Congruence of Integers

October 10, 2019

Week 11-12

1 Congruence of Integers

Definition 1. Let n be a positive integer. For integers a and b, if n divides $b-a$, we say that a is congruent to $b \operatorname{modulo} n$, written $a \equiv b \bmod n$.

Every integer is congruent to exactly one of the following integers modulo n :

$$
0,1,2, \ldots, n-1
$$

Proposition 2 (Equivalence Relation). Let n be a positive integer. For integers $a, b, c \in \mathbb{Z}$, we have
(1) $a \equiv a \bmod n$;
(2) If $a \equiv b \bmod n$, then $b \equiv a \bmod n$.
(2) If $a \equiv b \bmod n a n d b \equiv c \bmod n$, then $a \equiv c \bmod n$.

Proof. Trivial.
Proposition 3. Let $a \equiv b \bmod n$ and $c \equiv d \bmod n$. Then
(1) $a+c \equiv b+d \bmod n$;
(2) $a c \equiv b d \bmod n$;
(3) $a^{k} \equiv b^{k} \bmod n$ for any positive integer k.

Proof. Trivial
Proposition 4. Let a, b, c be integers, $a \neq 0$, and n be a positive integer.
(1) If $a \mid n$, then $a b \equiv a c \bmod n i f f b \equiv c \bmod \frac{n}{a}$.
(2) If $\operatorname{gcd}(a, n)=1$, then $a b \equiv a c \bmod n i f f b \equiv c \bmod n$.
(3) If p is a prime and $p \nmid a$, then $a b \equiv a c \bmod p i f f b \equiv c \bmod p$.

Proof. (1) $a b \equiv a c \bmod n \Leftrightarrow a b=a c+k n$ for some $k \in \mathbb{Z} \Leftrightarrow b=c+k \cdot \frac{n}{a}$ for some $k \in \mathbb{Z} \Leftrightarrow b \equiv c \bmod \frac{n}{a}$.
(2) If $a b \equiv a c \bmod n$. Then n divides $a b-a c=a(b-c)$ by definition. Since $\operatorname{gcd}(a, n)=1$, we have $n \mid(b-c)$. Hence $b \equiv c \bmod n$.
(3) In particular, when p is a prime and $p \nmid a$, then $\operatorname{gcd}(a, p)=1$.

2 Congruence Equation

Let n be a positive integer and let $a, b \in \mathbb{Z}$. The equation

$$
\begin{equation*}
a x \equiv b \bmod n \tag{1}
\end{equation*}
$$

is called a linear congruence equation. Solving the linear congruence equation (1) is meant to find all integers $x \in \mathbb{Z}$ such that $n \mid(a x-b)$.

Proposition 5. Let $d=\operatorname{gcd}(a, n)$. The linear congruence equation (1) has a solution if and only if $d \mid b$.

Proof. Assume that (1) has a solution, i.e., there exists an integer k such that $a x-b=k n$. Then $b=a x-k n$ is a multiple of d. So $d \mid b$.

Conversely, if $d \mid b$, we write $b=d c$ for some $c \in \mathbb{Z}$. By the Euclidean Algorithm, there exist $s, t \in \mathbb{Z}$ such that $d=a s+n t$. Multiplying $c(=b / d)$ to both sides, we have

$$
a c s+n c t=d c=b
$$

Hence $x=c s=b s / d$ is a solution of (1).
Let $x=s_{1}$ and $x=s_{2}$ be two solutions of (1). It is clear that $x=s_{1}-s_{2}$ is a solution of the equation

$$
\begin{equation*}
a x \equiv 0 \bmod n \tag{2}
\end{equation*}
$$

So any solution of (1) can be expressed as a particular solution of (1) plus a solution of (2). Note that (2) is equivalent to $\frac{a}{d} x \equiv 0 \bmod \frac{n}{d} ;$ since $\operatorname{gcd}\left(\frac{a}{d}, \frac{n}{d}\right)=$ 1 , it is further equivalent to $x \equiv 0 \bmod \frac{n}{d}$. Thus all solutions of (2) are given by

$$
x=\frac{n}{d} k, \quad k \in \mathbb{Z}
$$

Hence all solutions of (1) are given by

$$
x=\frac{b}{d} s+\frac{n}{d} k, \quad k \in \mathbb{Z}, \quad \text { where } \quad d=\operatorname{gcd}(a, n) .
$$

Corollary 6. If d is a common factor of a, b, n, then the linear congruence equation (1) is equivalent to

$$
\begin{equation*}
\frac{a}{d} x \equiv \frac{b}{d} \bmod \frac{n}{d} . \tag{3}
\end{equation*}
$$

Proof. Given a solution $x=s$ of (1). Then $a s=b+k n$ for some $k \in \mathbb{Z}$. Clearly, $\frac{a}{d} s=\frac{b}{d}+\frac{n}{d} k$. This means that $x=s$ is a solution of (3). Conversely, given a solution $x=s$ of (3), that is, $\frac{a}{d} s=\frac{b}{d}+\frac{n}{d} k$ for some $k \in \mathbb{Z}$. Multiplying d to both sides, we have $a s=b+n k$. This means that $x=s$ is a solution of (1).

Example 1. $3 x=6 \bmod 4$.
Since $\operatorname{gcd}(3,4)=1=4-3$, then all solutions are given by $x=-6+4 k$, where $k \in \mathbb{Z}$, or

$$
x=2+4 k, \quad k \in \mathbb{Z} .
$$

Example 2.

$$
6 x \equiv 9 \bmod 15 \Leftrightarrow \frac{6}{3} x \equiv \frac{9}{3} \bmod \frac{15}{3} \Leftrightarrow 2 x \equiv 3 \bmod 5 .
$$

3 The System \mathbb{Z}_{n}

Let $\mathbb{Z}_{n}=\{0,1,2, \ldots, n-1\}$ with $n \geq 2$. For $a, b \in \mathbb{Z}_{n}$, we define

$$
a \oplus b=s
$$

if $a+b \equiv s$ with $s \in \mathbb{Z}_{n}$, and define

$$
a \odot b=t
$$

if $a b \equiv t$ with $t \in \mathbb{Z}_{n}$.
Proposition 7. (1) $a \oplus b=b \oplus a$,
(2) $(a \oplus b) \oplus c=a \oplus(b \oplus c)$,
(3) $a \odot b=b \odot a$,
(4) $(a \odot b) \odot c=a \odot(b \odot c)$,
(5) $a \odot(b \oplus c)=(a \odot b) \oplus(a \odot c)$,
(6) $0 \oplus a=a$,
(7) $1 \odot a=a$.
(8) $0 \odot a=0$.

An element $a \in \mathbb{Z}_{n}$ is said to be invertible if there is an element $b \in \mathbb{Z}_{n}$ such that $a \odot b=1$; if so the element b is called an inverse of a in \mathbb{Z}_{n}. If $n \geq 2$, the element $n-1$ is always invertible and its inverse is itself.

Proposition 8. Let n be a positive integer. Then an element $a \in \mathbb{Z}_{n}$ is invertible iff $\operatorname{gcd}(a, n)=1$.
Proof. Necessity: Let $b \in \mathbb{Z}_{n}$ be an inverse of a. Then $a b \equiv 1 \bmod n$, that is, $a b+k n=1$ for some $k \in \mathbb{Z}$. Clearly, $\operatorname{gcd}(a, n)$ divides $a b+k n$, and subsequently divides 1 . It then forces $\operatorname{gcd}(a, n)=1$.

Sufficiency: Since $\operatorname{gcd}(a, n)=1$, there exist integers $s, t \in \mathbb{Z}$ such that $1=a s+n t$ by the Euclidean Algorithm. Thus $a s \equiv 1 \bmod n$. This means that s is an inverse of a.

4 Fermat's Little Theorem

Theorem 9. Let p be a prime number. If a is an integer not divisible by p, then

$$
a^{p-1} \equiv 1 \bmod p .
$$

Proof. Consider the numbers $a, 2 a, \ldots,(p-1) a$ modulo p in $\mathbb{Z}_{p}=\{0,1, \ldots, p-$ 1\}. These integers modulo p are distinct, for if $x a \equiv y a \bmod p$ for some $x, y \in \mathbb{Z}_{p}$, then $x \equiv y \bmod p$, so $x=y$, and since $1,2, \ldots, p-1$ are distinct. Thus these integers modulo p are just the list $1,2, \ldots, p-1$. Multiplying these $p-1$ integers together, we have

$$
a^{p-1} \cdot(p-1)!\equiv(p-1)!\bmod p .
$$

Since $(p-1)$! and p are coprime each other, we thus have

$$
a^{p-1} \equiv 1 \bmod p .
$$

Proposition 10 (Generalized Fermat's Little Theorem). Let p, q be distinct prime numbers. If a is an integer such that $p \nmid a$ and $q \nmid a$, then

$$
a^{(p-1)(q-1)} \equiv 1 \bmod p q .
$$

Proof. By Fermat's Little Theorem we have $a^{p-1} \equiv 1 \bmod p$. Raising both sides to the $(q-1)$ th power, we have

$$
a^{(p-1)(q-1)} \equiv 1 \bmod p .
$$

This means that $p \mid\left(a^{(p-1)(q-1)}-1\right)$. Analogously, $q \mid\left(a^{(p-1)(q-1)}-1\right)$. Since p and q are coprime each other, we then have $p q \mid\left(a^{(p-1)(q-1)}-1\right)$, namely, $a^{(p-1)(q-1)} \equiv 1 \bmod p q$.

5 Roots of Unity Modulo n

Proposition 11. Let p be a prime. Let k be a positive integer coprime to $p-1$. Then
(a) There exists a positive integer s such that $s k \equiv 1 \bmod p-1$.
(b) For each $b \in \mathbb{Z}$ such that $p \nmid b$, the congruence equation

$$
x^{k} \equiv b \bmod p
$$

has a unique solution $x=b^{s}$, where s is as in (a), i.e., the inverse of k modulo $p-1$.

Proof. (a) By the Euclidean Algorithm there exist integers $s, t \in \mathbb{Z}$ such that $s k-t(p-1)=1$. Hence $s k \equiv 1 \bmod p-1$.
(b) Suppose that x is a solution to $x^{k} \equiv b \bmod p$. Since p does not divide b, it does not divide x; i.e., $\operatorname{gcd}(x, p)=1$. By Fermat's Little Theorem we have $x^{p-1} \equiv 1 \bmod p$. Then $x^{t(p-1)} \equiv 1 \bmod p$. Thus

$$
x \equiv x^{1+t(p-1)} \equiv x^{s k} \equiv\left(x^{k}\right)^{s} \equiv b^{s} \bmod p .
$$

Indeed, $x=b^{s}$ is a solution as

$$
\left(b^{s}\right)^{k} \equiv b^{s k} \equiv b^{1+t(p-1)} \equiv b \cdot\left(b^{p-1}\right)^{t} \equiv b \bmod p .
$$

Proposition 12. Let p, q be distinct primes. Let k be a positive integer coprime to both $p-1$ and $q-1$. Then the following statements are valid.
(a) There exists a positive integer such that $s k \equiv 1 \bmod (p-1)(q-1)$.
(b) For each $b \in \mathbb{Z}$ such that $p \nmid b$ and $q \nmid b$, the congruence equation

$$
x^{k} \equiv b \bmod p q
$$

has a unique solution $x=b^{s}$, where s is as in (a).
Proof. (a) It follows from the Euclidean Algorithm. In fact, there exists $s, t \in \mathbb{Z}$ such that $s k-t(p-1)(q-1)=1$. Then $s k \equiv 1 \bmod (p-1)(q-1)$.
(b) Suppose x is a solution for $x^{k} \equiv b \bmod p q$. Since $p \nmid b$ and $q \nmid b$, we have $p \nmid x$ and $q \nmid x$. By the Generalized Fermat's Little Theorem, we have $x^{(p-1)(q-1)} \equiv 1 \bmod p q$. Then $x^{t(p-1)(q-1)} \equiv 1 \bmod p q$. Hence

$$
x \equiv x^{1+t(p-1)(q-1)} \equiv x^{s k} \equiv\left(x^{k}\right)^{s} \equiv b^{s} \bmod p q .
$$

Indeed $x=b^{s}$ is a solution,

$$
\left(b^{s}\right)^{k} \equiv b^{s k} \equiv b^{1+t(p-1)(q-1)} \equiv b \cdot b^{t(p-1)(q-1)} \equiv b \bmod p q .
$$

Proposition 13. Let p be a prime. If a is an integer such that $a^{2} \equiv 1 \bmod p$, then either $a \equiv 1 \bmod p$ or $a \equiv-1 \bmod p$.
Proof. Since $a^{2} \equiv 1 \bmod p$, then $p \mid\left(a^{2}-1\right)$, i.e., $p \mid(a-1)(a+1)$. Hence we have either $p \mid(a-1)$ or $p \mid(a+1)$. In other words, we have either $a \equiv 1 \bmod p$ or $a \equiv-1 \bmod p$.

6 RSA Cryptography System

Definition 14. An RSA public key cryptography system is a tuple (S, N, e, d, E, D), where $S=\{0,1,2, \ldots, N-1\}, N=p q, p$ and q are distinct primes numbers, e and d are positive integers such that $e d \equiv 1 \bmod (p-$ 1) $(q-1)$, and $E, D: S \rightarrow S$ are functions defined by $E(x)=x^{e} \bmod N$ and $D(x)=x^{d} \bmod N$. The number e is known as the encryption number and d as the decryption number, the maps E and D are known as the encryption map and the decryption map. The pair (N, e) is called the public key of the system. RSA stands for three math guys, Ron Rivest, Adi Shamir and Leonard Adleman.

Theorem 15. For any $R S A$ cryptography $\operatorname{system}(S, N, e, d, E, D)$, the maps E and D are inverse each other, i.e., for all $x \in S$,

$$
D(E(x)) \equiv x \bmod N, \quad E(D(x)) \equiv x \bmod N .
$$

The two numbers N, e are given in public.
Proof. CASE 1: $x=0$. It is trivial that $x^{e d} \equiv x \bmod N$.
Case 2: $\operatorname{gcd}(x, N)=1$. Since $e d \equiv 1 \bmod (p-1)(q-1)$, then $e d=$ $1+k(p-1)(q-1)$ for some $k \in \mathbb{Z}$. Thus

$$
x^{e d}=x^{1+k(p-1)(q-1)}=x\left(x^{(p-1)(q-1)}\right)^{k}
$$

Since $x^{(p-1)(q-1)} \equiv 1 \bmod N$, we have

$$
x^{e d} \equiv x \bmod N
$$

CASE 3: $\operatorname{gcd}(x, N) \neq 1$. Since $N=p q$, we either have $x=a p$ for some $1 \leq a<q$ or $x=b q$ for some $1 \leq b<p$. In the formal case, we have

$$
x^{e d}=(a p)^{1+k(p-1)(q-1)}=\left((a p)^{q-1}\right)^{k(p-1)}(a p)
$$

Note that $q \nmid a p$, by Fermat's Little Theorem, $(a p)^{q-1} \equiv 1 \bmod q$. Thus $(a p)^{q-1} \equiv 1 \bmod q$. Hence $x^{e d} \equiv a p \equiv x \bmod q$. Note that $x^{e d} \equiv(a p)^{e d} \equiv$ $0 \equiv x \bmod p$. Therefore $p \mid\left(x^{e d}-x\right)$ and $q \mid\left(x^{e d}-x\right)$. Since $\operatorname{gcd}(p, q)=1$, we have $p q \mid\left(x^{e d}-x\right)$, i.e., $x^{e d} \equiv x \bmod N$.

Example 3. Let $p=3$ and $q=5$. Then $N=3 \cdot 5=15,(p-1)(q-1)=$ $2 \cdot 4=8$. The encryption key e can be selected to be the numbers $1,3,5,7$; Their corresponding decryption keys are also $1,3,5,7$, respectively.
$(e, d)=(3,11),(5,5),(7,7),(9,1),(11,3),(13,5)$, and $(15,7)$ are encryptiondecryption pairs. For instance, for $(e, d)=(11,3)$, we have

x	1	2	3	4	5	6	7	8	9	10	11	12	13	14
$E(x)$	1	8	12	4	5	6	13	2	9	10	11	3	7	14

In fact, in this special case the inverse of E is itself, i.e., $D=E^{-1}=E$. This example is too special.

Example 4. Let $p=11, q=13$. Then $N=p q=143,(p-1)(q-1)=120$. Then there are RSA systems with $(e, d)=(7,103) ;(e, d)=(11,11)$; and $(e, d)=(13,37)$. For the RSA system with $(e, d)=(13,37)$, we have

$$
E(2)=2^{13} \equiv 41 \bmod 143
$$

$\left(2^{2}=4,2^{4}=16,2^{8}=16^{2} \equiv 113,2^{13}=2^{8} \cdot 2^{4} \cdot 2 \equiv 113 \cdot 16 \cdot 2 \equiv 41\right) ;$ and

$$
D(41)=41^{37} \equiv 2 \bmod 143
$$

$\left(41^{2} \equiv 108,41^{4} \equiv 108^{2} \equiv 81,41^{8} \equiv 81^{2} \equiv-17,41^{16} \equiv 17^{2} \equiv 3,41^{32} \equiv 9\right.$, $\left.41^{37}=41^{32} \cdot 41^{4} \cdot 41 \equiv 2\right)$. Note that $E(41) \equiv 41^{8} \cdot 41^{4} \cdot 41 \equiv 28$, we see that $E \neq D$.

Example 5. Let $p=19$ and $q=17$. Then $N=19 \cdot 17=323,(p-1)(q-1)=$ $18 \cdot 16=288$. Given encryption number $e=25$; find a decryption number d. $(d=265)$

Given (N, e); we shall know the two prime numbers p, q in principle since $N=p q$. However, assuming that we cannot factor integers effectively, actually we don't know the numbers p, q. To break the system, the only possible way is to find the number $(p-1)(q-1)$, then use e to find d. Suppose $(p-1)(q-1)=p q-p-q+1=N-(p+q)+1$ is known. Then $p+q$ is known. Thus p, q can be found by solving the quadratic equation $x^{2}-(p+q) x+N=0$, as p, q are its two roots. This is equivalent to factorizing the number N.

Example 6. Given $N=p q=18779$ and $(p-1)(q-1)=18480$. Then

$$
p+q=N-(p-1)(q-1)+1=300
$$

The equation $x^{2}-300 x+18779=0$ implies $p=89, q=211$.
Note that $(p-1)(q-1)=88 \cdot 210=2^{4} \cdot 3 \cdot 5 \cdot 7 \cdot 11$. One can choose $e=13,17,19,23,29$, etc. Say $e=29$, then d can be found as follows: $18480=637 \cdot 29+7,29=4 \cdot 7+1 ;$

$$
1=29-4 \cdot 7=29-4(18480-637 \cdot 29)=-4 \cdot 18480+2549 \cdot 29
$$

Thus $d=2549$.

