Math2343: Problem Set 1

- 1. Let \mathbb{Z} be a universal set. Let A be the set of integers whose elements are multiples of 3, and B the set of integers whose elements are the multiples of 5. Find the intersection $A \cap B$, union $A \cup B$, complement \overline{A} , relative complement $A \setminus B$, and the symmetric difference $A \oplus B = (A \setminus B) \cup (B \setminus A)$.
- 2. For arbitrary sets A, B, C, show that $A \smallsetminus (B \smallsetminus C) = (A \smallsetminus B) \cup C$ if and only if $C \subseteq A$.
- 3. Let $X = \{0, 1, 2, 3, 4\}$ and $Y = \{0, 2, 4\}$.
 - (a) How many ordered pairs are in $X \times Y$, $Y \times X$, and $Y \times X \times Y$ respectively?
 - (b) List the elements in the set $\{(a, b, c) \in X \times Y \times X : a < b < c\}$.
- 4. Let $\Sigma = \{a, b\}, A = \{w \in \Sigma^* : 1 \le \text{length}(w) \le 2\}, B = \{w \in \Sigma^* : \text{length}(w) \ge 2\}.$
 - (a) Determine the sets $A \cap B$, $A \smallsetminus B$, $B \smallsetminus A$, and $A \oplus B$.
 - (b) Determine the set $C = \{w \in A^* : \text{length}(w) \le 2\}.$
 - (c) List the elements of the power set $\mathcal{P}(\Sigma)$ of Σ , and the power set $\mathcal{P}(\mathcal{P}(\Sigma))$ of the set $\mathcal{P}(\Sigma)$.
- 5. Let A be a set and let $A_i, i \in I$ be a family of sets. Show that
 - (a) $A \cap \left(\bigcup_{i \in I}^{n} A_{i}\right) = \bigcup_{i \in I} (A \cap A_{i}).$
 - (b) $A \cup \left(\bigcap_{i \in I} A_i\right) = \bigcap_{i \in I} (A \cup A_i).$
 - (c) If $A \subseteq A_i$ for all $i \in I$, then $A \subseteq \bigcap_{i \in I} A_i$.
 - (d) If $A_i \subseteq A$ for all $i \in I$, then $\bigcup_{i \in I} A_i \subseteq A$.
- 6. Let $f: X \to Y$ be a function. Given subsets A_1, A_2 , and a family subsets A_i of X with $i \in I$. And given subsets B_1, B_2 , and a family subsets B_j of Y with $j \in J$. Show the following statements.
 - (a) If $A_1 \subseteq A_2$, then $f(A_1) \subseteq f(A_2)$.
 - (b) If $B_1 \subseteq B_2$, then $f^{-1}(B_1) \subseteq f^{-1}(B_2)$.
 - (c) $f\left(\bigcap_{i\in I} A_i\right) \subseteq \bigcap_{i\in I} f\left(A_i\right)$.
 - (d) $f\left(\bigcup_{i\in I} A_i\right) = \bigcup_{i\in I} f\left(A_i\right).$

(e)
$$f^{-1}\left(\bigcap_{j\in J} B_j\right) = \bigcap_{j\in J} f^{-1}(B_j).$$

(f)
$$f^{-1}\left(\bigcup_{j\in J} B_j\right) = \bigcup_{j\in J} f^{-1}(B_j)$$

7. Let $f : \mathbb{Z} \to \mathbb{Z}$ and $g : \mathbb{Z} \to \mathbb{Z}$ be functions defined respectively by

$$f(n) = \frac{(-1)^n + 1}{2}$$
 and $g(n) = \left\lceil \frac{n}{2} \right\rceil - \left\lfloor \frac{n}{2} \right\rfloor$.

- (a) Find the domain and codomain of f and g;
- (b) Find $g \circ f$ and $f \circ g$;
- (c) Show that f and g are characteristic functions of some subsets of \mathbb{Z} .
- 8. Let A be a nonempty set, and let $A^{[n]}$ be the set of all functions from $[n] = \{1, 2, ..., n\}$ to A. Find a bijection from $A^{[n]}$ to the Cartesian product A^n .
- 9. Let $f: X \to Y$ and $g: Y \to Z$ be functions. Show the following statements.
 - (a) If f and g are one-to-one, then $g \circ f$ is one-to-one;
 - (b) If f and g are onto, then $g \circ f$ is onto;
 - (c) If $g \circ f$ is one-to-one, then f is one-to-one;
 - (d) If $g \circ f$ is onto, then g is onto.
- 10. Let $f : \mathbb{R} \setminus \{0, 1\} \to \mathbb{R} \setminus \{0, 1\}$ be defined by f(x) = 1 x. Verify that f is a bijection and determine the set $\{f^k : k \in \mathbb{Z}\}$, where f^0 is the identity function.