
Math2343: Problem Set 3

1. Let R be a binary relation from X to Y , A,B ⊆ X.

(a) If A ⊆ B, then R(A) ⊆ R(B).

(b) R(A ∪B) = R(A) ∪R(B).

(c) R(A ∩B) ⊆ R(A) ∩R(B).

Proof. (a) For each y ∈ R(A), there is an x ∈ A such that (x, y) ∈ R. Clearly, x ∈ B, since A ⊆ B.
Thus y ∈ R(B). This means that R(A) ⊆ R(B).

(b) Since R(A) ⊆ R(A∪B), R(B) ⊆ R(A∪B), we have R(A)∪R(B) ⊆ R(A∪B). On the other hand,
for each y ∈ R(A ∪B), there is an x ∈ A ∪B such that (x, y) ∈ R. Then either x ∈ A or x ∈ B. Thus
y ∈ R(A) or y ∈ R(B), i.e., y ∈ R(A) ∪R(B). Therefore R(A) ∪R(B) ⊇ R(A ∪B).

(c) It follows from (a) that R(A∩B) ⊆ R(A) and R(A∩B) ⊆ R(B). Hence R(A∩B) ⊆ R(A∩B).

2. Let R1 and R2 be relations from X to Y . If R1(x) = R2(x) for all x ∈ X, then R1 = R2.

Proof. For each (x, y) ∈ R1, we have y ∈ R1(x). Since R1(x) = R2(x), then y ∈ R2(x). Thus
(x, y) ∈ R2. Likewise, for each (x, y) ∈ R2, we have (x, y) ∈ R2. Hence R1 = R2.

3. Let a, b, c ∈ R. Then
a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c),

a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c).

Proof. Note that the cases b < c and b > c are equivalent. There are three essential cases to be verified.

Case 1: a < b < c. We have
a ∧ (b ∨ c) = a = (a ∧ b) ∨ (a ∧ c),

a ∨ (b ∧ c) = b = (a ∨ b) ∧ (a ∨ c).

Case 2: b < a < c. We have
a ∧ (b ∨ c) = a = (a ∧ b) ∨ (a ∧ c),

a ∨ (b ∧ c) = a = (a ∨ b) ∧ (a ∨ c).

Case 3: b < c < a. We have
a ∧ (b ∨ c) = c = (a ∧ b) ∨ (a ∧ c),

a ∨ (b ∧ c) = a = (a ∨ b) ∧ (a ∨ c).

4. Let Ri ⊆ X × Y be a family of relations from X to Y , indexed by i ∈ I.

(a) If R ⊆ W ×X, then R
(⋃

i∈I Ri

)
=

⋃
i∈I RRi;

(b) If S ⊆ Y × Z, then
(⋃

i∈I Ri

)
S =

⋃
i∈I RiS.

Proof. (a) By definition of composition of relations, (w, y) ∈ R
(⋃

i∈I Ri

)
is equivalent to that there

exists an x ∈ X such that (w, x) ∈ R and (x, y) ∈ ⋃
i∈I Ri. Notice that (x, y) ∈ ⋃

i∈I Ri is further
equivalent to that there is an index i0 ∈ I such that (x, y) ∈ Ri0 . Thus (w, y) ∈ R

(⋃
i∈I Ri

)
is

equivalent to that there exists an i0 ∈ I such that (w, y) ∈ RRi, which means (w, y) ∈ ⋃
i∈I RRi by

definition of composition.

(b) (x, z) ∈ (⋃
i∈I Ri

)
S ⇔ (by definition of composition) there exists y ∈ Y such that (x, y) ∈ ⋃

i∈I Ri

and (y, z) ∈ S ⇔ (by definition of set union) there exists i0 ∈ I such that (x, y) ∈ Ri0 and (y, z) ∈ S
⇔ there exists i0 ∈ I such that (w, y) ∈ RRi ⇔ (by definition of composition) (w, y) ∈ ⋃

i∈I RRi.
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5. Let Ri (1 ≤ i ≤ 3) be relations on A = {a, b, c, d, e} whose Boolean matrices are

M1 =




0 1 1 0 1
0 0 0 0 0
0 0 0 0 0
0 1 1 0 1
0 0 0 0 0




, M2 =




1 0 0 1 0
0 0 0 0 0
0 0 0 0 0
1 0 0 1 0
0 0 0 0 0




,

M3 =




0 0 0 0 0
0 1 1 0 1
0 1 1 0 1
0 0 0 0 0
0 1 1 0 1




.

(a) Draw the digraphs of the relations R1, R2, R3.

(b) Find the Boolean matrices for the relations

R−1
1 , R2 ∪R3, R1R1, R1R

−1
1 , R−1

1 R1;

and verify that
R1R

−1
1 = R2, R−1

1 R1 = R3.

(c) Verify that R2 ∪R3 is an equivalence relation and find the quotient set A/(R2 ∪R3).
Solution:

MR−1
1

=




0 0 0 0 0
1 0 0 1 0
1 0 0 1 0
0 0 0 0 0
1 0 0 1 0




, MR2∪R3 =




1 0 0 1 0
0 1 1 0 1
0 1 1 0 1
1 0 0 1 0
0 1 1 0 1




, MR2
1

=




0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0




,

MR1R−1
1

=




1 0 0 1 0
0 0 0 0 0
0 0 0 0 0
1 0 0 1 0
0 0 0 0 0




= M2, MR−1
1 R1

=




0 0 0 0 0
0 1 1 0 1
0 1 1 0 1
0 0 0 0 0
0 1 1 0 1




= M3.

6. Let R be a relation on Z defined by aRb if a + b is an even integer.

(a) Show that R is an equivalence relation on Z.

(b) Find all equivalence classes of the relation R.

Proof. (a) For each a ∈ Z, a + a = 2a is clearly even, so aRa, i.e., R is reflexive. If aRb, then a + b is
even, of course b + a = a + b is even, so bRa, i.e., R is symmetric. If aRb and bRc, then a + b and b + c
are even; thus a + c = (a + b) + (b + c)− 2b is even (sum of even numbers are even), so aRc, i.e., R is
transitive. Therefore R is an equivalence relation.

(b) Note that aRb if and only if both of a, b are odd or both are even. Thus there are exactly two
equivalence classes: one class is the set of even integers, and the other class is the set of odd integers.
The quotient set Z/R is the set Z2 of integers modulo 2.

7. Let X = {1, 2, . . . , 10} and let R be a relation on X such that aRb if and only if |a− b| ≤ 2. Determine
whether R is an equivalence relation. Let MR be the matrix of R. Compute M8

R.

Solution: The following is the graph of the relation.

101 2 3 4 5 6 7 8 9

Then M5
R is a Boolean matrix all whose entries are 1. Thus M8

R is the same as M5
R. ¤

8. A relation R on a set X is called a preference relation if R is reflexive and transitive. Show that
R ∩R−1 is an equivalence relation.
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Proof. Since I ⊆ R, we have I = I−1 ⊆ R−1, so I ⊆ R ∩R−1, i.e., R ∩R−1 is reflexive.

If x(R ∩ R−1)y, then xRy and xR−1y; by definition of converse, yR−1x and yRx; thus y(R ∩ R−1)x.
This means that R ∩R−1 is symmetric.

If x(R ∩ R−1)y and y(R ∩ R−1)z, then xRy, yRz and yRx, zRy by converse; thus xRz and zRx by
transitivity; therefore xRz and xR−1z by converse again; finally we have x(R ∩ R−1)z. This means
that R ∩R−1 is transitive.

9. Let n be a positive integer. The congruence relation ∼ of modulo n is an equivalence relation on Z. Let
Zn denote the quotient set Z/∼ = {[0], [1], . . . , [n− 1]}. Given an integer a ∈ Z, we define a function

fa : Zn → Zn by fa([x]) = [ax].

(a) Find the cardinality of the set fa(Zn).

(b) Find all integers a such that fa is invertible.

Solution: (a) Let d = gcd(a, n), a = kd, n = ld. Fix an integer x ∈ Z, we write x = ql + r by division
algorithm, where 0 ≤ r < l. Then

ax = kd(ql + r) = kdql + kdr = kqn + ar ≡ ar (mod n).

For two integers r1, r2 with 1 ≤ r1 < r2 < l, we claim ar1 6= ar2 (mod n). In fact, suppose ar1 =
ar2 (mod n), then n | a(r2 − r1). It follows that l | k(r2 − r1), since a = kd and n = ld. Note that
gcd(k, l) = 1. It forces l | (r2 − r1). Thus r1 = r2, which is a contradiction. Thus |fa(Zn)| = l = n/d
and

fa(Zn) = {[ar] : r ∈ Z, 0 ≤ r < l}.

(b) Since Zn is finite, then fa is a bijection if and only if fa is onto. However, fa is onto if and only if
|fa(Zn)| = n, i.e., gcd(a, n) = 1.

10. For a positive integer n, let φ(n) denote the number of positive integers a ≤ n such that gcd(a, n) = 1,
called Euler’s function. Let R be the relation on X = {1, 2, . . . , n} defined by aRb if a ≤ b, b | n,
and gcd(a, b) = 1.

(a) Find the cardinality |R−1(b)| for each b ∈ X.

(b) Show that
|R| =

∑

a|n
φ(a).

(c) Prove |R| = n by showing that the function f : R → X, defined by f(a, b) = an/b, is a bijection.

Solution: (a) For each b ∈ X, if b - n, then R−1(b) = ∅. If b | n, we have

|R−1(b)| = |{a ∈ X : a ≤ b, gcd(a, b) = 1}| = φ(b).

(b) It follows that
|R| =

∑

b∈X

|R−1(b)| =
∑

b≥1, b|n
|R−1(b)| =

∑

b|n
φ(b).

(c) The function f is clearly well-defined. We first to show that f is injective. For (a1, b1), (a2, b2) ∈ R,
if f(a1, b1) = f(a2, b2), i.e., a1n/b1 = a2n/b2, then a1/b1 = a2/b2, which is a rational number in reduced
form, since gcd(a1, b1) = 1 and gcd(a2, b2) = 1; it follows that (a1, b1) = (a2, b2). Thus f is injective.
To see that f is surjective, for each b ∈ X, let d = gcd(b, n). Then f(b/n, n/b) = (b/d)n/(n/d) = b.
This means that f is surjective. So f is a bijection. We have obtained the following formula

n =
∑

b|n
φ(b).
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