Math2343: Problem Set 4

(Deadline: 11 Nov. 2013)

- 1. Let R be a binary relation from X to Y, $A, B \subseteq X$.
 - (a) If $A \subseteq B$, then $R(A) \subseteq R(B)$.
 - (b) $R(A \cup B) = R(A) \cup R(B)$.
 - (c) $R(A \cap B) \subseteq R(A) \cap R(B)$.

Proof. (a) For any $y \in R(A)$, there is an $a \in A$ such that $(a, y) \in R$. Obviously, $a \in B$. Thus $b \in R(B)$. (b) Since $R(A) \subseteq R(A \cup B)$, $R(B) \subseteq R(A \cup B)$, we have $R(A) \cup R(B) \subseteq R(A \cup B)$. On the other hand, for any $y \in R(A \cup B)$, there is an $x \in A \cup B$ such that $(x, y) \in R$. Then either $x \in A$ or $x \in B$. Thus $y \in R(A)$ or $y \in R(B)$; i.e., $y \in R(A) \cap R(B)$. Therefore $R(A) \cup R(B) \supseteq R(A \cup B)$. (c) It follows from (a) that

$$R(A\cap B)\subseteq R(A) \ \, \text{and} \ \ R(A\cap B)\subseteq R(B).$$

Hence $R(A \cap B) \subseteq R(A \cap B)$.

2. Let R_1 and R_2 be relations from X to Y. If $R_1(x) = R_2(x)$ for all $x \in X$, then $R_1 = R_2$.

Proof. For any $(x, y) \in R_1$, we have $y \in R_1(x)$. Since $R_1(x) = R_2(x)$, then $y \in R_2(x)$. Thus $(x, y) \in R_2$. Similarly, for any $(x, y) \in R_2$, we have $(x, y) \in R_2$. Hence $R_1 = R_2$.

3. Let $a, b, c \in \mathbb{R}$. Then

$$a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c),$$

$$a \vee (b \wedge c) = (a \vee b) \wedge (a \vee c).$$

Proof. Note that the cases b < c and b > c are equivalent. There are three essential cases to be verified. Case 1: a < b < c. We have

$$\begin{aligned} a \wedge (b \lor c) &= a = (a \land b) \lor (a \land c), \\ a \lor (b \land c) &= b = (a \lor b) \land (a \lor c). \end{aligned}$$
$$\begin{aligned} a \wedge (b \lor c) &= a = (a \land b) \lor (a \land c), \\ a \lor (b \land c) &= a = (a \lor b) \land (a \lor c). \end{aligned}$$
$$\begin{aligned} a \wedge (b \lor c) &= c = (a \land b) \lor (a \land c), \end{aligned}$$

Case 3: b < c < a. We have

Case 2: b < a < c. We have

$$a \wedge (b \vee c) = c = (a \wedge b) \vee (a \wedge c),$$
$$a \vee (b \wedge c) = a = (a \vee b) \wedge (a \vee c).$$

- 4. Let $R_i \subseteq X \times Y$ be a family of relations from X to Y, $i \in I$.
 - (a) If $R \subseteq W \times X$, then $R\left(\bigcup_{i \in I} R_i\right) = \bigcup_{i \in I} RR_i$;
 - (b) If $S \subseteq Y \times Z$, then $\left(\bigcup_{i \in I} R_i\right) S = \bigcup_{i \in I} R_i S$.

Proof. (a) Note that $(w, y) \in R\left(\bigcup_{i \in I} R_i\right) \iff \exists x \in X \text{ s.t. } (w, x) \in R \text{ and } (x, y) \in \bigcup_{i \in I} R_i; \text{ and } (x, y) \in \bigcup_{i \in I} R_i \iff \exists i_0 \in I \text{ s.t. } (x, y) \in R_i.$ Then $(w, y) \in R\left(\bigcup_{i \in I} R_i\right) \iff \exists i_0 \in I \text{ s.t. } (w, y) \in RR_i \iff (w, y) \in \bigcup_{i \in I} RR_i.$

(b) Note that $(x, z) \in \left(\bigcup_{i \in I} R_i\right) S \iff \exists y \in Y \text{ s.t. } (x, y) \in R \text{ and } (x, y) \in \bigcup_{i \in I} R_i; \text{ and } (x, y) \in \bigcup_{i \in I} R_i \iff \exists i_0 \in I \text{ s.t. } (x, y) \in R_i.$ Then $(w, y) \in R\left(\bigcup_{i \in I} R_i\right) \iff \exists i_0 \in I \text{ s.t. } (w, y) \in RR_i \iff (w, y) \in \bigcup_{i \in I} RR_i.$

5. Let R_i $(1 \le i \le 3)$ be relations on $A = \{a, b, c, d, e\}$ whose Boolean matrices are

$$M_{1} = \begin{bmatrix} 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}, M_{2} = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix},$$
$$M_{3} = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 \end{bmatrix}.$$

- (a) Draw the digraphs of the relations R_1, R_2, R_3 .
- (b) Find the Boolean matrices for the relations

$$R_1^{-1}$$
, $R_2 \cup R_3$, $R_1 R_1$, $R_1 R_1^{-1}$, $R_1^{-1} R_1$;

and verify that

$$R_1 R_1^{-1} = R_2, \quad R_1^{-1} R_1 = R_3.$$

(c) Verify that $R_2 \cup R_3$ is an equivalence relation and find the quotient set $A/(R_2 \cup R_3)$. Solution:

- 6. Let R be a relation on \mathbb{Z} defined by xRy if x + y is an even integer.
 - (a) Show that R is an equivalence relation on \mathbb{Z} .
 - (b) Find all equivalence classes of the relation R.

Proof. (a) Since x + x = 2x is even for any x, then xRx, so R is reflexive. If xRy, then x + y is even. Of course, y + x is even, i.e., yRx. So R is symmetric. If xRy and yRz, then x + y and y + z are even, so xRz. Thus R is reflexive. Therefore R is an equivalence relation.

(b) Note that xRy if and only if x and y are both odd or both even. Thus there are only two equivalence classes: the set of even integers, and the set of odd integers.

7. Let $X = \{1, 2, ..., 10\}$ and let R be a relation on X such that aRb if and only if $|a - b| \le 2$. Determine whether R is an equivalence relation. Let M_R be the matrix of R. Compute M_R^8 .

Solution: The following is the graph of the relation.



Then M_R^5 is a Boolean matrix all whose entries are 1. Thus M_R^8 is the same as M_R^5 .

8. A relation R on a set X is called a **preference relation** if R is reflexive and transitive. Show that $R \cap R^{-1}$ is an equivalence relation.

Proof. Obviously, $R \cap R^{-1}$ is reflexive. If $x(R \cap R^{-1})y$, then xRy and $xR^{-1}y$, i.e., $yR^{-1}x$ and yRx. Hence $y(R \cap R^{-1})x$. So $R \cap R^{-1}$ is symmetric. If $x(R \cap R^{-1})y$ and $y(R \cap R^{-1})z$, then xRy, yRz, yRx, zRy, thus xRz and zRx, i.e., xRz and $xR^{-1}z$. Therefore $x(R \cap R^{-1})z$. So $R \cap R^{-1}$ is transitive. \Box 9. Let n be a positive integer. The congruence relation ~ of modulo n is an equivalence relation on \mathbb{Z} . Let \mathbb{Z}_n denote the quotient set \mathbb{Z}/\sim . For any integer $a \in \mathbb{Z}$, we define a function

$$f_a: \mathbb{Z}_n \longrightarrow \mathbb{Z}_n, \quad f_a([x]) = [ax].$$

- (a) Find the cardinality of the set $f_a(\mathbb{Z}_n)$.
- (b) Find all integers a such that f_a is invertible.

Solution: (a) Let $d = \gcd(a, n)$, a = kd, n = ld. Let x = ql + r. Then

$$ax = kd(ql + r) = kdql + kdr = kqn + ar \equiv ar \pmod{n}.$$

For $1 \le r_1 < r_2 < l$, we claim that $ar_1 \not\equiv ar_2 \pmod{n}$. In fact, if $ar_1 \equiv ar_2 \pmod{n}$, then $n|a(r_2-r_1)$ or equivalently $l|k(r_2-r_1)$. Since gcd(k,l) = 1, we have $l|(r_2-r_1)$. Thus $r_1 = r_2$, a contradiction. Therefore

$$f_a(\mathbb{Z}_n) = l = \frac{n}{\gcd(a,n)}$$

(b) Since \mathbb{Z}_n is finite, then f_a is a bijection if and only if f_a is onto. However, f_a is onto if and only if $|f_a(\mathbb{Z}_n)| = n$, i.e., gcd(a, n) = 1.

10. For a positive integer n, let $\phi(n)$ be the number of positive integers $x \leq n$ such that gcd(x,n) = 1, called **Euler's function**. Let R be the relation on $X = \{1, 2, ..., n\}$ defined by

$$xRy \iff x \le y, \ y|n, \ \gcd(x,y) = 1.$$

(a) Find the cardinality $|R^{-1}(y)|$ for each $y \in X$.

(b) Show that

$$|R| = \sum_{x|n} \phi(x).$$

(c) Prove |R| = n by showing that the function $f: R \longrightarrow X$, defined by $f(x, y) = \frac{xn}{y}$, is a bijection.

Solution: (a) For each $y \in X$ and y|n, we have

$$|R^{-1}(y)| = |\{x \in X \mid x \le y, \gcd(x, y) = 1\}| = \phi(y).$$

(b) It follows obviously that

$$|R| = \sum_{y \in X} |R^{-1}(y)| = \sum_{y \ge 1, \ y|n} |R^{-1}(y)| = \sum_{y|n} \phi(y)$$

(c) It is clear that the function f is well-defined. For x_1Ry_1 and x_2Ry_2 , if $\frac{x_1n}{y_1} = \frac{x_2n}{y_2}$, i.e., $\frac{x_1}{y_1} = \frac{x_2}{y_2}$, then (x_1, y_1) and (x_2, y_2) are integral proportional, say, $(x_2, y_2) = c(x_1, y_1)$. Since $gcd(x_1, y_1) = gcd(x_2, y_2) = 1$, then c = 1. We thus have $(x_2, y_2) = (x_1, y_1)$.

On the other hand, for any $z \in X$, let d = gcd(z, n). Then

$$f\left(\frac{z}{d},\frac{n}{d}\right) = \frac{(z/d) \cdot n}{n/d} = z.$$

This means that f is surjective. Thus f is a bijection.

11. Let X be a set of n elements. Show that the number of equivalence relations on X is

$$\sum_{k=0}^{n} (-1)^k \sum_{l=k}^{n} \frac{(l-k)^n}{k!(l-k)!}.$$

(Hint: Each equivalence relation corresponds to a partition. Counting number of equivalence relations is the same as counting number of partitions.)

Proof. Note that partitions of X with k parts are in one-to-one correspondent with surjective functions from X to $\{1, 2, \ldots, k\}$. By the inclusion-exclusion principle, the number of such surjective functions is

$$\sum_{i=0}^{k} (-1)^i \binom{k}{i} (k-i)^n$$

Thus the answer is given by

$$\sum_{k=1}^{n} k! \sum_{i=0}^{k} (-1)^{i} \binom{k}{i} (k-i)^{n} = \sum_{i=0}^{n} (-1)^{i} \sum_{k=i}^{n} \frac{(k-i)^{n}}{i!(k-i)!}.$$

(Note that for k = 0, the sum $\sum_{i=0}^{k} (-1)^{i} {k \choose i} (k-i)^{n} = 0.$)