Math2343: Problem Set 4

(Deadline: 11 Nov. 2013)

1. Let R be a binary relation from X to $Y, A, B \subseteq X$.
(a) If $A \subseteq B$, then $R(A) \subseteq R(B)$.
(b) $R(A \cup B)=R(A) \cup R(B)$.
(c) $R(A \cap B) \subseteq R(A) \cap R(B)$.

Proof. (a) For any $y \in R(A)$, there is an $a \in A$ such that $(a, y) \in R$. Obviously, $a \in B$. Thus $b \in R(B)$.
(b) Since $R(A) \subseteq R(A \cup B), R(B) \subseteq R(A \cup B)$, we have $R(A) \cup R(B) \subseteq R(A \cup B)$. On the other hand, for any $y \in R(A \cup B)$, there is an $x \in A \cup B$ such that $(x, y) \in R$. Then either $x \in A$ or $x \in B$. Thus $y \in R(A)$ or $y \in R(B)$; i.e., $y \in R(A) \cap R(B)$. Therefore $R(A) \cup R(B) \supseteq R(A \cup B)$.
(c) It follows from (a) that

$$
R(A \cap B) \subseteq R(A) \quad \text { and } \quad R(A \cap B) \subseteq R(B)
$$

Hence $R(A \cap B) \subseteq R(A \cap B)$.
2. Let R_{1} and R_{2} be relations from X to Y. If $R_{1}(x)=R_{2}(x)$ for all $x \in X$, then $R_{1}=R_{2}$.

Proof. For any $(x, y) \in R_{1}$, we have $y \in R_{1}(x)$. Since $R_{1}(x)=R_{2}(x)$, then $y \in R_{2}(x)$. Thus $(x, y) \in R_{2}$. Similarly, for any $(x, y) \in R_{2}$, we have $(x, y) \in R_{2}$. Hence $R_{1}=R_{2}$.
3. Let $a, b, c \in \mathbb{R}$. Then

$$
\begin{aligned}
& a \wedge(b \vee c)=(a \wedge b) \vee(a \wedge c), \\
& a \vee(b \wedge c)=(a \vee b) \wedge(a \vee c)
\end{aligned}
$$

Proof. Note that the cases $b<c$ and $b>c$ are equivalent. There are three essential cases to be verified. Case 1: $a<b<c$. We have

$$
\begin{aligned}
& a \wedge(b \vee c)=a=(a \wedge b) \vee(a \wedge c), \\
& a \vee(b \wedge c)=b=(a \vee b) \wedge(a \vee c) .
\end{aligned}
$$

Case 2: $b<a<c$. We have

$$
\begin{aligned}
& a \wedge(b \vee c)=a=(a \wedge b) \vee(a \wedge c) \\
& a \vee(b \wedge c)=a=(a \vee b) \wedge(a \vee c)
\end{aligned}
$$

Case 3: $b<c<a$. We have

$$
\begin{aligned}
& a \wedge(b \vee c)=c=(a \wedge b) \vee(a \wedge c), \\
& a \vee(b \wedge c)=a=(a \vee b) \wedge(a \vee c)
\end{aligned}
$$

4. Let $R_{i} \subseteq X \times Y$ be a family of relations from X to $Y, i \in I$.
(a) If $R \subseteq W \times X$, then $R\left(\bigcup_{i \in I} R_{i}\right)=\bigcup_{i \in I} R R_{i}$;
(b) If $S \subseteq Y \times Z$, then $\left(\bigcup_{i \in I} R_{i}\right) S=\bigcup_{i \in I} R_{i} S$.

Proof. (a) Note that $(w, y) \in R\left(\bigcup_{i \in I} R_{i}\right) \Longleftrightarrow \exists x \in X$ s.t. $(w, x) \in R$ and $(x, y) \in \bigcup_{i \in I} R_{i}$; and $(x, y) \in \bigcup_{i \in I} R_{i} \Longleftrightarrow \exists i_{0} \in I$ s.t. $(x, y) \in R_{i}$. Then $(w, y) \in R\left(\bigcup_{i \in I} R_{i}\right) \Longleftrightarrow \exists i_{0} \in I$ s.t. $(w, y) \in R R_{i}$ $\Longleftrightarrow(w, y) \in \bigcup_{i \in I} R R_{i}$.
(b) Note that $(x, z) \in\left(\bigcup_{i \in I} R_{i}\right) S \Longleftrightarrow \exists y \in Y$ s.t. $(x, y) \in R$ and $(x, y) \in \bigcup_{i \in I} R_{i}$; and $(x, y) \in$ $\bigcup_{i \in I} R_{i} \Longleftrightarrow \exists i_{0} \in I$ s.t. $(x, y) \in R_{i}$. Then $(w, y) \in R\left(\bigcup_{i \in I} R_{i}\right) \Longleftrightarrow \exists i_{0} \in I$ s.t. $(w, y) \in R R_{i} \Longleftrightarrow$ $(w, y) \in \bigcup_{i \in I} R R_{i}$.
5. Let $R_{i}(1 \leq i \leq 3)$ be relations on $A=\{a, b, c, d, e\}$ whose Boolean matrices are

$$
\begin{gathered}
M_{1}=\left[\begin{array}{lllll}
0 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right], M_{2}=\left[\begin{array}{lllll}
1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right], \\
M_{3}=\left[\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 \\
0 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 1
\end{array}\right] .
\end{gathered}
$$

(a) Draw the digraphs of the relations R_{1}, R_{2}, R_{3}.
(b) Find the Boolean matrices for the relations

$$
R_{1}^{-1}, \quad R_{2} \cup R_{3}, \quad R_{1} R_{1}, \quad R_{1} R_{1}^{-1}, \quad R_{1}^{-1} R_{1}
$$

and verify that

$$
R_{1} R_{1}^{-1}=R_{2}, \quad R_{1}^{-1} R_{1}=R_{3} .
$$

(c) Verify that $R_{2} \cup R_{3}$ is an equivalence relation and find the quotient set $A /\left(R_{2} \cup R_{3}\right)$.

Solution:

$$
\begin{gathered}
M_{R_{1}^{-1}}=\left[\begin{array}{lllll}
0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0
\end{array}\right], M_{R_{2} \cup R_{3}}=\left[\begin{array}{ccccc}
1 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 1 \\
0 & 1 & 1 & 0 & 1 \\
1 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 1
\end{array}\right], M_{R_{1}^{2}}=\left[\begin{array}{lllll}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right], \\
M_{R_{1} R_{1}^{-1}}=\left[\begin{array}{lllll}
1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]=M_{2}, M_{R_{1}^{-1} R_{1}}=\left[\begin{array}{lllll}
0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 \\
0 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 1
\end{array}\right]=M_{3} .
\end{gathered}
$$

6. Let R be a relation on \mathbb{Z} defined by $x R y$ if $x+y$ is an even integer.
(a) Show that R is an equivalence relation on \mathbb{Z}.
(b) Find all equivalence classes of the relation R.

Proof. (a) Since $x+x=2 x$ is even for any x, then $x R x$, so R is reflexive. If $x R y$, then $x+y$ is even. Of course, $y+x$ is even, i.e., $y R x$. So R is symmetric. If $x R y$ and $y R z$, then $x+y$ and $y+z$ are even, so $x R z$. Thus R is reflexive. Therefore R is an equivalence relation.
(b) Note that $x R y$ if and only if x and y are both odd or both even. Thus there are only two equivalence classes: the set of even integers, and the set of odd integers.
7. Let $X=\{1,2, \ldots, 10\}$ and let R be a relation on X such that $a R b$ if and only if $|a-b| \leq 2$. Determine whether R is an equivalence relation. Let M_{R} be the matrix of R. Compute M_{R}^{8}.
Solution: The following is the graph of the relation.

Then M_{R}^{5} is a Boolean matrix all whose entries are 1 . Thus M_{R}^{8} is the same as M_{R}^{5}.
8. A relation R on a set X is called a preference relation if R is reflexive and transitive. Show that $R \cap R^{-1}$ is an equivalence relation.

Proof. Obviously, $R \cap R^{-1}$ is reflexive. If $x\left(R \cap R^{-1}\right) y$, then $x R y$ and $x R^{-1} y$, i.e., $y R^{-1} x$ and $y R x$. Hence $y\left(R \cap R^{-1}\right) x$. So $R \cap R^{-1}$ is symmetric. If $x\left(R \cap R^{-1}\right) y$ and $y\left(R \cap R^{-1}\right) z$, then $x R y, y R z, y R x$, $z R y$, thus $x R z$ and $z R x$, i.e., $x R z$ and $x R^{-1} z$. Therefore $x\left(R \cap R^{-1}\right) z$. So $R \cap R^{-1}$ is transitive.
9. Let n be a positive integer. The congruence relation \sim of modulo n is an equivalence relation on \mathbb{Z}. Let \mathbb{Z}_{n} denote the quotient set \mathbb{Z} / \sim. For any integer $a \in \mathbb{Z}$, we define a function

$$
f_{a}: \mathbb{Z}_{n} \longrightarrow \mathbb{Z}_{n}, \quad f_{a}([x])=[a x] .
$$

(a) Find the cardinality of the set $f_{a}\left(\mathbb{Z}_{n}\right)$.
(b) Find all integers a such that f_{a} is invertible.

Solution: (a) Let $d=\operatorname{gcd}(a, n), a=k d, n=l d$. Let $x=q l+r$. Then

$$
a x=k d(q l+r)=k d q l+k d r=k q n+a r \equiv a r(\bmod n) .
$$

For $1 \leq r_{1}<r_{2}<l$, we claim that $a r_{1} \not \equiv a r_{2}(\bmod n)$. In fact, if $a r_{1} \equiv a r_{2}(\bmod n)$, then $n \mid a\left(r_{2}-r_{1}\right)$ or equivalently $l \mid k\left(r_{2}-r_{1}\right)$. Since $\operatorname{gcd}(k, l)=1$, we have $l \mid\left(r_{2}-r_{1}\right)$. Thus $r_{1}=r_{2}$, a contradiction. Therefore

$$
f_{a}\left(\mathbb{Z}_{n}\right)=l=\frac{n}{\operatorname{gcd}(a, n)}
$$

(b) Since \mathbb{Z}_{n} is finite, then f_{a} is a bijection if and only if f_{a} is onto. However, f_{a} is onto if and only if $\left|f_{a}\left(\mathbb{Z}_{n}\right)\right|=n$, i.e., $\operatorname{gcd}(a, n)=1$.
10. For a positive integer n, let $\phi(n)$ be the number of positive integers $x \leq n$ such that $\operatorname{gcd}(x, n)=1$, called Euler's function. Let R be the relation on $X=\{1,2, \ldots, n\}$ defined by

$$
x R y \Longleftrightarrow x \leq y, y \mid n, \operatorname{gcd}(x, y)=1
$$

(a) Find the cardinality $\left|R^{-1}(y)\right|$ for each $y \in X$.
(b) Show that

$$
|R|=\sum_{x \mid n} \phi(x)
$$

(c) Prove $|R|=n$ by showing that the function $f: R \longrightarrow X$, defined by $f(x, y)=\frac{x n}{y}$, is a bijection.

Solution: (a) For each $y \in X$ and $y \mid n$, we have

$$
\left|R^{-1}(y)\right|=|\{x \in X \mid x \leq y, \operatorname{gcd}(x, y)=1\}|=\phi(y)
$$

(b) It follows obviously that

$$
|R|=\sum_{y \in X}\left|R^{-1}(y)\right|=\sum_{y \geq 1, y \mid n}\left|R^{-1}(y)\right|=\sum_{y \mid n} \phi(y) .
$$

(c) It is clear that the function f is well-defined. For $x_{1} R y_{1}$ and $x_{2} R y_{2}$, if $\frac{x_{1} n}{y_{1}}=\frac{x_{2} n}{y_{2}}$, i.e., $\frac{x_{1}}{y_{1}}=\frac{x_{2}}{y_{2}}$, then $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ are integral proportional, say, $\left(x_{2}, y_{2}\right)=c\left(x_{1}, y_{1}\right)$. Since $\operatorname{gcd}\left(x_{1}, y_{1}\right)=$ $\operatorname{gcd}\left(x_{2}, y_{2}\right)=1$, then $c=1$. We thus have $\left(x_{2}, y_{2}\right)=\left(x_{1}, y_{1}\right)$.
On the other hand, for any $z \in X$, let $d=\operatorname{gcd}(z, n)$. Then

$$
f\left(\frac{z}{d}, \frac{n}{d}\right)=\frac{(z / d) \cdot n}{n / d}=z .
$$

This means that f is surjective. Thus f is a bijection.
11. Let X be a set of n elements. Show that the number of equivalence relations on X is

$$
\sum_{k=0}^{n}(-1)^{k} \sum_{l=k}^{n} \frac{(l-k)^{n}}{k!(l-k)!}
$$

(Hint: Each equivalence relation corresponds to a partition. Counting number of equivalence relations is the same as counting number of partitions.)
Proof. Note that partitions of X with k parts are in one-to-one correspondent with surjective functions from X to $\{1,2, \ldots, k\}$. By the inclusion-exclusion principle, the number of such surjective functions is

$$
\sum_{i=0}^{k}(-1)^{i}\binom{k}{i}(k-i)^{n}
$$

Thus the answer is given by

$$
\sum_{k=1}^{n} k!\sum_{i=0}^{k}(-1)^{i}\binom{k}{i}(k-i)^{n}=\sum_{i=0}^{n}(-1)^{i} \sum_{k=i}^{n} \frac{(k-i)^{n}}{i!(k-i)!}
$$

(Note that for $k=0$, the sum $\sum_{i=0}^{k}(-1)^{i}\binom{k}{i}(k-i)^{n}=0$.)

