Math2343: Problem Set 3

1. Let R be a binary relation from X to $Y, A, B \subseteq X$.
(a) If $A \subseteq B$, then $R(A) \subseteq R(B)$.
(b) $R(A \cup B)=R(A) \cup R(B)$.
(c) $R(A \cap B) \subseteq R(A) \cap R(B)$.

Proof. (a) For each $y \in R(A)$, there is an $x \in A$ such that $(x, y) \in R$. Clearly, $x \in B$, since $A \subseteq B$. Thus $y \in R(B)$. This means that $R(A) \subseteq R(B)$.
(b) Since $R(A) \subseteq R(A \cup B), R(B) \subseteq R(A \cup B)$, we have $R(A) \cup R(B) \subseteq R(A \cup B)$. On the other hand, for each $y \in R(A \cup B)$, there is an $x \in A \cup B$ such that $(x, y) \in R$. Then either $x \in A$ or $x \in B$. Thus $y \in R(A)$ or $y \in R(B)$, i.e., $y \in R(A) \cup R(B)$. Therefore $R(A) \cup R(B) \supseteq R(A \cup B)$.
(c) It follows from (a) that $R(A \cap B) \subseteq R(A)$ and $R(A \cap B) \subseteq R(B)$. Hence $R(A \cap B) \subseteq R(A \cap B)$.
2. Let R_{1} and R_{2} be relations from X to Y. If $R_{1}(x)=R_{2}(x)$ for all $x \in X$, then $R_{1}=R_{2}$.

Proof. For each $(x, y) \in R_{1}$, we have $y \in R_{1}(x)$. Since $R_{1}(x)=R_{2}(x)$, then $y \in R_{2}(x)$. Thus $(x, y) \in R_{2}$. Likewise, for each $(x, y) \in R_{2}$, we have $(x, y) \in R_{2}$. Hence $R_{1}=R_{2}$.
3. Let $a, b, c \in \mathbb{R}$. Then

$$
\begin{aligned}
& a \wedge(b \vee c)=(a \wedge b) \vee(a \wedge c) \\
& a \vee(b \wedge c)=(a \vee b) \wedge(a \vee c)
\end{aligned}
$$

Proof. Note that the cases $b<c$ and $b>c$ are equivalent. There are three essential cases to be verified. Case 1: $a<b<c$. We have

$$
\begin{aligned}
& a \wedge(b \vee c)=a=(a \wedge b) \vee(a \wedge c) \\
& a \vee(b \wedge c)=b=(a \vee b) \wedge(a \vee c)
\end{aligned}
$$

Case 2: $b<a<c$. We have

$$
\begin{aligned}
& a \wedge(b \vee c)=a=(a \wedge b) \vee(a \wedge c), \\
& a \vee(b \wedge c)=a=(a \vee b) \wedge(a \vee c)
\end{aligned}
$$

Case 3: $b<c<a$. We have

$$
\begin{aligned}
& a \wedge(b \vee c)=c=(a \wedge b) \vee(a \wedge c), \\
& a \vee(b \wedge c)=a=(a \vee b) \wedge(a \vee c)
\end{aligned}
$$

4. Let $R_{i} \subseteq X \times Y$ be a family of relations from X to Y, indexed by $i \in I$.
(a) If $R \subseteq W \times X$, then $R\left(\bigcup_{i \in I} R_{i}\right)=\bigcup_{i \in I} R R_{i}$;
(b) If $S \subseteq Y \times Z$, then $\left(\bigcup_{i \in I} R_{i}\right) S=\bigcup_{i \in I} R_{i} S$.

Proof. (a) By definition of composition of relations, $(w, y) \in R\left(\bigcup_{i \in I} R_{i}\right)$ is equivalent to that there exists an $x \in X$ such that $(w, x) \in R$ and $(x, y) \in \bigcup_{i \in I} R_{i}$. Notice that $(x, y) \in \bigcup_{i \in I} R_{i}$ is further equivalent to that there is an index $i_{0} \in I$ such that $(x, y) \in R_{i_{0}}$. Thus $(w, y) \in R\left(\bigcup_{i \in I} R_{i}\right)$ is equivalent to that there exists an $i_{0} \in I$ such that $(w, y) \in R R_{i}$, which means $(w, y) \in \bigcup_{i \in I} R R_{i}$ by definition of composition.
(b) $(x, z) \in\left(\bigcup_{i \in I} R_{i}\right) S \Leftrightarrow$ (by definition of composition) there exists $y \in Y$ such that $(x, y) \in \bigcup_{i \in I} R_{i}$ and $(y, z) \in S \Leftrightarrow$ (by definition of set union) there exists $i_{0} \in I$ such that $(x, y) \in R_{i_{0}}$ and $(y, z) \in S$ \Leftrightarrow there exists $i_{0} \in I$ such that $(w, y) \in R R_{i} \Leftrightarrow$ (by definition of composition) $(w, y) \in \bigcup_{i \in I} R R_{i}$.
5. Let $R_{i}(1 \leq i \leq 3)$ be relations on $A=\{a, b, c, d, e\}$ whose Boolean matrices are

$$
\begin{gathered}
M_{1}=\left[\begin{array}{lllll}
0 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right], M_{2}=\left[\begin{array}{lllll}
1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right], \\
M_{3}=\left[\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 \\
0 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 1
\end{array}\right] .
\end{gathered}
$$

(a) Draw the digraphs of the relations R_{1}, R_{2}, R_{3}.
(b) Find the Boolean matrices for the relations

$$
R_{1}^{-1}, \quad R_{2} \cup R_{3}, \quad R_{1} R_{1}, \quad R_{1} R_{1}^{-1}, \quad R_{1}^{-1} R_{1}
$$

and verify that

$$
R_{1} R_{1}^{-1}=R_{2}, \quad R_{1}^{-1} R_{1}=R_{3}
$$

(c) Verify that $R_{2} \cup R_{3}$ is an equivalence relation and find the quotient set $A /\left(R_{2} \cup R_{3}\right)$.

Solution:

$$
\begin{gathered}
M_{R_{1}^{-1}}=\left[\begin{array}{lllll}
0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0
\end{array}\right], M_{R_{2} \cup R_{3}}=\left[\begin{array}{lllll}
1 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 1 \\
0 & 1 & 1 & 0 & 1 \\
1 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 1
\end{array}\right], M_{R_{1}^{2}}=\left[\begin{array}{lllll}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right], \\
M_{R_{1} R_{1}^{-1}}=\left[\begin{array}{lllll}
1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]=M_{2}, M_{R_{1}^{-1} R_{1}}=\left[\begin{array}{lllll}
0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 \\
0 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 1
\end{array}\right]=M_{3} .
\end{gathered}
$$

6. Let R be a relation on \mathbb{Z} defined by $a R b$ if $a+b$ is an even integer.
(a) Show that R is an equivalence relation on \mathbb{Z}.
(b) Find all equivalence classes of the relation R.

Proof. (a) For each $a \in \mathbb{Z}, a+a=2 a$ is clearly even, so $a R a$, i.e., R is reflexive. If $a R b$, then $a+b$ is even, of course $b+a=a+b$ is even, so $b R a$, i.e., R is symmetric. If $a R b$ and $b R c$, then $a+b$ and $b+c$ are even; thus $a+c=(a+b)+(b+c)-2 b$ is even (sum of even numbers are even), so $a R c$, i.e., R is transitive. Therefore R is an equivalence relation.
(b) Note that $a R b$ if and only if both of a, b are odd or both are even. Thus there are exactly two equivalence classes: one class is the set of even integers, and the other class is the set of odd integers. The quotient set \mathbb{Z} / R is the set \mathbb{Z}_{2} of integers modulo 2 .
7. Let $X=\{1,2, \ldots, 10\}$ and let R be a relation on X such that $a R b$ if and only if $|a-b| \leq 2$. Determine whether R is an equivalence relation. Let M_{R} be the matrix of R. Compute M_{R}^{8}.
Solution: The following is the graph of the relation.

Then M_{R}^{5} is a Boolean matrix all whose entries are 1 . Thus M_{R}^{8} is the same as M_{R}^{5}.
8. A relation R on a set X is called a preference relation if R is reflexive and transitive. Show that $R \cap R^{-1}$ is an equivalence relation.

Proof. Since $I \subseteq R$, we have $I=I^{-1} \subseteq R^{-1}$, so $I \subseteq R \cap R^{-1}$, i.e., $R \cap R^{-1}$ is reflexive.
If $x\left(R \cap R^{-1}\right) y$, then $x R y$ and $x R^{-1} y$; by definition of converse, $y R^{-1} x$ and $y R x$; thus $y\left(R \cap R^{-1}\right) x$. This means that $R \cap R^{-1}$ is symmetric.
If $x\left(R \cap R^{-1}\right) y$ and $y\left(R \cap R^{-1}\right) z$, then $x R y, y R z$ and $y R x, z R y$ by converse; thus $x R z$ and $z R x$ by transitivity; therefore $x R z$ and $x R^{-1} z$ by converse again; finally we have $x\left(R \cap R^{-1}\right) z$. This means that $R \cap R^{-1}$ is transitive.
9. Let n be a positive integer. The congruence relation \sim of modulo n is an equivalence relation on \mathbb{Z}. Let \mathbb{Z}_{n} denote the quotient set $\mathbb{Z} / \sim=\{[0],[1], \ldots,[n-1]\}$. Given an integer $a \in \mathbb{Z}$, we define a function

$$
f_{a}: \mathbb{Z}_{n} \rightarrow \mathbb{Z}_{n} \quad \text { by } \quad f_{a}([x])=[a x]
$$

(a) Find the cardinality of the set $f_{a}\left(\mathbb{Z}_{n}\right)$.
(b) Find all integers a such that f_{a} is invertible.

Solution: (a) Let $d=\operatorname{gcd}(a, n), a=k d, n=l d$. Fix an integer $x \in \mathbb{Z}$, we write $x=q l+r$ by division algorithm, where $0 \leq r<l$. Then

$$
a x=k d(q l+r)=k d q l+k d r=k q n+a r \equiv a r(\bmod n) .
$$

For two integers r_{1}, r_{2} with $1 \leq r_{1}<r_{2}<l$, we claim $a r_{1} \neq a r_{2}(\bmod n)$. In fact, suppose $a r_{1}=$ $a r_{2}(\bmod n)$, then $n \mid a\left(r_{2}-r_{1}\right)$. It follows that $l \mid k\left(r_{2}-r_{1}\right)$, since $a=k d$ and $n=l d$. Note that $\operatorname{gcd}(k, l)=1$. It forces $l \mid\left(r_{2}-r_{1}\right)$. Thus $r_{1}=r_{2}$, which is a contradiction. Thus $\left|f_{a}\left(\mathbb{Z}_{n}\right)\right|=l=n / d$ and

$$
f_{a}\left(\mathbb{Z}_{n}\right)=\{[a r]: r \in \mathbb{Z}, 0 \leq r<l\} .
$$

(b) Since \mathbb{Z}_{n} is finite, then f_{a} is a bijection if and only if f_{a} is onto. However, f_{a} is onto if and only if $\left|f_{a}\left(\mathbb{Z}_{n}\right)\right|=n$, i.e., $\operatorname{gcd}(a, n)=1$.
10. For a positive integer n, let $\phi(n)$ denote the number of positive integers $a \leq n$ such that $\operatorname{gcd}(a, n)=1$, called Euler's function. Let R be the relation on $X=\{1,2, \ldots, n\}$ defined by $a R b$ if $a \leq b, b \mid n$, and $\operatorname{gcd}(a, b)=1$.
(a) Find the cardinality $\left|R^{-1}(b)\right|$ for each $b \in X$.
(b) Show that

$$
|R|=\sum_{a \mid n} \phi(a) .
$$

(c) Prove $|R|=n$ by showing that the function $f: R \rightarrow X$, defined by $f(a, b)=a n / b$, is a bijection.

Solution: (a) For each $b \in X$, if $b \nmid n$, then $R^{-1}(b)=\varnothing$. If $b \mid n$, we have

$$
\left|R^{-1}(b)\right|=|\{a \in X: a \leq b, \operatorname{gcd}(a, b)=1\}|=\phi(b)
$$

(b) It follows that

$$
|R|=\sum_{b \in X}\left|R^{-1}(b)\right|=\sum_{b \geq 1, b \mid n}\left|R^{-1}(b)\right|=\sum_{b \mid n} \phi(b) .
$$

(c) The function f is clearly well-defined. We first to show that f is injective. For $\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right) \in R$, if $f\left(a_{1}, b_{1}\right)=f\left(a_{2}, b_{2}\right)$, i.e., $a_{1} n / b_{1}=a_{2} n / b_{2}$, then $a_{1} / b_{1}=a_{2} / b_{2}$, which is a rational number in reduced form, since $\operatorname{gcd}\left(a_{1}, b_{1}\right)=1$ and $\operatorname{gcd}\left(a_{2}, b_{2}\right)=1$; it follows that $\left(a_{1}, b_{1}\right)=\left(a_{2}, b_{2}\right)$. Thus f is injective. To see that f is surjective, for each $b \in X$, let $d=\operatorname{gcd}(b, n)$. Then $f(b / n, n / b)=(b / d) n /(n / d)=b$. This means that f is surjective. So f is a bijection. We have obtained the following formula

$$
n=\sum_{b \mid n} \phi(b)
$$

