Math2343: Problem Set 1

1. Let \mathbb{Z} be a universal set. Let A be the set of integers whose elements are multiples of 3 , and B the set of integers whose elements are the multiples of 5 . Find the intersection $A \cap B$, union $A \cup B$, complement \bar{A}, relative complement $A \backslash B$, and the symmetric difference $A \oplus B=(A \backslash B) \cup(B \backslash A)$.
2. For arbitrary sets A, B, C, show that $A \backslash(B \backslash C)=(A \backslash B) \cup C$ if and only if $C \subseteq A$.
3. Let $X=\{0,1,2,3,4\}$ and $Y=\{0,2,4\}$.
(a) How many ordered pairs are in $X \times Y, Y \times X$, and $Y \times X \times Y$ respectively?
(b) List the elements in the set $\{(a, b, c) \in X \times Y \times X: a<b<c\}$.
4. Let $\Sigma=\{a, b\}, A=\left\{w \in \Sigma^{*}: 1 \leq \operatorname{length}(w) \leq 2\right\}, B=\left\{w \in \Sigma^{*}: \operatorname{length}(w) \geq 2\right\}$.
(a) Determine the sets $A \cap B, A \backslash B, B \backslash A$, and $A \oplus B$.
(b) Determine the set $C=\left\{w \in A^{*}: \operatorname{length}(w) \leq 2\right\}$.
(c) List the elements of the power set $\mathcal{P}(\Sigma)$ of Σ, and the power set $\mathcal{P}(\mathcal{P}(\Sigma))$ of the set $\mathcal{P}(\Sigma)$.
5. Let A be a set and let $A_{i}, i \in I$ be a family of sets. Show that
(a) $A \cap\left(\bigcup_{i \in I}^{n} A_{i}\right)=\bigcup_{i \in I}\left(A \cap A_{i}\right)$.
(b) $A \cup\left(\bigcap_{i \in I} A_{i}\right)=\bigcap_{i \in I}\left(A \cup A_{i}\right)$.
(c) If $A \subseteq A_{i}$ for all $i \in I$, then $A \subseteq \bigcap_{i \in I} A_{i}$.
(d) If $A_{i} \subseteq A$ for all $i \in I$, then $\bigcup_{i \in I} A_{i} \subseteq A$.
6. Let $f: X \rightarrow Y$ be a function. Given subsets A_{1}, A_{2}, and a family subsets A_{i} of X with $i \in I$. And given subsets B_{1}, B_{2}, and a family subsets B_{j} of Y with $j \in J$. Show the following statements.
(a) If $A_{1} \subseteq A_{2}$, then $f\left(A_{1}\right) \subseteq f\left(A_{2}\right)$.
(b) If $B_{1} \subseteq B_{2}$, then $f^{-1}\left(B_{1}\right) \subseteq f^{-1}\left(B_{2}\right)$.
(c) $f\left(\bigcap_{i \in I} A_{i}\right) \subseteq \bigcap_{i \in I} f\left(A_{i}\right)$.
(d) $f\left(\bigcup_{i \in I} A_{i}\right)=\bigcup_{i \in I} f\left(A_{i}\right)$.
(e) $f^{-1}\left(\bigcap_{j \in J} B_{j}\right)=\bigcap_{j \in J} f^{-1}\left(B_{j}\right)$.
(f) $f^{-1}\left(\bigcup_{j \in J} B_{j}\right)=\bigcup_{j \in J} f^{-1}\left(B_{j}\right)$.
7. Let $f: \mathbb{Z} \rightarrow \mathbb{Z}$ and $g: \mathbb{Z} \rightarrow \mathbb{Z}$ be functions defined respectively by

$$
f(n)=\frac{(-1)^{n}+1}{2} \quad \text { and } \quad g(n)=\left\lceil\frac{n}{2}\right\rceil-\left\lfloor\frac{n}{2}\right\rfloor .
$$

(a) Find the domain and codomain of f and g;
(b) Find $g \circ f$ and $f \circ g$;
(c) Show that f and g are characteristic functions of some subsets of \mathbb{Z}.
8. Let A be a nonempty set, and let $A^{[n]}$ be the set of all functions from $[n]=\{1,2, \ldots, n\}$ to A. Find a bijection from $A^{[n]}$ to the Cartesian product A^{n}.
9. Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be functions. Show the following statements.
(a) If f and g are one-to-one, then $g \circ f$ is one-to-one;
(b) If f and g are onto, then $g \circ f$ is onto;
(c) If $g \circ f$ is one-to-one, then f is one-to-one;
(d) If $g \circ f$ is onto, then g is onto.
10. Let $f: \mathbb{R} \backslash\{0,1\} \rightarrow \mathbb{R} \backslash\{0,1\}$ be defined by $f(x)=1-x$. Verify that f is a bijection and determine the set $\left\{f^{k}: k \in \mathbb{Z}\right\}$, where f^{0} is the identity function.

