Problem Set 5 - Graph Theory

1. Let G be a simple graph with n vertices and m edges. Show that $2 m \leq n(n-1)$.
2. Show that the number vertices of odd degree of any graph is an even number.
3. A vertex in a digraph $D=(V, A)$ is called a source (sink) if its in-degree (out-degree) is zero. A directed cycle of D is a cycle whose in-degree and out-degree at every vertex are exactly one. Show that any nontrivial digraph without sources and sinks has at least one directed cycle.
4. Let G be a simple graph with n vertices. Its complement is the simple graph with the same vertex set and two vertices are adjacent in \bar{G} if and only if they are not adjacent in G. Such a graph is called self-complementary. Find examples of a self-complementary graph on four vertices and on five vertices.
5. A saturated hydrocarbon is represented by a structural formula in which each C atom has degree 4 and each H has degree 1. Show that the hydrocarbon is acyclic (has no carbon rings in it) if and only if its structural formula is of the form $C_{n} H_{2 n+2}$.
6. For each of the following problems, determine whether the relation R on the set A is a tree. If it is a tree, find its leaves.
(a) $A=\{a, b, c, d, e, f\}, R=\{(a, b),(c, e),(f, a),(f, c),(f, d)\}$.
(b) $A=\{u, v, w, x, y, z\}, R=\{(u, x),(u, v),(w, v),(x, z),(x, y)\}$.
7. Performing the preorder search and postorder search to the tree the rooted tree $\left(T, v_{0}\right)$ below.

Figure 1: A labeled rooted tree
8. Show that the maximum number of vertices in a binary tree of height n is $2^{n+1}-1$.
9. Let T be a complete m-ary tree.
(a) If T has exactly three levels. Prove that the number of vertices of T must be $1+k m$, where $2 \leq k \leq m+1$.
(b) If T has n vertices of which k are non-leaves and l are leaves. Prove that $n=m k+1$ and $l=(m-1) k+1$.
10. Use Polish notations to construct the trees for the following expressions.
(a) $(((2 \times 7)+x) \div y) \div(3-11)$
(b) $(3-(2-(11-(9-4)))) \div(2+3(+4(+7)))$
11. Draw binary trees, respectively, whose preorder, postorder, and inorder searches produce the string: ABCDEFGH.
12. Find a Minimum Spanning Tree for the connected graph below by the Kruskal Algorithm and the Prim Algorithm respectively.

Figure 2: A connected graph
13. Modify Kruskal's and Prim's algorithms so that they will produce a Maximum Spanning Tree, that is, one with the largest possible sum of the weights.
14. Apply Depth-First Search and Breadth-First Search to find a rooted tree for the graph in Figure 2.
15. Find an Euler tour or Euler path for the following graph.

Figure 3: A connected graph
16. Let G be a graph whose vertex set $V(G)=\{1,2, \ldots, 15\}$ and two vertices $i+j$ is a multiple of 3 . Let R be an equivalence relation on $V(G)$ defined by $i R j$ if and only if $i \equiv j(\bmod 7)$. Find the quotient graph G / R.
17. Let $G=(V, E)$ be a graph. Define a relation R on V by $u R v$ if $u=v$ or if there is a path in G from u to v. Show that R is an equivalence relation.
18. Let $K_{m, n}$ denote the complete bipartite graph with $m, n \geq 2$. (1) How many distinct cycles of length 4 are there in $K_{m, n}$? (2) How many different paths of length 2 are there in $K_{m, n}$? (3) How many different paths of length 3 are there in $K_{m, n}$?
19. Let Q_{n} be the graph obtained from the n-dimensional unit cube $[0,1]^{n}$, whose vertices and edges are the vertices and edges of the n-cube $[0,1]^{n}$. The graph Q_{n} can be also defined as follows: $V\left(Q_{n}\right)$ is the set of zero-one sequences of length n, and two such sequences are adjacent if and only if they differ at only one position. (1) For which n the graph Q_{n} has an Euler tour or an Euler path? (2) For what n the graph Q_{n} is non-planar? Why? (3) For what n the graph Q_{n} has a Hamilton cycle or Hamilton path? (4) Is Q_{n} bipartite?
20. Show that the Peterson graph is not planar.
21. A buckyball (or football) is a graph whose every vertex has degree 3 and every face is either a pentagon or a hexagon. Find the numbers of vertices, edges, and faces (pentagons and hexagons) respectively.

