Number Theory

October 10, 2019

1 Divisibility

Given two integers a, b with $a \neq 0$. We say that a divides b, written $a \mid b$, if there exists an integer q such that

$$
b=q a .
$$

When this is true, we say that a is a factor (or divisor) of b, and b is a multiple of a. If a is not a factor of b, we write

$$
a \nmid b .
$$

Any integer n has divisors ± 1 and $\pm n$, called the trivial divisors of n. If a is a divisor of n, so is $-a$. A positive divisor of n other than the trivial divisors is called a nontrivial divisor of n. Every integer is a divisor of 0 .

A positive integer p other than 1 is called a prime if it does not have nontrivial divisors, i.e., its positive divisors are only the trivial divisors 1 and p. A positive integer is called composite if it is not a prime. The first few primes are listed as

$$
2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59, \ldots
$$

Proposition 1.1. Every composite number n has a prime factor $p \leq$ \sqrt{n}.

Proof. Since n is composite, there are primes p and q such that $n=p q k$, where $k \in \mathbb{P}$. Note that for primes p and q, one is less than or equal to the other, say $p \leq q$. Then $p^{2} \leq p q k=n$. Thus $p \leq \sqrt{n}$.
Example 1.1. (a) 6 has the prime factor $2 \leq \sqrt{6}$.
(b) 9 has the prime factor $3=\sqrt{9}$.
(c) 35 has the prime factor $5 \leq \sqrt{35}$.
(d) Is 143 a prime? We find that $\sqrt{143}<\sqrt{144}=12$. For $i=$ $2,3,5,7,11$, check whether i divides 143 . We find out $i \nmid 143$ for $i=2,3,5,7$, and $11 \mid 143$. So 143 is a composite number.
(e) Is 157 a prime? Since $\sqrt{157}<\sqrt{169}=13$. For each $i=2,3,5,7,11$, we find out that $i \nmid 157$. We see that 157 has no prime factor less or equal to $\sqrt{157}$. So 157 is not a composite; 157 is a prime.

Proposition 1.2. Let a, b, c be nonzero integers.
(a) If $a \mid b$ and $b \mid a$, then $a= \pm b$.
(b) If $a \mid b$ and $b \mid c$, then $a \mid c$.
(c) If $a \mid b$ and $a \mid c$, then $a \mid(b x+c y)$ for all $x, y \in \mathbb{Z}$.

Proof. (a) Write $b=q_{1} a$ and $a=q_{2} b$ for some $q_{1}, q_{2} \in \mathbb{Z}$. Then $b=q_{1} q_{2} b$. Dividing both sides by b, we have $q_{1} q_{2}=1$. This forces that $q_{1}=q_{2}= \pm 1$. Thus $b= \pm a$.
(b) Write $b=q_{1} a$ and $c=q_{2} b$ for some integers $q_{1}, q_{2} \in \mathbb{Z}$. Then $c=q_{1} q_{2} a$. This means that $a \mid c$.
(c) Write $b=q_{1} a$ and $c=q_{2} a$ for some $q_{1}, q_{2} \in \mathbb{Z}$. Then

$$
b x+c y=q_{1} a x+q_{2} a y=\left(q_{1} x+q_{2} y\right) a
$$

for any $x, y \in \mathbb{Z}$. This means that $a \mid(b x+c y)$.

Theorem 1.3. There are infinitely many prime numbers.
Proof. Suppose there are finitely many primes, say, they are listed as follows

$$
p_{1}, p_{2}, \ldots, p_{k}
$$

Then the integer

$$
a=p_{1} p_{2} \cdots p_{k}+1
$$

is not divisible by any of the primes $p_{1}, p_{2}, \ldots, p_{k}$ because the remainders of a divided by each p_{i} is always 1 , where $i=1, \ldots, k$. This means that a has no prime factors. By definition of primes, the integer a is a prime, and this prime is larger than all primes $p_{1}, p_{2}, \ldots, p_{k}$. So it is larger than itself, which is a contradiction.
Theorem 1.4 (Division Algorithm). For any $a, b \in \mathbb{Z}$ with $a>0$, there exist unique integers q, r such that

$$
b=q a+r, \quad 0 \leq r<a
$$

Proof. Define the set $S=\{b-t a \geq 0: t \in \mathbb{Z}\}$. Then S is nonempty and bounded below. By the Well Ordering Principle, S has the unique minimum integer r. Then there is a unique integer q such that $b-q a=r$. Thus

$$
b=q a+r
$$

Clearly, $r \geq 0$. We claim that $r<a$. Suppose $r \geq a$. Then

$$
b-(q+1) a=(b-q a)-a=r-a \geq 0
$$

This means that $r-a$ is an element of S, but smaller than r. This is contrary to that r is the minimum element in S.
Example 1.2. For integers $a=24$ and $b=379$, we have

$$
379=15 \cdot 24+19, \quad q=15, r=19
$$

For integers $a=24$ and $b=-379$, we have

$$
-379=-14 \cdot 24+5, \quad q=-14, r=5
$$

2 Greatest Common Divisor

For integers a and b, not simultaneously 0 , a common divisor of a and b is an integer c such that $c \mid a$ and $c \mid b$.

Definition 2.1. Let a and b be integers, not simultaneously 0. A positive integer d is called the greatest common divisor of a and b, denoted $\operatorname{gcd}(a, b)$, if
(a) $d|a, d| b$, and
(b) If $c \mid a$ and $c \mid b$, then $c \mid d$.

Two integers a and b are said to be coprime (or relatively prime) if $\operatorname{gcd}(a, b)=1$.

Theorem 2.2. For any integers $a, b \in \mathbb{Z}$, not all zero, if

$$
b=q a+r
$$

for some integers $q, r \in \mathbb{Z}$, then

$$
\operatorname{gcd}(a, b)=\operatorname{gcd}(a, r)
$$

Proof. Write $d_{1}=\operatorname{gcd}(a, b), d_{2}=\operatorname{gcd}(a, r)$.
Since $d_{1} \mid a$ and $d_{1} \mid b$, then $d_{1} \mid r$ because $r=b-q a$. So d_{1} is a common divisor of a and r. Thus, by definition of $\operatorname{gcd}(a, r), d_{1}$ divides d_{2}. Similarly, since $d_{2} \mid a$ and $d_{2} \mid r$, then $d_{2} \mid b$ because $b=q a+r$. So d_{2} is a common divisor of a and b. By definition of $\operatorname{gcd}(a, b), d_{2}$ divides d_{1}. Hence, by Proposition 1.2 (a), $d_{1}= \pm d_{2}$. Thus $d_{1}=d_{2}$.

The above proposition gives rise to a simple constructive method to calculate gcd by repeating the Division Algorithm.

Example 2.1. Find $\operatorname{gcd}(297,3627)$.

$$
\begin{aligned}
3627 & =12 \cdot 297+63, & \operatorname{gcd}(297,3627) & =\operatorname{gcd}(63,297) \\
297 & =4 \cdot 63+45, & & =\operatorname{gcd}(45,63) \\
63 & =1 \cdot 45+18, & & =\operatorname{gcd}(18,45) \\
45 & =2 \cdot 18+9, & & =\operatorname{gcd}(9,18) \\
18 & =2 \cdot 9 ; & & =9 .
\end{aligned}
$$

The procedure to calculate $\operatorname{gcd}(297,3627)$ applies to any pair of positive integers.

Let $a, b \in \mathbb{N}$ be nonnegative integers. Write $d=\operatorname{gcd}(a, b)$. Repeating the Division Algorithm, we find nonnegative integers $q_{i}, r_{i} \in \mathbb{N}$ such that

$$
\begin{aligned}
b & =q_{0} a+r_{0}, & & 0 \leq r_{0}<a, \\
a & =q_{1} r_{0}+r_{1}, & & 0 \leq r_{1}<r_{0}, \\
r_{0} & =q_{2} r_{1}+r_{2}, & & 0 \leq r_{2}<r_{1} \\
r_{1} & =q_{3} r_{2}+r_{3}, & & 0 \leq r_{3}<r_{2}, \\
& \vdots & & \\
r_{k-2} & =q_{k} r_{k-1}+r_{k}, & & 0 \leq r_{k}<r_{k-1}, \\
r_{k-1} & =q_{k+1} r_{k}+r_{k+1}, & & r_{k+1}=0
\end{aligned}
$$

The nonnegative sequence $\left\{r_{i}\right\}$ is strictly decreasing. It must end to 0 at some step, say, $r_{k+1}=0$ for the very first time. Then $r_{i} \neq 0,0 \leq i \leq k$. Reverse the sequence $\left\{r_{i}\right\}_{i=0}^{k}$ and make substitutions as follows:

$$
\begin{aligned}
d & =r_{k}, \\
r_{k} & =r_{k-2}-q_{k} r_{k-1}, \\
r_{k-1} & =r_{k-3}-q_{k-1} r_{k-2}, \\
& \vdots \\
r_{1} & =a-q_{1} r_{0}, \\
r_{0} & =b-q_{0} a .
\end{aligned}
$$

We see that $\operatorname{gcd}(a, b)$ can be expressed as an integral linear combination of a and b. This procedure is known as the Euclidean Algorithm.

We summarize the above argument into the following theorem.
Theorem 2.3. For any integers $a, b \in \mathbb{Z}$, there exist integers $x, y \in \mathbb{Z}$ such that

$$
\operatorname{gcd}(a, b)=a x+b y
$$

Example 2.2. Express $\operatorname{gcd}(297,3627)$ as an integral linear combination of 297 and 3627.

Dy the Division Algorithm, we have $\operatorname{gcd}(297,3627)=9$. By the Euclidean Algorithm,

$$
\begin{aligned}
9 & =45-2 \cdot 18 \\
& =45-2(63-45) \\
& =3 \cdot 45-2 \cdot 63 \\
& =3(297-4 \cdot 63)-2 \cdot 63 \\
& =3 \cdot 297-14 \cdot 63 \\
& =3 \cdot 297-14(3627-12 \cdot 297) \\
& =171 \cdot 297-14 \cdot 3627 .
\end{aligned}
$$

Example 2.3. Find $\operatorname{gcd}(119,45)$ and express it as an integral linear combination of 45 and 119.

Applying the Division Algorithm,

$$
\begin{aligned}
119 & =2 \cdot 45+29 \\
45 & =29+16 \\
29 & =16+13 \\
16 & =13+3 \\
13 & =4 \cdot 3+1
\end{aligned}
$$

So $\operatorname{gcd}(119,45)=1$. Applying the Euclidean Algorithm,

$$
\begin{aligned}
1 & =13-4 \cdot 3=13-4(16-13) \\
& =5 \cdot 13-4 \cdot 16=5(29-16)-4 \cdot 16 \\
& =5 \cdot 29-9 \cdot 16=5 \cdot 29-9(45-29) \\
& =14 \cdot 29-9 \cdot 45=14(119-2 \cdot 45)-9 \cdot 45 \\
& =14 \cdot 119-37 \cdot 45
\end{aligned}
$$

Example 2.4. Find $\operatorname{gcd}(119,-45)$ and express it as linear combination of 119 and -45.

We have $\operatorname{gcd}(119,-45)=\operatorname{gcd}(119,45)=1$. Since

$$
1=14 \cdot 119-37 \cdot 45,
$$

we have $\operatorname{gcd}(119,-45)=14 \cdot 119+37 \cdot(-45)$.
Remark. For any $a, b \in \mathbb{Z}, \operatorname{gcd}(a,-b)=\operatorname{gcd}(a, b)$. Expressing $\operatorname{gcd}(a,-b)$ in terms of a and $-b$ is the same as that of expressing $\operatorname{gcd}(a, b)$ in terms of a and b.

Corollary 2.4. Integers a, b, not all zero, are coprime if and only if there exist integers x, y such that $a x+b y=1$.
Proposition 2.5. If $a \mid b c$ and $\operatorname{gcd}(a, b)=1$, then $a \mid c$.
Proof. By the Euclidean Algorithm, there are integers $x, y \in \mathbb{Z}$ such that $a x+b y=1$. Then

$$
c=1 \cdot c=(a x+b y) c=a c x+b c y .
$$

Since $a \mid b c$ and obviously $a \mid a c$, we have $a \mid(a c x+b c y)$ by Proposition 1.2 (c). Therefore $a \mid c$.

Theorem 2.6 (Unique Factorization). Every integer $a \geq 2$ can be uniquely factorized into the form

$$
a=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{m}^{e_{m}},
$$

where $p_{1}, p_{2}, \ldots, p_{m}$ are distinct primes, $e_{1}, e_{2}, \ldots, e_{m}$ are positive integers, and $p_{1}<p_{2}<\cdots<p_{s}$.

Proof. (Not required) We first show that a has a factorization into primes. If a has only the trivial divisors, then a itself is a prime, and it obviously has unique factorization. If a has some nontrivial divisors, then

$$
a=b c
$$

for some positive integers $b, c \in \mathbb{P}$ other than 1 and a. So $b<a, c<a$. By induction, the positive integers b and c have factorizations into primes. Consequently, a has a factorization into primes.

Next we show that the factorization of a is unique in the sense of the theorem.

Let $a=q_{1}^{f_{1}} q_{2}^{f_{2}} \cdots a_{n}^{f_{n}}$ be any factorization, where $q_{1}, q_{2}, \ldots, q_{n}$ are distinct primes, $f_{1}, f_{2}, \ldots, f_{n}$ are positive integers, and $q_{1}<q_{2}<\cdots<$ q_{n}. We claim that $m=n, p_{i}=q_{i}, e_{i}=f_{i}$ for all $1 \leq i \leq m$.

Suppose $p_{1}<q_{1}$. Then p_{1} is distinct from the primes $q_{1}, q_{2}, \ldots, q_{n}$. It is clear that $\operatorname{gcd}\left(p_{1}, q_{i}\right)=1$, and so

$$
\operatorname{gcd}\left(p_{1}, q_{i}^{f_{i}}\right)=1 \quad \text { for all } \quad 1 \leq i \leq n
$$

Note that $p_{1} \mid q_{1}^{f_{1}} q_{2}^{f_{2}} \cdots a_{n}^{f_{n}}$. Since $\operatorname{gcd}\left(p_{1}, q_{1}^{f_{1}}\right)=1$, by Proposition 2.5, we have $p_{1} \mid q_{2}^{f_{2}} \cdots a_{n}^{f_{n}}$. Since $\operatorname{gcd}\left(p_{1}, q_{2}^{f_{2}}\right)=1$, again by Proposition 2.5 , we have $p_{1} \mid q_{3}^{f_{2}} \cdots a_{n}^{f_{n}}$. Repeating the argument, eventually we have $p_{1} \mid q_{n}^{f_{n}}$, which is contrary to $\operatorname{gcd}\left(p_{1}, q_{n}^{f_{n}}\right)=1$. We thus conclude $p_{1} \geq q_{1}$. Similarly, $q_{1} \geq p_{1}$. Therefore $p_{1}=q_{1}$. Next we claim $e_{1}=f_{1}$.

Suppose $e_{1}<f_{1}$. Then

$$
p_{2}^{e_{2}} \cdots p_{m}^{e_{m}}=p_{1}^{f_{1}-e_{1}} q_{2}^{f_{2}} \cdots q_{n}^{f_{n}}
$$

This implies that $p_{1} \mid p_{2}^{e_{2}} \cdots p_{m}^{e_{m}}$. If $m=1$, then $p_{2}^{e_{2}} \cdots p_{m}^{e_{m}}=1$. So $p_{1} \mid 1$. This is impossible because p_{1} is a prime. If $m \geq 2$, since $\operatorname{gcd}\left(p_{1}, p_{i}\right)=1$,
we have $\operatorname{gcd}\left(p_{1}, p_{i}^{e_{i}}\right)=1$ for all $2 \leq i \leq m$. Applying Proposition 2.5 repeatedly, we have $p_{1} \mid p_{m}^{e_{m}}$, which is contrary to $\operatorname{gcd}\left(p_{1}, p_{m}^{e_{m}}\right)=1$. We thus conclude $e_{1} \geq f_{1}$. Similarly, $f_{1} \geq e_{1}$. Therefore $e_{1}=f_{1}$.

Now we have obtained $p_{2}^{e_{2}} \cdots p_{m}^{e_{m}}=q_{2}^{f_{2}} \cdots q_{n}^{f_{n}}$. If $m<n$, then by induction we have $p_{1}=q_{1}, \ldots, p_{m}=q_{m}$ and $e_{1}=f_{1}, \ldots, e_{m}=f_{m}$. Thus $1=q_{m+1}^{f_{m+1}} \cdots q_{n}^{f_{n}}$. This is impossible because q_{m+1}, \ldots, q_{n} are primes. So $m \geq n$. Similarly, $n \geq m$. Hence we have $m=n$. By induction, we have $e_{2}=f_{2}, \ldots, e_{m}=f_{m}$.

Our proof is finished.
Example 2.5. Factorize the numbers 180 and 882, and find $\operatorname{gcd}(180,882)$.
Solution. $180 / 2=90,90 / 2=45,45 / 3=15,15 / 3=5,5 / 5=1$. Then $360=$ $2^{2} \cdot 3^{2} \cdot 5$. Similarly, $882 / 2=441,441 / 3=147,147 / 3=49,49 / 7=7,7 / 7=1$. We have $882=2 \cdot 3^{2} \cdot 7^{2}$. Thus $\operatorname{gcd}(180,882)=2 \cdot 3^{2}=18$.

3 Least Common Multiple

For two integers a and b, a positive integer m is called a common multiple of a and b if $a \mid m$ and $b \mid m$.

Definition 3.1. Let $a, b \in \mathbb{Z}$, not all zero. The least common multiple of a and b, denoted by $\operatorname{lcm}(a, b)$, is a positive integer m such that (a) $a|m, b| m$, and
(b) If $a \mid c$ and $b \mid c$, then $m \mid c$.

Proposition 3.2. For nonnegative integers $a, b \in \mathbb{N}$, not all zero,

$$
a b=\operatorname{gcd}(a, b) \cdot \operatorname{lcm}(a, b)
$$

Proof. Let $a=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{n}^{e_{n}}$ and $b=p_{1}^{f_{1}} p_{2}^{f_{2}} \cdots p_{n}^{f_{n}}$, where $p_{1}<p_{2}<$ $\cdots<p_{n}, e_{i}$ and f_{i} are nonnegative integers, $1 \leq i \leq n$. Then by the

Unique Factorization Theorem,

$$
\begin{aligned}
\operatorname{gcd}(a, b) & =p_{1}^{g_{1}} p_{2}^{g_{2}} \cdots p_{n}^{g_{n}} \\
\operatorname{lcm}(a, b) & =p_{1}^{h_{1}} p_{2}^{h_{2}} \cdots p_{n}^{h_{n}}
\end{aligned}
$$

where $g_{i}=\min \left(e_{i}, f_{i}\right), h_{i}=\max \left(e_{i}, f_{i}\right), 1 \leq i \leq n$. Note that for any real numbers $x, y \in \mathbb{R}$,

$$
\min (x, y)+\max (x, y)=x+y
$$

Thus

$$
g_{i}+h_{i}=e_{i}+f_{i}, \quad 1 \leq i \leq n
$$

Therefore

$$
\begin{aligned}
a b & =p_{1}^{e_{1}+f_{1}} p_{2}^{e_{2}+f_{2}} \cdots p_{n}^{e_{n}+f_{n}} \\
& =p_{1}^{g_{1}+h_{1}} p_{2}^{g_{2}+h_{2}} \cdots p_{n}^{g_{n}+h_{n}} \\
& =\operatorname{gcd}(a, b) \cdot \operatorname{lcm}(a, b) .
\end{aligned}
$$

4 Solving $a x+b y=c$

Example 4.1. Find an integer solution for the equation

$$
25 x+65 y=10
$$

Solution. Applying the Division Algorithm to find $\operatorname{gcd}(25,65)$:

$$
\begin{aligned}
& 65=2 \cdot 25+15 \\
& 25=15+10 \\
& 15=10+5
\end{aligned}
$$

Then $\operatorname{gcd}(25,65)=5$. Applying the Euclidean Algorithm to express 5 as an integer linear combination of 25 and 65:

$$
\begin{aligned}
5 & =15-10 \\
& =15-(25-15) \\
& =-25+2 \cdot 15 \\
& =-25+2 \cdot(65-2 \cdot 25) \\
& =-5 \cdot 25+2 \cdot 65
\end{aligned}
$$

By inspection, $(x, y)=(-5,2)$ is a solution for the equation

$$
25 x+65 y=5
$$

Since $10 / 5=2$, we see that $(x, y)=2(-5,2)=(-10,4)$ is a solution for $25 x+65 y=10$.

Example 4.2. Find an integer solution for the equation

$$
25 x+65 y=18
$$

Solution. Since $\operatorname{gcd}(25,65)=5$, if the equation has a solution, then $5 \mid(25 x+65 y)$. So $5 \mid 18$ by Proposition 1.2 (c). This is a contradiction. Hence the equation has no integer solution.

Theorem 4.1. The linear Diophantine equation

$$
a x+b y=c
$$

has a solution if and only if $d \mid c$, where $d=\operatorname{gcd}(a, b)$.
Theorem 4.2. Let S be the set of integer solutions of the nonhomogeneous equation

$$
\begin{equation*}
a x+b y=c \tag{1}
\end{equation*}
$$

Let S_{0} be the set of integer solutions of the homogeneous equation

$$
\begin{equation*}
a x+b y=0 \tag{2}
\end{equation*}
$$

If $(x, y)=\left(u_{0}, v_{0}\right)$ is an integer solution of (1), then S is given by

$$
S=\left\{\left(u_{0}+s, v_{0}+t\right):(s, t) \in S_{0}\right\} .
$$

In other words, all integer solutions of (1) are given by

$$
\left\{\begin{array}{l}
x=u_{0}+s \tag{3}\\
y=v_{0}+t
\end{array}, \quad(s, t) \in S_{0}\right.
$$

Proof. Since $(x, y)=\left(u_{0}, v_{0}\right)$ is a solution of NHEq (1), then $a u_{0}+b v_{0}=c$. For any solution $(x, y)=(s, t)$ of HE (2), we have $a s+b t=0$. Thus

$$
a\left(u_{0}+s\right)+b\left(v_{0}+t\right)=\left(a u_{0}+b v_{0}\right)+(a s+b t)=c
$$

This means that $(x, y)=\left(u_{0}+s, v_{0}+t\right)$ is a solution of NHEq (1).
Conversely, for any solution $(x, y)=(u, v)$ of NHEq (1), we have $a u+$ $b v=c$. Let $\left(s_{0}, t_{0}\right)=\left(u-u_{0}, v-v_{0}\right)$. Then

$$
\begin{aligned}
a s_{0}+b t_{0} & =a\left(u-u_{0}\right)+b\left(v-v_{0}\right) \\
& =(a u+b v)-\left(a u_{0}+b v_{0}\right) \\
& =c-c=0
\end{aligned}
$$

This means that $\left(s_{0}, t_{0}\right)$ is a solution of HEq (2). Note that

$$
(u, v)=\left(u_{0}+s_{0}, v_{0}+t_{0}\right)
$$

This shows that the solution $(x, y)=(u, v)$ of NHEq (1) is a solution of the form in (3). Our proof is finished.
Proposition 4.3. Let $d=\operatorname{gcd}(a, b)$. The integer solution set S_{0} of

$$
a x+b y=0
$$

is given by

$$
S_{0}=\{k(b / d,-a / d): k \in \mathbb{Z}\}
$$

In other words,

$$
\left\{\begin{array}{r}
x=(b / d) k \\
y=-(a / d) k
\end{array}, \quad k \in \mathbb{Z}\right.
$$

Proof. The equation $a x+b y=0$ can be written as $a x=-b y$. Write $m=a x=-b y$. Then $a \mid m$ and $b \mid m$, i.e., m is a multiple of a and b. Thus $m=k \cdot \operatorname{lcm}(a, b)$ for some $k \in \mathbb{Z}$. Therefore $a x=k \cdot \operatorname{lcm}(a, b)$ implies

$$
x=\frac{k \cdot \operatorname{lcm}(a, b)}{a}=\frac{k a b}{d a}=\frac{k b}{d}
$$

Likewise, $-b y=k \cdot \operatorname{lcm}(a, b)$ implies

$$
y=\frac{k \cdot \operatorname{lcm}(a, b)}{-b}=\frac{k a b}{-d b}=-\frac{k a}{d} .
$$

Theorem 4.4. Let $d=\operatorname{gcd}(a, b)$ and $d \mid$ c. Let $\left(u_{0}, v_{0}\right)$ be a particular integer solution of the equation

$$
a x+b y=c .
$$

Then all integer solutions of the above equation are given by

$$
\left\{\begin{array}{l}
x=u_{0}+b k / d \\
y=v_{0}-a k / d
\end{array}, \quad k \in \mathbb{Z}\right.
$$

Proof. It follows from Theorem 4.2 and Proposition 4.3.
Example 4.3. Find all integer solutions for the equation

$$
25 x+65 y=10
$$

Solution. Find $\operatorname{gcd}(25,65)=5$ and have got a special solution $(x, y)=$ $(-10,4)$ in a previous example. Now consider the equation $25 x+65 y=0$. Divide both sides by 5 to have,

$$
5 x+13 y=2
$$

Since $\operatorname{gcd}(5,13)=1$, all solutions for the above equation are given by $(x, y)=k(-13,5), k \in \mathbb{Z}$. Thus all solutions of $25 x+65 y=10$ are given by

$$
\left\{\begin{array}{lr}
x= & -10-13 k \\
y= & 4+5 k
\end{array}, \quad k \in \mathbb{Z}\right.
$$

Example 4.4.

$$
168 x+668 y=888 .
$$

Solution. Find $\operatorname{gcd}(168,668)=4$ by the Division Algorithm

$$
\begin{aligned}
& 668=3 \cdot 168+164 \\
& 168=164+4 \\
& 164=41 \cdot 4
\end{aligned}
$$

By the Euclidean Algorithm,

$$
\begin{aligned}
4 & =168-164 \\
& =168-(668-3 \cdot 168) \\
& =4 \cdot 168+(-1) \cdot 668 .
\end{aligned}
$$

Dividing $\frac{888}{4}=222$, we obtain a special solution

$$
(x, y)=222(4,-1)=(888,-222)
$$

Solve $168 x+668 y=0$. Dividing both sides by 4 ,

$$
42 x+167 y=0 \quad \text { i.e. } \quad 42 x=-167 y .
$$

The general solutions for $168 x+668 y=0$ are given by

$$
(x, y)=k(167,-42), \quad k \in \mathbb{Z} .
$$

The general solutions for $168 x+668 y=888$ are given by

$$
\begin{gathered}
(x, y)=(888,-222)+k(167,-42), \quad k \in \mathbb{Z} . \\
\text { i.e. }\left\{\begin{array}{l}
x=888+167 k \\
y=-222-42 k
\end{array}, \quad k \in \mathbb{Z} .\right.
\end{gathered}
$$

5 Modulo Integers

Let n be a fixed positive integer. Two integers a and b are said to be congruent modulo n, written

$$
a \equiv b(\bmod n)
$$

and read " a equals b modulo n " if $n \mid(b-a)$.
For all $k, l \in \mathbb{Z}, a \equiv b(\bmod n)$ is equivalent to

$$
a+k n \equiv b+\ln (\bmod n)
$$

In fact, the difference

$$
(b+l n)-(a+k n)=(b-a)+(l-k) n
$$

is a multiple of n if and only if $b-a$ is a multiple of n.

Example 5.1.

$$
\begin{aligned}
& 3 \equiv 5(\bmod 2), \quad 368 \equiv 168(\bmod 8), \quad-8 \equiv 10(\bmod 9), \\
& 3 \not \equiv 5(\bmod 3), \quad 368 \not \equiv 268(\bmod 8), \quad-8 \not \equiv 18(\bmod 9) .
\end{aligned}
$$

Proposition 5.1. Let n be a fixed positive integer.
(a) If $a_{1} \equiv b_{1}(\bmod n)$ and $a_{2} \equiv b_{2}(\bmod n)$, then

$$
a_{1} \pm a_{2} \equiv b_{1} \pm b_{2}(\bmod n), \quad a_{1} a_{2} \equiv b_{1} b_{2}(\bmod n)
$$

(b) If $a \equiv b(\bmod n), d \mid n$, then $a \equiv b(\bmod d)$.
(c) If d divides all integers a, b, n, then

$$
a \equiv b(\bmod n) \quad \Longleftrightarrow \quad \frac{a}{d} \equiv \frac{b}{d}\left(\bmod \frac{n}{d}\right)
$$

Proof. (a) Since $a_{1} \equiv b_{1}(\bmod n)$ and $a_{2} \equiv b_{2}(\bmod n)$, there are integers k_{1} and k_{2} such that

$$
b_{1}-a_{1}=k_{1} n, \quad b_{2}-a_{2}=k_{2} n
$$

Then

$$
\begin{aligned}
\left(b_{1}+b_{2}\right) & \pm\left(a_{1}+a_{2}\right)=\left(k_{1} \pm k_{2}\right) n, \\
b_{1} b_{2}-a_{1} a_{2} & =b_{1} b_{2}-b_{1} a_{2}+b_{1} a_{2}-a_{1} a_{2} \\
& =b_{1}\left(b_{2}-a_{2}\right)+\left(b_{1}-a_{1}\right) a_{2} \\
& =b k^{\prime} n+k n a^{\prime} \\
& =\left(b_{1} k_{2}+a_{2} k_{1}\right) n .
\end{aligned}
$$

Thus

$$
\begin{aligned}
a_{1} \pm a_{2} & \equiv b_{1} \pm b_{2}(\bmod n) \\
a_{1} a_{2} & \equiv b_{1} b_{2}(\bmod n)
\end{aligned}
$$

(b) Since $d \mid n$, we have $n=d l$ for some $l \in \mathbb{Z}$. Then

$$
b-a=k n=(k l) d, \quad \text { i.e., } \quad a \equiv b(\bmod d)
$$

(c) $a \equiv b(\bmod n)$ iff $b-a=k n$ for an integer k, which is iff

$$
\frac{b}{d}-\frac{a}{d}=k \times \frac{n}{d}, \quad \text { i.e., } \quad \frac{a}{d} \equiv \frac{b}{d}\left(\bmod \frac{n}{d}\right)
$$

Example 5.2.

$$
\begin{aligned}
& 6 \equiv 14(\bmod 8) \\
& 6 \equiv 14(\bmod 8) \Longleftrightarrow \frac{6}{2} \equiv \frac{6}{2} \equiv 2 \times 14(\bmod 8) \\
& 2
\end{aligned}
$$

However,

$$
2 \times 3 \equiv 2 \times 7(\bmod 8) \nRightarrow \quad 3 \equiv 7(\bmod 8)
$$

In fact,

$$
3 \not \equiv 7(\bmod 8)
$$

Theorem 5.2. If $\operatorname{gcd}(m, n)=1$, then

$$
a \equiv b \bmod m, a \equiv b \bmod n \Leftrightarrow a \equiv b \bmod m n
$$

More generally,

$$
a \equiv b \bmod m, a \equiv b \bmod n \Leftrightarrow a \equiv b \bmod \operatorname{lcm}(m, n) .
$$

Proof. Let $l=\operatorname{lcm}(m, n)$. If $a \equiv b \bmod m$ and $a \equiv b \bmod n$, then $m \mid(b-a)$ and $n \mid(b-a)$. Thus $l \mid(b-a)$, i.e., $a \equiv b \bmod l$. Conversely, if $a \equiv b(\bmod l)$, then $l \mid(b-a)$. Since $m|l, n| l$, we have $m \mid(b-a)$, $n \mid(b-a)$. Thus $a \equiv b \bmod m, a \equiv b \bmod n$.

In particular, if $\operatorname{gcd}(m, n)=1$, we have $\operatorname{lcm}(m, n)=m n$.
Definition 5.3. An integer a is said to be invertible modulo n if there exists an integer b such that

$$
a b \equiv 1 \bmod n
$$

If so, b is called the inverse of a modulo n.
Proposition 5.4. An integer a is invertible modulo n if and only if $\operatorname{gcd}(a, n)=1$

Proof. " \Rightarrow " If a is invertible modulo n, say, its inverse is b, then there exists an integer k such that $a b=1+k n$, i.e., $1=a b-k n$, which is an integer linear combination of a and n. Thus $\operatorname{gcd}(a, n)$ divides 1 . Hence $\operatorname{gcd}(a, n)=1$.
" \Leftarrow " By the Euclidean Algorithm, there exist integers u, v such that $1=a u+n v$. Then $a u \equiv 1 \bmod n$.

If a and b are invertible modulo n, so is $a b$.

Another way to introduce modulo integers is to consider the quotient set \mathbb{Z}_{n} over the equivalence relation \sim_{n} (or just \sim) defined by $a \sim_{n} b$ iff $n \mid(b-a)$, i.e.,

$$
\mathbb{Z}_{n}=\{[0],[1], \ldots,[n-1]\}=\mathbb{Z} / \sim_{n}
$$

There are addition and multiplication on \mathbb{Z}_{n}, defined by

$$
[a]+[b]:=[a+b], \quad[a][b]:=[a b]
$$

The addition and multiplication are well-defined:

$$
\left[a^{\prime}+b^{\prime}\right]=[a+b], \quad\left[a^{\prime} b^{\prime}\right]=[a b]
$$

In fact, if $[a]=\left[a^{\prime}\right]$ and $[b]=\left[b^{\prime}\right]$, then $a^{\prime}-a=p n$ and $b^{\prime}-b=q n$; thus $\left(a^{\prime}+b^{\prime}\right)-(a+b)=(p+q) n$ and $a^{\prime} b^{\prime}-a b=(a+p n)(b+q n)-a b=$ $(p b+q a+p q n) n$; hence $\left[a^{\prime}+b^{\prime}\right]=[a+b]$ and $\left[a^{\prime} b^{\prime}\right]=[a b]$.

The class [0] is the zero and [1] the unit of \mathbb{Z}_{n}, i.e., $[a]+[0]=[a]$ and $[a][1]=[1][a]=[a]$.

An element $[a]$ is said to be invertible in \mathbb{Z}_{n} if there exists an element $[b] \in \mathbb{Z}_{n}$, called an inverse of $[a]$, such that

$$
[a][b]=[a b]=[1]
$$

If $[a]$ is invertible, then its inverse is unique, the unique inverse is written as $[a]^{-1}$.

If $[a]$ and $[b]$ are invertible modulo n, so is $[a b]$.
Theorem 5.5 (Fermat's Little Theorem). Let p be a prime. If a is an integer such that $p \nmid a$, then

$$
a^{p-1} \equiv 1(\bmod p)
$$

Proof. Consider the map $f_{a}: \mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p}$ by $f_{a}([x])=[a x]$. Since $p \nmid a$, i.e., $\operatorname{gcd}(p, a)=1$, so $[a]$ is invertible. Let b be an inverse of a modulo p. Then f_{b} is the inverse function of f_{a}. Thus f_{a} is a bijection.

Let $\mathbb{Z}_{p}^{*}=\{[1],[2], \ldots,[p-1]\}$. Since $f_{a}([0])=[0]$, we see that $f_{a}\left(\mathbb{Z}_{p}^{*}\right)=$ \mathbb{Z}_{p}^{*}. Now we have

$$
[a]^{p-1} \prod_{k=1}^{p-1}[k]=\prod_{k=1}^{p-1}[a k]=\prod_{z \in f_{a}\left(\mathbb{Z}_{p}^{*}\right)} z=\prod_{z \in \mathbb{Z}_{p}^{*}} z=\prod_{k=1}^{p-1}[k] .
$$

Note that $\prod_{k=1}^{p-1}[k]$ is invertible. It follows that $[a]^{p-1}=[1]$.
Proposition 5.6 (Generalized Fermat's Little Theorem). Let p and q be distinct prime numbers. If a is an integer such that $p \nmid a$ and $q \nmid a$, then

$$
a^{(p-1)(q-1)} \equiv 1(\bmod p q)
$$

Proof. By Fermat's Little Theorem we have $a^{p-1} \equiv 1 \bmod p$. Raising to the power $q-1$, we have

$$
a^{(p-1)(q-1)} \equiv 1(\bmod p) .
$$

This means that $p \mid\left(a^{(p-1)(q-1)}-1\right)$. Likewise, $q \mid\left(a^{(p-1)(q-1)}-1\right)$. Since p and q are coprime, we see that $p q \mid\left(a^{(p-1)(q-1)}-1\right)$, in other words, $a^{(p-1)(q-1)} \equiv 1(\bmod p q)$.
Theorem 5.7 (Euler's Theorem). For integer $n \geq 2$ and integer a such that $\operatorname{gcd}(a, n)=1$,

$$
a^{\varphi(n)}=1(\bmod n),
$$

where $\varphi(n)$ is the number of invertible integers modulo n.
Proof. Let \mathbb{Z}_{n}^{*} denote the set of invertible elements of \mathbb{Z}_{n}. Note that $[a]$ is invertible, $f_{a}: \mathbb{Z}_{n} \rightarrow \mathbb{Z}_{n}$ by $f_{a}([x])=[a x]$ is bijective, and $f_{a}\left(\mathbb{Z}_{n}^{*}\right)=\mathbb{Z}_{n}^{*}$. Then

$$
[a]^{\left|\mathbb{Z}_{n}^{*}\right|} \prod_{[x] \in \mathbb{Z}_{n}^{*}}[x]=\prod_{[x] \in \mathbb{Z}_{n}^{*}}[a][x]=\prod_{[x] \in \mathbb{Z}_{n}^{*}}[a x]=\prod_{[y] \in f_{a}\left(\mathbb{Z}_{n}^{*}\right)}[y]=\prod_{[x] \in \mathbb{Z}_{n}^{*}}[x] .
$$

Since $\prod_{[x] \in \mathbb{Z}_{n}^{*}}[x]$ is invertible, it follows that $[a]^{\varphi(n)}=[1]$.

Fermat's Little Theorem and its generalization are special cases of Euler's Theorem. In fact, $\varphi(p)=p-1$ and $\varphi(p q)=(p-1)(q-1)$ for distinct primes p, q.

Example 5.3. The invertible integers modulo 12 are the following numbers

$$
1,5,7,11 .
$$

Numbers $0,2,3,4,6,8,9,10$ are not invertible modulo 12 .
Theorem 5.8. Let $\operatorname{gcd}(c, n)=1$. Then

$$
a \equiv b(\bmod n) \Longleftrightarrow c a \equiv c b(\bmod n)
$$

Proof. By the Euclidean Algorithm, there are integers u, v such that

$$
1=c u+n v .
$$

Then $1 \equiv c u(\bmod n)$; i.e., a and u are inverses of each other modulo n $" \Rightarrow ": c \equiv c(\bmod n)$ and $a \equiv b(\bmod n)$ imply

$$
c a \equiv c b(\bmod n) .
$$

This true without $\operatorname{gcd}(c, n)=1$.
$" \Leftarrow ": c a \equiv c b(\bmod n)$ and $u \equiv u(\bmod n)$ imply that

$$
u c a \equiv u c b(\bmod n) .
$$

Replace $u c=1-v n$; we have $a-a v n \equiv b-b v n(\bmod n)$. This means $a \equiv b(\bmod n)$.

Example 5.4. Find the inverse modulo 15 for each of the numbers 2, 4, 7, 8, 11, 13.

Solution. Since $2 \cdot 8 \equiv 1(\bmod 15), 4 \cdot 4 \equiv 1(\bmod 15)$. Then 2 and 8 are inverses of each other; 4 is the inverse of itself.

Write $15=2 \cdot 7+1$. Then $15-2 \cdot 7=1$. Thus $-2 \cdot 7 \equiv 1(\bmod 15)$. The inverse of 7 is -2 . Since $-2 \equiv 13(\bmod 15)$, the inverse of 7 is also 13 . In fact,

$$
7 \cdot 13 \equiv 1(\bmod 15) .
$$

Similarly, $15=11+4,11=2 \cdot 4+3,4=3+1$, then

$$
\begin{aligned}
1 & =4-3=4-(11-2 \cdot 4) \\
& =3 \cdot 4-11=3 \cdot(15-11)-11 \\
& =15-4 \cdot 11 .
\end{aligned}
$$

Thus the inverse of 11 is -4 . Since $-4 \equiv 11(\bmod 15)$, the inverse of 11 is also itself, i.e., $11 \cdot 11 \equiv 1(\bmod 15)$.

$6 \quad$ Solving $a x \equiv b(\bmod n)$

Theorem 6.1. The congruence equation

$$
a x \equiv b(\bmod n)
$$

has a solution if and only if $\operatorname{gcd}(a, n)$ divides b.
Proof. Let $d=\operatorname{gcd}(a, n)$. The congruence equation has a solution if and only if there exist integers x and k such that $b=a x+k n$. This is equivalent to $d \mid b$.

Remark. For all $k, l \in \mathbb{Z}$, we have

$$
a x \equiv b(\bmod n) \Longleftrightarrow(a+k n) x \equiv b+\ln (\bmod n) .
$$

In fact, the difference

$$
(b+l n)-(a+k n) x=(b-a x)+(l-k x) n
$$

is a multiple of n if and only if $b-a x$ is a multiple of n.

Theorem 6.2. Let $\operatorname{gcd}(a, n)=1$. Then there exists an integer u such that $a u \equiv 1(\bmod n)$; the solutions for the equation $a x \equiv b(\bmod n)$ are given by

$$
x \equiv u b(\bmod n)
$$

Proof. Since $\operatorname{gcd}(a, n)=1$, there exist $u, v \in \mathbb{Z}$ such that $1=a u+n v$. So $1 \equiv a u(\bmod n)$, i.e., $a u \equiv 1(\bmod n)$. Since u is invertible modulo n, we have

$$
a x \equiv b(\bmod n) \Longleftrightarrow u a x \equiv u b(\bmod n) .
$$

Since $a u=1-n v$, then $u a x=(1-n v) x=x-v x n$. Thus

$$
a x \equiv b(\bmod n) \Longleftrightarrow x-v x n \equiv u b(\bmod n) .
$$

Therefore

$$
a x \equiv b(\bmod n) \Longleftrightarrow x \equiv u b(\bmod n) .
$$

Example 6.1. Find all integers x for

$$
9 x \equiv 27(\bmod 15) .
$$

Solution. Find $\operatorname{gcd}(9,15)=3$. Dividing both sides by 3 ,

$$
3 x \equiv 9(\bmod 5) \quad \Longleftrightarrow \quad 3 x \equiv 4(\bmod 5) .
$$

Since $\operatorname{gcd}(3,5)=1$, the integer 3 is invertible and its inverse is 2 . Multiplying 2 to both sides,

$$
6 x \equiv 8(\bmod 5) .
$$

Since $6 \equiv 1(\bmod 5), 8 \equiv 3(\bmod 5)$, then

$$
x \equiv 3(\bmod 5) .
$$

In other words,

$$
x=3+5 k, \quad k \in \mathbb{Z} .
$$

Example 6.2.

$$
13 x \equiv 8(\bmod 15)
$$

The inverse of 13 is 7 modulo 15 . We have

$$
7 \times 13 x \equiv 7 \times 8(\bmod 15) \equiv 56(\bmod 15) \equiv 11(\bmod 15)
$$

So $x \equiv 11(\bmod 15)$.
Example 6.3. Solve the equation $668 x \equiv 888(\bmod 168)$.
Solution. Find $\operatorname{gcd}(668,168)=4$. Dividing both sides by 4 ,

$$
167 x \equiv 222(\bmod 42)
$$

By the Division Algorithm,

$$
167=3 \times 42+41, \quad 42=41+1
$$

By the Euclidean Algorithm,

$$
1=42-41=42-(167-3 \cdot 42)=4 \cdot 42-167
$$

Then $-167 \equiv 1(\bmod 42)$. The inverse of 167 modulo 42 is -1 . Multiplying -1 to both sides, we have $x \equiv-222(\bmod 42)$. Thus

$$
\begin{gathered}
x \equiv-12(\bmod 42) \quad \text { or } \quad x \equiv 30(\bmod 42) ; \quad \text { i.e. } \\
x=30+42 k, \quad k \in \mathbb{Z} .
\end{gathered}
$$

Algorithm for solving $a x \equiv b(\bmod n)$.
Step 1. Find $d=\operatorname{gcd}(a, n)$ by the Division Algorithm.
Step 2. If $d=1$, apply the Euclidean Algorithm to find $u, v \in \mathbb{Z}$ such that $1=a u+n v$.

Step 3. Do the multiplication $u a x \equiv u b(\bmod n)$. All solutions $x \equiv u b(\bmod n)$ are obtained. Stop.

Step 4. If $d>1$, check whether $d \mid b$. If $d \nmid b$, there is no solution. Stop. If $d \mid b$, do the division

$$
\frac{a}{d} x \equiv \frac{b}{d}\left(\bmod \frac{n}{d}\right)
$$

Rewrite a / d as $a, b / d$ as b, and n / d as n. Go to Step 1 .
Proof. Since $1=a u+n v$, we have $a u \equiv 1(\bmod n)$. This means that a and u are inverses of each other modulo n. So

$$
a x \equiv b(\bmod n) \Longleftrightarrow u a x \equiv u b(\bmod n)
$$

Since $u a=1-v n$, then $u a x=(1-v n) x=x-v x n$. Thus

$$
u a x \equiv u b(\bmod n) \Longleftrightarrow x \equiv u b(\bmod n)
$$

Example 6.4. Solve the equation $245 x \equiv 49(\bmod 56)$.
Solution. Applying the Division Algorithm,

$$
\begin{aligned}
245 & =4 \cdot 56+21 \\
56 & =2 \cdot 21+14 \\
21 & =14+7
\end{aligned}
$$

Applying the Euclidean Algorithm,

$$
\begin{aligned}
7 & =21-14=21-(56-2 \cdot 21) \\
& =3 \cdot 21-56=3 \cdot(245-4 \cdot 56)-56 \\
& =3 \cdot 245-13 \cdot 56
\end{aligned}
$$

Dividing both sides by 7 , we have

$$
1=3 \cdot 35-13 \cdot 8
$$

Thus $3 \cdot 35 \equiv 1(\bmod 8)$. Dividing the original equation by 7 , we have $35 x \equiv 7(\bmod 8)$. Multiplying 3 to both sides, we obtain solutions

$$
x \equiv 21 \equiv 5(\bmod 8)
$$

7 Chinese Remainder Theorem

Example 7.1. Solve the system

$$
\left\{\begin{array}{l}
x \equiv 0\left(\bmod n_{1}\right) \\
x \equiv 0\left(\bmod n_{2}\right)
\end{array}\right.
$$

Solution. By definition of solution, x is a common multiple of n_{1} and n_{2}. So x is a multiple of $\operatorname{lcm}\left(n_{1}, n_{2}\right)$. Thus the system is equivalent to

$$
x \equiv 0\left(\bmod \operatorname{lcm}\left(n_{1}, n_{2}\right)\right)
$$

Theorem 7.1. Let S be the solution set of the system

$$
\left\{\begin{array}{l}
a_{1} x \equiv b_{1}\left(\bmod n_{1}\right) \tag{4}\\
a_{2} x \equiv b_{2}\left(\bmod n_{2}\right)
\end{array}\right.
$$

Let S_{0} be the solution set of the homogeneous system

$$
\left\{\begin{array}{l}
a_{1} x \equiv 0\left(\bmod n_{1}\right) \tag{5}\\
a_{2} x \equiv 0\left(\bmod n_{2}\right)
\end{array}\right.
$$

If $x=x_{0}$ is a solution of (4), then all solutions of (4) are given by

$$
\begin{equation*}
x=x_{0}+s, \quad s \in S_{0} \tag{6}
\end{equation*}
$$

Proof. We first show that $x=x_{0}+s$, where $s \in S_{0}$, are indeed solutions of (4). In fact, since x_{0} is a solution for (4) and s is a solution for (5), we have

$$
\left\{\begin{array}{l}
a_{1} x_{0} \equiv b_{1}\left(\bmod n_{1}\right) \\
a_{2} x_{0} \equiv b_{2}\left(\bmod n_{2}\right)
\end{array}, \quad\left\{\begin{array}{l}
a_{1} s \equiv 0\left(\bmod n_{1}\right) \\
a_{2} s \equiv 0\left(\bmod n_{2}\right)
\end{array}\right.\right.
$$

i.e., n_{1} divides $\left(b_{1}-a_{1} x_{0}\right)$ and $a_{1} s ; n_{2}$ divides $\left(b_{2}-a_{2} x_{0}\right)$ and $a_{2} s$. Then n_{1} divides $\left[\left(b_{1}-a_{1} x_{0}\right)-a_{1} s\right]$, and n_{2} divides $\left[\left(b_{2}-a_{2} x_{0}\right)-a_{2} s\right]$; i.e., n_{1} divides $\left[b_{1}-a_{1}\left(x_{0}+s\right)\right]$, and n_{2} divides $\left[b_{2}-a_{2}\left(x_{0}+s\right)\right]$. This means that $x=x_{0}+s$ is a solution of (4).

Conversely, let $x=t$ be any solution of (4). We will see that $s_{0}=t-x_{0}$ is a solution of (5). Hence the solution $t=x_{0}+s_{0}$ is of the form in (6).

Algorithm for solving the system

$$
\left\{\begin{array}{l}
a_{1} x \equiv b_{1}\left(\bmod n_{1}\right) \tag{7}\\
a_{2} x \equiv b_{2}\left(\bmod n_{2}\right)
\end{array}\right.
$$

Step 1. Reduce the system to the form

$$
\left\{\begin{array}{l}
x \equiv c_{1}\left(\bmod m_{1}\right) \tag{8}\\
x \equiv c_{2}\left(\bmod m_{2}\right)
\end{array}\right.
$$

Step 2. Set $x=c_{1}+y m_{1}=c_{2}+z m_{2}$, where $y, z \in \mathbb{Z}$. Find a solution $(y, z)=\left(y_{0}, z_{0}\right)$ for the equation

$$
m_{1} y-m_{2} z=c_{2}-c_{1} .
$$

Consequently, $x_{0}=c_{1}+m_{1} y_{0}=c_{2}+m_{2} z_{0}$.
Step 3. Set $m=\operatorname{lcm}\left(m_{1}, m_{2}\right)$. The system (7) becomes

$$
x \equiv x_{0}(\bmod m)
$$

Proof. It follows from Theorem 7.1.
Example 7.2. Solve the system

$$
\left\{\begin{array}{l}
10 x \equiv 6 \quad(\bmod 4) \\
12 x \equiv 30(\bmod 21)
\end{array}\right.
$$

Solution. Applying the Division Algorithm,

$$
\operatorname{gcd}(10,4)=2, \quad \operatorname{gcd}(12,21)=3
$$

Dividing the 1st equation by 2 and the second equation by 3 ,

$$
\left\{\begin{array} { l }
{ 5 x \equiv 3 (\operatorname { m o d } 2) } \\
{ 4 x \equiv 1 0 (\operatorname { m o d } 7) }
\end{array} \Longleftrightarrow \left\{\begin{array}{r}
x \equiv 1(\bmod 2) \\
4 x \equiv 3(\bmod 7)
\end{array}\right.\right.
$$

The system is equivalent to

$$
\left\{\begin{array}{l}
x \equiv 1(\bmod 2) \\
x \equiv 6(\bmod 7)
\end{array}\right.
$$

Set $x=1+2 y=6+7 z, y, z \in \mathbb{Z}$. Then

$$
2 y-7 z=5
$$

Applying the Division Algorithm, $7=3 \cdot 2+1$. Applying the Euclidean Algorithm, $1=-3 \cdot 2+7$. Then $5=-15 \cdot 2+5 \cdot 7$. We obtain a solution $\left(y_{0}, z_{0}\right)=(-15,-5)$. Thus

$$
x_{0}=1+2 y_{0}=6+7 z_{0}=-29
$$

is a special solution. The general solution for

$$
\left\{\begin{array}{l}
x \equiv 0(\bmod 2) \\
x \equiv 0(\bmod 7)
\end{array}\right.
$$

is $x \equiv 0(\bmod 14)$. Hence the solution is given by

$$
x \equiv-29 \equiv-1 \equiv 13(\bmod 14)
$$

Example 7.3. Solve the system

$$
\left\{\begin{array}{l}
12 x \equiv 96(\bmod 20) \\
20 x \equiv 70(\bmod 30)
\end{array}\right.
$$

Solution. Applying the Division Algorithm to find,

$$
\operatorname{gcd}(12,20)=4, \quad \operatorname{gcd}(20,30)=10
$$

Then

$$
\left\{\begin{array}{l}
3 x \equiv 24(\bmod 5) \\
2 x \equiv 7(\bmod 3)
\end{array}\right.
$$

Applying the Euclidean Algorithm,

$$
\operatorname{gcd}(3,5)=1=2 \cdot 3-1 \cdot 5
$$

Then $2 \cdot 3 \equiv 1(\bmod 5)$. Similarly,

$$
\operatorname{gcd}(2,3)=1=-1 \cdot 2+1 \cdot 3
$$

and $-1 \cdot 2=1(\bmod 3)$. (Equivalently, $2 \cdot 2 \equiv 1(\bmod 3)$.$) Then, 2$ is the inverse of 3 modulo $5 ;-1$ or 2 is the inverse of 2 modulo 3 . Thus

$$
\begin{gathered}
\left\{\begin{array}{l}
2 \cdot 3 x \equiv 2 \cdot 24(\bmod 5) \\
-1 \cdot 2 x \equiv-1 \cdot 7(\bmod 3)
\end{array}\right. \\
\left\{\begin{array}{l}
x \equiv 48 \equiv 3(\bmod 5) \\
x \equiv-7 \equiv 2(\bmod 3)
\end{array}\right.
\end{gathered}
$$

Set $x=3+5 y=2+3 z$, where $y, z \in \mathbb{Z}$. That is,

$$
5 y-3 z=-1
$$

We find a special solution $\left(y_{0}, z_{0}\right)=(1,2)$. So $x_{0}=3+5 y_{0}=2+3 z_{0}=8$. Thus the original system is equivalent to

$$
x \equiv 8(\bmod 15)
$$

and all solutions are given by

$$
x=8+15 k, \quad k \in \mathbb{Z}
$$

Example 7.4. Find all integer solutions for the system

$$
\left\{\begin{array}{l}
x \equiv 486(\bmod 186) \\
x \equiv 386(\bmod 286)
\end{array}\right.
$$

Solution. The system can be reduced to

$$
\left\{\begin{array}{l}
x \equiv 114(\bmod 186) \\
x \equiv 100(\bmod 286)
\end{array}\right.
$$

Set $x=114+186 y=100+286 z$, i.e.,

$$
186 y-286 z=-14
$$

Applying the Division Algorithm,

$$
\begin{aligned}
286 & =186+100 \\
186 & =100+86 \\
100 & =86+14 \\
86 & =6 \cdot 14+2
\end{aligned}
$$

Then $\operatorname{gcd}(186,286)=2$. Applying the Euclidean Algorithm,

$$
\begin{aligned}
2 & =86-6 \cdot 14 \\
& =86-6(100-86)=7 \cdot 86-6 \cdot 100 \\
& =7(186-100)-6 \cdot 100=7 \cdot 186-13 \cdot 100 \\
& =7 \cdot 186-13(286-186)=20 \cdot 186-13 \cdot 286 .
\end{aligned}
$$

Note that $\frac{-14}{2}=-7$. So we get a special solution

$$
\left(y_{0}, z_{0}\right)=-7(20,13)=(-140,-91)
$$

Thus $x_{0}=114+186 y_{0}=100+286 z_{0}=-25926$. Note that $\operatorname{lcm}(186,286)=$ 26598. The general solutions are given by

$$
x \equiv-25926 \equiv 672(\bmod 26598)
$$

Theorem 7.2 (Chinese Remainder Theorem). Let $n_{1}, n_{2}, \ldots, n_{k} \in \mathbb{P}$. If $\operatorname{gcd}\left(n_{i}, n_{j}\right)=1$ for all $i \neq j$, then the system of congruence equations

$$
\begin{aligned}
x & \equiv b_{1}\left(\bmod n_{1}\right) \\
x & \equiv b_{2}\left(\bmod n_{2}\right) \\
& \vdots \\
x & \equiv b_{k}\left(\bmod n_{k}\right) .
\end{aligned}
$$

has a unique solution modulo $n_{1} n_{2} \cdots n_{k}$.
Thinking Problem. In the Chinese Remainder Theorem, if

$$
\operatorname{gcd}\left(n_{i}, n_{j}\right)=1
$$

is not satisfied, does the system have solutions? Assuming it has solutions, are the solutions unique modulo some integers?

8 Important Facts

1. $a \equiv b(\bmod n) \Longleftrightarrow a+k n \equiv b+\ln (\bmod n)$ for all $k, l \in \mathbb{Z}$.
2. If $c|a, c| b, c \mid n$, then

$$
a \equiv b(\bmod n) \Longleftrightarrow a / c \equiv b / c(\bmod n / c)
$$

3. An integer a is called invertible modulo n if there exists an integer b such that

$$
a b \equiv 1(\bmod n)
$$

If so, b is called the inverse of a modulo n.
4. An integer a is invertible modulo $n \Longleftrightarrow \operatorname{gcd}(a, n)=1$.
5. If $\operatorname{gcd}(c, n)=1$, then

$$
a \equiv b(\bmod n) \Longleftrightarrow c a \equiv c b(\bmod n)
$$

6. Equation $a x \equiv b(\bmod n)$ has solution $\Longleftrightarrow \operatorname{gcd}(a, n) \mid b$.
7. For all $k, l \in \mathbb{Z}$,

$$
a x \equiv b(\bmod n) \Longleftrightarrow(a+k n) x \equiv b+\ln (\bmod n)
$$

9 Final Review

1. Set System,
2. Propositional Logic System
3. Counting
4. Binary Relations
5. Recurrence Relations
6. Graph Theory
7. Elementary Probability
8. Integers and Modulo Integers (Number Theory)
