\), \(b \mid m\), and

(b) If \(a \mid c\) and \(b \mid c\), then \(m \mid c\).

Proposition 3.2. For any nonnegative integers \(a, b \in \mathbb{N}\),

\[
ab = \gcd(a, b) \cdot \lcm(a, b).
\]

Proof. Let \(a = p_1^{e_1} p_2^{e_2} \cdots p_n^{e_n}\) and \(b = p_1^{f_1} p_2^{f_2} \cdots p_n^{f_n}\), where \(p_1 < p_2 < \cdots < p_n\), \(e_i\) and \(f_i\) are nonnegative integers, \(1 \leq i \leq n\). Then by the Unique Factorization Theorem,

\[
\gcd(a, b) = p_1^{g_1} p_2^{g_2} \cdots p_n^{g_n},
\]

\[
\lcm(a, b) = p_1^{h_1} p_2^{h_2} \cdots p_n^{h_n},
\]

where \(g_i = \min(e_i, f_i)\), \(h_i = \max(e_i, f_i)\), \(1 \leq i \leq n\). Note that for any real numbers \(x, y \in \mathbb{R}\),

\[
\min(x, y) + \max(x, y) = x + y.
\]
Thus
\[g_i + h_i = e_i + f_i, \quad 1 \leq i \leq n. \]

Therefore
\[
ab = p_1^{e_1+f_1} p_2^{e_2+f_2} \cdots p_n^{e_n+f_n}
= p_1^{g_1+h_1} p_2^{g_2+h_2} \cdots p_n^{g_n+h_n}
= \gcd(a, b) \cdot \text{lcm}(a, b).
\]

\[\square\]

4 Solving \(ax + by = c\)

Example 4.1. Find an integer solution for the equation
\[25x + 65y = 10.\]

Solution. Applying the Division Algorithm,
\[
65 = 2 \cdot 25 + 15, \\
25 = 15 + 10, \\
15 = 10 + 5.
\]

Then \(\gcd(25, 65) = 5.\) Applying the Euclidean Algorithm,
\[
5 = 15 - 10 \\
= 15 - (25 - 15) \\
= -25 + 2 \cdot 15 \\
= -25 + 2 \cdot (65 - 2 \cdot 25) \\
= -5 \cdot 25 + 2 \cdot 65.
\]
By inspection, \((x, y) = (-5, 2)\) is a solution for the equation
\[25x + 65y = 5.\]
Since \(\frac{10}{5} = 2\), then \((x, y) = 2(-5, 2) = (-10, 4)\) is a solution for \(25x + 65y = 10\).

Example 4.2. Find an integer solution for the equation
\[25x + 65y = 18.\]

Solution. Since \(\gcd(25, 65) = 5\), if the equation has a solution, then \(5 \mid (25x + 65y)\). So \(5 \mid 18\) by Proposition 1.2 (c). This is a contradiction. Hence the equation has no solution.

Theorem 4.1. The linear Diophantine equation
\[ax + by = c,\]
has a solution if and only if \(\gcd(a, b) \mid c\).

Theorem 4.2. Let \(S\) be the set of solutions of the equation
\[ax + by = c.\]
Let \(S_0\) be the set of solutions of the homogeneous equation
\[ax + by = 0.\]
If \((x, y) = (u_0, v_0)\) is a solution of (2), then \(S\) is given by
\[S = \{(u_0 + s, v_0 + t) : (s, t) \in S_0\}.\]
In other words, all solutions of (1) are given by
\[
\begin{aligned}
&x = u_0 + s, \\
y = v_0 + t, \\
&\quad (s, t) \in S_0.
\end{aligned}
\]
Proof. Since \((x, y) = (u_0, v_0)\) is a solution of (1), then \(au_0 + bv_0 = c\). For any solution \((x, y) = (s, t)\) of (2), we have \(as + bt = 0\). Thus

\[
a(u_0 + s) + b(v_0 + t) = (au_0 + bv_0) + (as + bt) = c.
\]

This means that \((x, y) = (u_0 + s, v_0 + t)\) is a solution of (1).

Conversely, for any solution \((x, y) = (u, v)\) of (1), we have \(au + bv = c\). Let \((s_0, t_0) = (u - u_0, v - v_0)\). Then

\[
as_0 + bt_0 = a(u - u_0) + b(v - v_0)
= (au + bv) - (au_0 + bv_0)
= c - c = 0.
\]

This means that \((s_0, t_0)\) is a solution of (2). Note that

\[(u, v) = (u_0 + s_0, v_0 + t_0).
\]

This shows that the solution \((x, y) = (u, v)\) is a solution of the form in (3). Our proof is finished. \(\square\)

Theorem 4.3. Let \(d = \gcd(a, b)\). The solution set \(S_0\) of

\[ax + by = 0\]

is given by

\[
S_0 = \left\{ k \left(\frac{b}{d}, -\frac{a}{d} \right) : k \in \mathbb{Z} \right\}.
\]

In other words,

\[
\begin{aligned}
x &= \frac{(b/d)k}{k \in \mathbb{Z}},
\end{aligned}
\]
Proof. The equation $ax + by = 0$ can be written as

$$ax = -by.$$

Write $m = ax = -by$. Then $a \mid m$ and $b \mid m$, i.e., m is a multiple of a and b. Thus $m = k \cdot \text{lcm}(a, b)$ for some $k \in \mathbb{Z}$. Therefore $ax = k \cdot \text{lcm}(a, b)$ implies

$$x = \frac{k \cdot \text{lcm}(a, b)}{a} = \frac{kab}{da} = \frac{kb}{d}.$$

Similarly, $-by = k \cdot \text{lcm}(a, b)$ implies

$$y = \frac{k \cdot \text{lcm}(a, b)}{-b} = \frac{kab}{-db} = -\frac{ka}{d}.$$

\[\square \]

Theorem 4.4. Let $d = \gcd(a, b)$ and $d \mid c$. Let (u_0, v_0) be a particular solution of the equation

$$ax + by = c.$$

The all solutions of the above equation are given by

$$\begin{cases}
 x = u_0 + bk/d , \\
 y = v_0 - ak/d ,
\end{cases} \quad k \in \mathbb{Z}.$$

Proof. It follows from Theorem 4.2 and Theorem 4.3. \[\square \]

Example 4.3. Find all integer solutions for the equation

$$25x + 65y = 10.$$
Solution. Find \(\gcd(25, 65) = 5 \) and have got a special solution \((x, y) = (-10, 4)\) in a previous example. Now consider the equation \(25x + 65y = 0\). Divide both sides by 5 to have,

\[
5x + 13y = 0.
\]

Since \(\gcd(5, 13) = 1 \), all solutions for the above equation are given by \((x, y) = k(-13, 5), \, k \in \mathbb{Z}\). Thus all solutions of \(25x + 65y = 10\) are given by

\[
\begin{align*}
x &= -10 - 13k, \\
y &= 4 + 5k, \quad k \in \mathbb{Z}.
\end{align*}
\]
Example 4.4.

$168x + 668y = 888$.

Solution. Find $\gcd(168, 668) = 4$ by the Division Algorithm

$668 = 3 \cdot 168 + 164$
$168 = 164 + 4$
$164 = 41 \cdot 4$

By the Euclidean Algorithm,

$4 = 168 - 164$
$= 168 - (668 - 3 \cdot 168)$
$= 4 \cdot 168 + (-1) \cdot 668$.

Dividing $\frac{888}{4} = 222$, we obtain a special solution

$(x, y) = 222(4, -1) = (888, -222)$

Solve $168x + 668y = 0$. Dividing both sides by 4,

$42x + 167y = 0$ i.e. $42x = -167y$.

The general solutions for $168x + 668y = 0$ are given by

$(x, y) = k(167, -42), \quad k \in \mathbb{Z}$.

The general solutions for $168x + 668y = 888$ are given by

$(x, y) = (888, -222) + k(167, -42), \quad k \in \mathbb{Z}$.

i.e. $\begin{cases} x = 888 + 167k \\ y = -222 - 42k \end{cases}, \quad k \in \mathbb{Z}$.
5 Modulo Integers

Let \(n \) be a fixed positive integer. Two integers \(a \) and \(b \) are said to be \textbf{congruent} modulo \(n \), written

\[
a \equiv b \pmod{n}
\]

and read “\(a \) equals \(b \) modulo \(n \),” if \(n \mid (b - a) \).

For all \(k, l \in \mathbb{Z} \), \(a \equiv b \pmod{n} \) is equivalent to

\[
a + kn \equiv b + ln \pmod{n}.
\]

In fact, the difference

\[
(b + ln) - (a + kn) = (b - a) + (l - k)n
\]

is a multiple of \(n \) if and only if \(b - a \) is a multiple of \(n \).

\textbf{Example 5.1.}

\[
3 \equiv 5 \pmod{2}, \quad 368 \equiv 168 \pmod{8},
\]

\[
-8 \equiv 10 \pmod{9}, \quad 3 \not\equiv 5 \pmod{3},
\]

\[
368 \not\equiv 268 \pmod{8}, \quad -8 \not\equiv 18 \pmod{9}.
\]

\textbf{Proposition 5.1.} Let \(n \) be a fixed positive integer. If

\[
a_1 \equiv b_1 \pmod{n}, \quad a_2 \equiv b_2 \pmod{n},
\]

then

\[
a_1 + a_2 \equiv b_1 + b_2 \pmod{n},
\]

\[
a_1 - a_2 \equiv b_1 - b_2 \pmod{n},
\]
If \(a \equiv b \pmod n \), then
\[
a \equiv b \pmod d.
\]

Proof. Since \(a_1 \equiv b_1 \pmod n \), \(a_2 \equiv b_2 \pmod n \), there are integers \(k_1, k_2 \) such that
\[
b_1 - a_1 = k_1 n, \quad b_2 - a_2 = k_2 n.
\]
Then
\[
(b_1 + b_2) - (a_1 + a_2) = (k_1 + k_2)n;
\]
\[
(b_2 - b_1) - (a_1 - a_2) = (k_1 - k_2)n;
\]
\[
b_1 b_2 - a_1 a_2 = b_1 b_2 - b_1 a_2 + b_1 a_2 - a_1 a_2
\]
\[
= b_1 (b_2 - a_2) + (b_1 - a_1) a_2
\]
\[
= bk' n + k n a'
\]
\[
= (b_1 k_2 + a_2 k_1) n.
\]
Thus
\[
a_1 \pm a_2 \equiv b_1 \pm b_2 \pmod n;
\]
\[
a_1 a_2 \equiv b_1 b_2 \pmod n.
\]
If \(d \mid n \), then \(n = dl \) for some \(l \in \mathbb{Z} \). Thus
\[
b - a = kn = (kl)d.
\]
Therefore, \(a \equiv b \pmod d \). \(\square \)
Example 5.2.

\[6 \equiv 14 \pmod{8} \implies 2 \cdot 6 \equiv 2 \cdot 14 \pmod{8}; \]
\[6 \equiv 14 \pmod{8} \iff \frac{6}{2} \equiv \frac{14}{2} \pmod{\frac{8}{2}}; \]

However,
\[2 \cdot 3 \equiv 2 \cdot 7 \pmod{8} \not\implies 3 \equiv 7 \pmod{8}. \]

In fact,
\[3 \not\equiv 7 \pmod{8}. \]

Theorem 5.2. Let \(c \mid a, \ c \mid b, \) and \(c \mid n. \) Then
\[a \equiv b \pmod{n} \iff \frac{a}{c} \equiv \frac{b}{c} \pmod{\frac{n}{c}}. \]

Proof. Write \(a = ca_1, \ b = cb_1, \) \(n = cn_1. \) Then
\[a \equiv b \pmod{n} \iff b - a = kn \text{ for an integer } k \]
\[\iff c(b_1 - a_1) = kcn_1 \]
\[\iff \frac{b}{c} - \frac{a}{c} = b_1 - a_1 = kn_1 \]
\[\iff \frac{a}{c} \equiv \frac{b}{c} \pmod{\frac{n}{c}}. \]

Theorem 5.3.
\[a \equiv b \pmod{m}, \ a \equiv b \pmod{n}, \]
\[\iff a \equiv b \pmod{\text{lcm}(m, n)}. \]

In particular,
\[\gcd(m, n) = 1 \iff a \equiv b \pmod{mn}. \]
Proof. Write \(l = \text{lcm}(m, n) \). If \(a \equiv b \pmod{m} \), \(a \equiv b \pmod{n} \), then \(m \mid (b - a) \) and \(n \mid (b - a) \). Thus \(l \mid (b - a) \), i.e., \(a \equiv b \pmod{l} \).

Conversely, if \(a \equiv b \pmod{l} \), then \(l \mid (b - a) \). Since \(m \mid l \), \(n \mid l \), we have \(m \mid (b - a) \), \(n \mid (b - a) \). Thus \(a \equiv b \pmod{m} \), \(a \equiv b \pmod{n} \).

In particular, if \(\gcd(m, n) = 1 \), then \(l = mn \). \(\square \)

Definition 5.4. An integer \(a \) is called invertible modulo \(n \) if there exists an integer \(b \) such that

\[
ab \equiv 1 \pmod{n}.
\]

If so, \(b \) is called the inverse of \(a \) modulo \(n \).

Proposition 5.5. An integer \(a \) is invertible modulo \(n \) if and only if \(\gcd(a, n) = 1 \)

Proof. “\(\Rightarrow \)” : If \(a \) is invertible modulo \(n \), say its inverse is \(b \), then exists an integer \(k \) such that \(ab = 1 + kn \), i.e.,

\[
1 = ab - kn.
\]

Thus \(\gcd(a, n) \) divides 1. Hence \(\gcd(a, n) = 1 \).

“\(\Leftarrow \)” : By the Euclidean Algorithm, there exist integers \(u, v \) such that \(1 = au + nv \). Then \(au \equiv 1 \pmod{n} \). \(\square \)

Example 5.3. The invertible integers modulo 12 are the following numbers

\[
1, 5, 7, 11.
\]

Numbers 0, 2, 3, 4, 6, 8, 9, 10 are not invertible modulo 12.
Theorem 5.6. Let \(\gcd(c, n) = 1 \). Then
\[
a \equiv b \pmod{n} \iff ca \equiv cb \pmod{n}
\]

Proof. By the Euclidean Algorithm, there are integers \(u, v \) such that
\[
1 = cu + nv.
\]
Then \(1 \equiv cu \pmod{n} \); i.e., \(a \) and \(u \) are inverses of each other modulo \(n \)

\(\Rightarrow \) : \(c \equiv c \pmod{n} \) and \(a \equiv b \pmod{n} \) imply
\[
ca \equiv cb \pmod{n}.
\]
This true without \(\gcd(c, n) = 1 \).

\(\Leftarrow \) : \(ca \equiv cb \pmod{n} \) and \(u \equiv u \pmod{n} \) imply that
\[
uc \equiv u \pmod{n}.
\]
Replace \(uc = 1 - vn \); we have \(a - avn \equiv b - bvn \pmod{n} \). This means \(a \equiv b \pmod{n} \).

Example 5.4. Find the inverse modulo 15 for each of the numbers 2, 4, 7, 8, 11, 13.

Solution. Since \(2 \cdot 8 \equiv 1 \pmod{15} \), \(4 \cdot 4 \equiv 1 \pmod{15} \). Then 2 and 8 are inverses of each other; 4 is the inverse of itself.

Write \(15 = 2 \cdot 7 + 1 \). Then \(15 - 2 \cdot 7 = 1 \). Thus \(-2 \cdot 7 \equiv 1 \pmod{15} \). The inverse of 7 is -2. Since \(-2 \equiv 13 \pmod{15} \), the inverse of 7 is also 13. In fact,
\[
7 \cdot 13 \equiv 1 \pmod{15}.
\]
Similarly, \(15 = 11 + 4, 11 = 2 \cdot 4 + 3, 4 = 3 + 1\), then
\[
1 = 4 - 3 = 4 - (11 - 2 \cdot 4) = 3 \cdot 4 - 11 = 3 \cdot (15 - 11) - 11 = 15 - 4 \cdot 11.
\]
Thus the inverse of 11 is \(-4\). Since \(-4 \equiv 11 \pmod{15}\), the inverse of 11 is also itself, i.e., \(11 \cdot 11 \equiv 1 \pmod{15}\).

6 Solving \(ax \equiv b \pmod{n}\)

Theorem 6.1. The congruence equation
\[
ax \equiv b \pmod{n}
\]
has a solution if and only if \(\gcd(a, n)\) divides \(b\).

Proof. Let \(d = \gcd(a, n)\). The congruence equation has a solution if and only if there exist integers \(x\) and \(k\) such that \(b = ax + kn\). This is equivalent to \(d | b\). \(\square\)

Remark. For all \(k, l \in \mathbb{Z}\), we have
\[
ax \equiv b \pmod{n} \iff (a + kn)x \equiv b + ln \pmod{n}.
\]
In fact, the difference
\[
(b + ln) - (a + kn)x = (b - ax) + (l - kx)n
\]
is a multiple of \(n\) if and only if \(b - ax\) is a multiple of \(n\).

Theorem 6.2. Let \(\gcd(a, n) = 1\). Then there exists an integer \(u\) such that \(au \equiv 1 \pmod{n}\); the solutions for the equation \(ax \equiv b \pmod{n}\) are given by
\[
x \equiv ub \pmod{n}.
\]
Proof. Since \(\gcd(a, n) = 1 \), there exist \(u, v \in \mathbb{Z} \) such that \(1 = au + nv \). So \(1 \equiv au \pmod{n} \), i.e., \(au \equiv 1 \pmod{n} \).

Since \(u \) is invertible modulo \(n \), we have

\[
ax \equiv b \pmod{n} \iff uax \equiv ub \pmod{n}.
\]

Since \(au = 1 - nv \), then \(uax = (1 - nv)x = x - vxn \). Thus

\[
ax \equiv b \pmod{n} \iff x - vxn \equiv ub \pmod{n}.
\]

Therefore

\[
ax \equiv b \pmod{n} \iff x \equiv ub \pmod{n}.
\]

Example 6.1. Find all integers \(x \) for

\[
9x \equiv 27 \pmod{15}.
\]

Solution. Find \(\gcd(9, 15) = 3 \). Dividing both sides by 3,

\[
3x \equiv 9 \pmod{5} \iff 3x \equiv 4 \pmod{5}.
\]

Since \(\gcd(3, 5) = 1 \), the integer 3 is invertible and its inverse is 2. Multiplying 2 to both sides,

\[
6x \equiv 8 \pmod{5}.
\]

Since \(6 \equiv 1 \pmod{5} \), \(8 \equiv 3 \pmod{5} \), then

\[
x \equiv 3 \pmod{5}.
\]

In other words,

\[
x = 3 + 5k, \quad k \in \mathbb{Z}.
\]
Example 6.2. Solve the equation $668x \equiv 888 \pmod{168}$.

Solution. Find $\gcd(668, 168) = 4$, then

$$167x \equiv 222 \pmod{42}.$$

By the Division Algorithm,

$$167 = 3 \cdot 42 + 41; \quad 42 = 41 + 1.$$

By the Euclidean Algorithm,

$$1 = 42 - 41 = 42 - (167 - 3 \cdot 42) = 4 \cdot 42 - 167.$$

Then $-167 \equiv 1 \pmod{42}$; the inverse of 167 is -1. Multiplying -1 to both sides, we have $x \equiv -222 \pmod{42}$. Thus

$$x \equiv -12 \pmod{42} \quad \text{or} \quad x \equiv 30 \pmod{42}; \quad \text{i.e.}$$

$$x = 30 + 42k, \quad k \in \mathbb{Z}.$$

Algorithm for solving $ax \equiv b \pmod{n}$.

Step 1. Find $d = \gcd(a, n)$ by the Division Algorithm.

Step 2. If $d = 1$, apply the Euclidean Algorithm to find $u, v \in \mathbb{Z}$ such that $1 = au + nv$.

Step 3. Do the multiplication $uax \equiv ub \pmod{n}$. All solutions $x \equiv ub \pmod{n}$ are obtained. Stop.

Step 4. If $d > 1$, check whether $d \mid b$. If $d \nmid b$, there is no solution. Stop. If $d \mid b$, do the division

$$\frac{a}{d} x \equiv \frac{b}{d} \pmod{\frac{n}{d}}.$$

Rewrite a/d as a, b/d as b, and n/d as n. Go to Step 1.
Proof. Since $1 = au + nv$, we have $au \equiv 1 \pmod{n}$. This means that a and u are inverses of each other modulo n. So

$$ax \equiv b \pmod{n} \iff uax \equiv ub \pmod{n}.$$

Since $ua = 1 - vn$, then $uax = (1 - vn)x = x - vxn$. Thus

$$uax \equiv ub \pmod{n} \iff x \equiv ub \pmod{n}.$$

\[\square\]

Example 6.3. Solve the equation $245x \equiv 49 \pmod{56}$.

Solution. Applying the Division Algorithm,

$$245 = 4 \cdot 56 + 21$$
$$56 = 2 \cdot 21 + 14$$
$$21 = 14 + 7$$

Applying the Euclidean Algorithm,

$$7 = 21 - 14 = 21 - (56 - 2 \cdot 21)$$
$$= 3 \cdot 21 - 56 = 3 \cdot (245 - 4 \cdot 56) - 56$$
$$= 3 \cdot 245 - 13 \cdot 56$$

Dividing both sides by 7, we have

$$1 = 3 \cdot 35 - 13 \cdot 8.$$

Thus $3 \cdot 35 \equiv 1 \pmod{8}$. Dividing the original equation by 7, we have $35x \equiv 7 \pmod{8}$. Multiplying 3 to both sides, we obtain solutions

$$x \equiv 21 \equiv 5 \pmod{8}$$
Example 7.1. Solve the system
\[
\begin{align*}
 x & \equiv 0 \pmod{n_1} \\
 x & \equiv 0 \pmod{n_2}
\end{align*}
\]

Solution. By definition of solution, \(x\) is a common multiple of \(n_1\) and \(n_2\). So \(x\) is a multiple of \(\text{lcm}(n_1, n_2)\). Thus the system is equivalent to
\[
x \equiv 0 \pmod{\text{lcm}(n_1, n_2)}.
\]

Theorem 7.1. Let \(S\) be the solution set of the system
\[
\begin{align*}
 a_1x & \equiv b_1 \pmod{n_1} \\
 a_2x & \equiv b_2 \pmod{n_2}
\end{align*}
\]

Let \(S_0\) be the solution set of the homogeneous system
\[
\begin{align*}
 a_1x & \equiv 0 \pmod{n_1} \\
 a_2x & \equiv 0 \pmod{n_2}
\end{align*}
\]

If \(x = x_0\) is a solution of (4), then all solutions of (4) are given by
\[
x = x_0 + s, \quad s \in S_0.
\]

Proof. We first show that \(x = x_0 + s\), where \(s \in S_0\), are indeed solutions of (4). In fact, since \(x_0\) is a solution for (4) and \(s\) is a solution for (5), we have
\[
\begin{align*}
 a_1x_0 & \equiv b_1 \pmod{n_1} \\
 a_2x_0 & \equiv b_2 \pmod{n_2}, \\
 a_1s & \equiv 0 \pmod{n_1} \\
 a_2s & \equiv 0 \pmod{n_2}
\end{align*}
\]
i.e., n_1 divides $(b_1 - a_1x_0)$ and a_1s; n_2 divides $(b_2 - a_2x_0)$ and a_2s. Then n_1 divides $[(b_1 - a_1x_0) - a_1s]$, and n_2 divides $[(b_2 - a_2x_0) - a_2s]$; i.e., n_1 divides $[b_1 - a_1(x_0 + s)]$, and n_2 divides $[b_2 - a_2(x_0 + s)]$. This means that $x = x_0 + s$ is a solution of (4).

Conversely, let $x = t$ be any solution of (4). We will see that $s_0 = t - x_0$ is a solution of (5). Hence the solution $t = x_0 + s_0$ is of the form in (6).

Algorithm for solving the system

$$\begin{align*}
a_1x &\equiv b_1 \pmod{n_1} \\
a_2x &\equiv b_2 \pmod{n_2}
\end{align*}$$

(7)

Step 1. Reduced the system to the form

$$\begin{align*}
x &\equiv c_1 \pmod{m_1} \\
x &\equiv c_2 \pmod{m_2}
\end{align*}$$

(8)

Step 2. Set $x = c_1 + ym_1 = c_2 + zm_2$, where $y, z \in \mathbb{Z}$. Find a solution $(y, z) = (y_0, z_0)$ for the equation

$$m_1y - m_2z = c_2 - c_1.$$

Consequently, $x_0 = c_1 + m_1y_0 = c_2 + m_2z_0$.

Step 3. Set $m = \text{lcm}(m_1, m_2)$. The system (7) becomes

$$x \equiv x_0 \pmod{m}.$$

Proof. It follows from Theorem 7.1.

Example 7.2. Solve the system

$$\begin{align*}
10x &\equiv 6 \pmod{4} \\
12x &\equiv 30 \pmod{21}
\end{align*}$$

28
Solution. Applying the Division Algorithm,
\[
gcd(10, 4) = 2, \quad gcd(12, 21) = 3.
\]
Dividing the 1st equation by 2 and the second equation by 3,
\[
\begin{align*}
5x &\equiv 3 \pmod{2} \\
4x &\equiv 10 \pmod{7}
\end{align*}
\]
\[\iff \quad \begin{align*}
x &\equiv 1 \pmod{2} \\
4x &\equiv 3 \pmod{7}
\end{align*}\]
The system is equivalent to
\[
\begin{align*}
x &\equiv 1 \pmod{2} \\
x &\equiv 6 \pmod{7}
\end{align*}
\]
Set \(x = 1 + 2y = 6 + 7z, y, z \in \mathbb{Z}\). Then
\[
2y - 7z = 5.
\]
Applying the Division Algorithm, \(7 = 3 \cdot 2 + 1\). Applying the Euclidean Algorithm, \(1 = -3 \cdot 2 + 7\). Then \(5 = -15 \cdot 2 + 5 \cdot 7\). We obtain a solution \((y_0, z_0) = (-15, -5)\). Thus
\[
x_0 = 1 + 2y_0 = 6 + 7z_0 = -29
\]
is a special solution. The general solution for
\[
\begin{align*}
x &\equiv 0 \pmod{2} \\
x &\equiv 0 \pmod{7}
\end{align*}
\]
is \(x \equiv 0 \pmod{14}\). Hence the solution is given by
\[
x \equiv -29 \equiv -1 \equiv 13 \pmod{14}
\]
Example 7.3. Solve the system
\[
\begin{align*}
12x &\equiv 96 \pmod{20} \\
20x &\equiv 70 \pmod{30}
\end{align*}
\]
Solution. Applying the Division Algorithm to find,
\[
gcd(12, 20) = 4, \quad gcd(20, 30) = 10.
\]
Then
\[
\begin{cases}
3x \equiv 24 \pmod{5} \\
2x \equiv 7 \pmod{3}
\end{cases}
\]
Applying the Euclidean Algorithm,
\[
gcd(3, 5) = 1 = 2 \cdot 3 - 1 \cdot 5.
\]
Then \(2 \cdot 3 \equiv 1 \pmod{5}\). Similarly,
\[
gcd(2, 3) = 1 = -1 \cdot 2 + 1 \cdot 3
\]
and \(-1 \cdot 2 = 1 \pmod{3}\). (Equivalently, \(2 \cdot 2 \equiv 1 \pmod{3}\).) Then, 2 is the inverse of 3 modulo 5; \(-1\) or 2 is the inverse of 2 modulo 3. Thus
\[
\begin{cases}
2 \cdot 3x \equiv 2 \cdot 24 \pmod{5} \\
-1 \cdot 2x \equiv -1 \cdot 7 \pmod{3}
\end{cases}
\]
\[
\begin{cases}
x \equiv 48 \equiv 3 \pmod{5} \\
x \equiv -7 \equiv 2 \pmod{3}
\end{cases}
\]
Set \(x = 3 + 5y = 2 + 3z\), where \(y, z \in \mathbb{Z}\). That is,
\[
5y - 3z = -1.
\]
We find a special solution \((y_0, z_0) = (1, 2)\). So \(x_0 = 3 + 5y_0 = 2 + 3z_0 = 8\). Thus the original system is equivalent to
\[
x \equiv 8 \pmod{15}
\]
and all solutions are given by
\[
x = 8 + 15k, \quad k \in \mathbb{Z}.
\]
Example 7.4. Find all integer solutions for the system

\[
\begin{align*}
x & \equiv 486 \pmod{186} \\
x & \equiv 386 \pmod{286}
\end{align*}
\]

Solution. The system can be reduced to

\[
\begin{align*}
x & \equiv 114 \pmod{186} \\
x & \equiv 100 \pmod{286}
\end{align*}
\]

Set \(x = 114 + 186y = 100 + 286z \), i.e.,

\[
186y - 286z = -14.
\]

Applying the Division Algorithm,

\[
\begin{align*}
286 &= 186 + 100, \\
186 &= 100 + 86, \\
100 &= 86 + 14, \\
86 &= 6 \cdot 14 + 2.
\end{align*}
\]

Then \(\gcd(186, 286) = 2 \). Applying the Euclidean Algorithm,

\[
\begin{align*}
2 &= 86 - 6 \cdot 14 \\
&= 86 - 6(100 - 86) = 7 \cdot 86 - 6 \cdot 100 \\
&= 7(186 - 100) - 6 \cdot 100 = 7 \cdot 186 - 13 \cdot 100 \\
&= 7 \cdot 186 - 13(286 - 186) = 20 \cdot 186 - 13 \cdot 286.
\end{align*}
\]

Note that \(\frac{-14}{2} = -7 \). So we get a special solution

\[
(y_0, z_0) = -7(20, 13) = (-140, -91).
\]

Thus \(x_0 = 114 + 186y_0 = 100 + 286z_0 = -25926 \). Note that \(\text{lcm}(186, 286) = 26598 \). The general solutions are given by

\[
x \equiv -25926 \equiv 672 \pmod{26598}.
\]
Theorem 7.2 (Chinese Remainder Theorem). Let \(n_1, n_2, \ldots, n_k \in \mathbb{P} \). If \(\gcd(n_i, n_j) = 1 \) for all \(i \neq j \), then the system of congruence equations
\[
\begin{align*}
 x &\equiv b_1 \pmod{n_1} \\
 x &\equiv b_2 \pmod{n_2} \\
 \vdots \\
 x &\equiv b_k \pmod{n_k}.
\end{align*}
\]
has a unique solution modulo \(n_1 n_2 \cdots n_k \).

Thinking Problem. In the Chinese Remainder Theorem, if \(\gcd(n_i, n_j) = 1 \), is not satisfied, does the system have solutions? Assuming it has solutions, are the solutions unique modulo some integers?

8 Important Facts

1. \(a \equiv b \pmod{n} \iff a + kn \equiv b + ln \pmod{n} \) for all \(k, l \in \mathbb{Z} \).
2. If \(c \mid a, c \mid b, c \mid n \), then
\[
a \equiv b \pmod{n} \iff a/c \equiv b/c \pmod{n/c}.
\]
3. An integer \(a \) is called \textbf{invertible} modulo \(n \) if there exists an integer \(b \) such that
\[
ab \equiv 1 \pmod{n}.
\]
If so, \(b \) is called the **inverse** of \(a \) modulo \(n \).

4. An integer \(a \) is invertible modulo \(n \) \(\iff \) \(\gcd(a, n) = 1 \).

5. If \(\gcd(c, n) = 1 \), then
 \[
 a \equiv b \pmod{n} \iff ca \equiv cb \pmod{n}.
 \]

6. Equation \(ax \equiv b \pmod{n} \) has solution \(\iff \) \(\gcd(a, n) \mid b \).

7. For all \(k, l \in \mathbb{Z} \),
 \[
 ax \equiv b \pmod{n} \iff (a + kn)x \equiv b + ln \pmod{n}.
 \]