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October 10, 2019

Week 11-12

1 Congruence of Integers

Definition 1. Let n be a positive integer. For integers a and b, if n divides
b− a, we say that a is congruent to b modulo n, written a ≡ b mod n.

Every integer is congruent to exactly one of the following integers modulo
n:

0, 1, 2, . . . , n− 1.

Proposition 2 (Equivalence Relation). Let n be a positive integer. For in-
tegers a, b, c ∈ Z, we have

(1) a ≡ a mod n;

(2) If a ≡ b mod n, then b ≡ a mod n.

(2) If a ≡ b mod n and b ≡ c mod n, then a ≡ c mod n.

Proof. Trivial.

Proposition 3. Let a ≡ b mod n and c ≡ d mod n. Then

(1) a + c ≡ b + d mod n;

(2) ac ≡ bd mod n;

(3) ak ≡ bk mod n for any positive integer k.

Proof. Trivial

Proposition 4. Let a, b, c be integers, a 6= 0, and n be a positive integer.

(1) If a | n, then ab ≡ ac mod n iff b ≡ c mod n
a .
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(2) If gcd(a, n) = 1, then ab ≡ ac mod n iff b ≡ c mod n.

(3) If p is a prime and p - a, then ab ≡ ac mod p iff b ≡ c mod p.

Proof. (1) ab ≡ ac mod n ⇔ ab = ac + kn for some k ∈ Z ⇔ b = c + k · n
a for

some k ∈ Z ⇔ b ≡ c mod n
a .

(2) If ab ≡ ac mod n. Then n divides ab − ac = a(b − c) by definition.
Since gcd(a, n) = 1, we have n|(b− c). Hence b ≡ c mod n.

(3) In particular, when p is a prime and p - a, then gcd(a, p) = 1.

2 Congruence Equation

Let n be a positive integer and let a, b ∈ Z. The equation

ax ≡ b mod n (1)

is called a linear congruence equation. Solving the linear congruence
equation (1) is meant to find all integers x ∈ Z such that n|(ax− b).

Proposition 5. Let d = gcd(a, n). The linear congruence equation (1) has
a solution if and only if d | b.
Proof. Assume that (1) has a solution, i.e., there exists an integer k such that
ax− b = kn. Then b = ax− kn is a multiple of d. So d | b.

Conversely, if d | b, we write b = dc for some c ∈ Z. By the Euclidean
Algorithm, there exist s, t ∈ Z such that d = as + nt. Multiplying c (= b/d)
to both sides, we have

acs + nct = dc = b.

Hence x = cs = bs/d is a solution of (1).

Let x = s1 and x = s2 be two solutions of (1). It is clear that x = s1 − s2

is a solution of the equation

ax ≡ 0 mod n. (2)

So any solution of (1) can be expressed as a particular solution of (1) plus a
solution of (2). Note that (2) is equivalent to a

dx ≡ 0 mod n
d ; since gcd(a

d ,
n
d) =

1, it is further equivalent to x ≡ 0 mod n
d . Thus all solutions of (2) are given

by

x =
n

d
k, k ∈ Z.
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Hence all solutions of (1) are given by

x =
b

d
s +

n

d
k, k ∈ Z, where d = gcd(a, n).

Corollary 6. If d is a common factor of a, b, n, then the linear congruence
equation (1) is equivalent to

a

d
x ≡ b

d
mod

n

d
. (3)

Proof. Given a solution x = s of (1). Then as = b + kn for some k ∈ Z.
Clearly, a

ds = b
d + n

dk. This means that x = s is a solution of (3). Conversely,
given a solution x = s of (3), that is, a

ds = b
d + n

dk for some k ∈ Z. Multiplying
d to both sides, we have as = b + nk. This means that x = s is a solution of
(1).

Example 1. 3x = 6 mod 4.

Since gcd(3, 4) = 1 = 4 − 3, then all solutions are given by x = −6 + 4k,
where k ∈ Z, or

x = 2 + 4k, k ∈ Z.

Example 2.

6x ≡ 9 mod 15 ⇔ 6

3
x ≡ 9

3
mod

15

3
⇔ 2x ≡ 3 mod 5.

3 The System Zn

Let Zn = {0, 1, 2, . . . , n− 1} with n ≥ 2. For a, b ∈ Zn, we define

a⊕ b = s

if a + b ≡ s with s ∈ Zn, and define

a¯ b = t

if ab ≡ t with t ∈ Zn.

Proposition 7. (1) a⊕ b = b⊕ a,

(2) (a⊕ b)⊕ c = a⊕ (b⊕ c),

(3) a¯ b = b¯ a,
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(4) (a¯ b)¯ c = a¯ (b¯ c),

(5) a¯ (b⊕ c) = (a¯ b)⊕ (a¯ c),

(6) 0⊕ a = a,

(7) 1¯ a = a.

(8) 0¯ a = 0.

An element a ∈ Zn is said to be invertible if there is an element b ∈ Zn

such that a ¯ b = 1; if so the element b is called an inverse of a in Zn. If
n ≥ 2, the element n− 1 is always invertible and its inverse is itself.

Proposition 8. Let n be a positive integer. Then an element a ∈ Zn is
invertible iff gcd(a, n) = 1.

Proof. Necessity: Let b ∈ Zn be an inverse of a. Then ab ≡ 1 mod n, that
is, ab + kn = 1 for some k ∈ Z. Clearly, gcd(a, n) divides ab + kn, and
subsequently divides 1. It then forces gcd(a, n) = 1.

Sufficiency: Since gcd(a, n) = 1, there exist integers s, t ∈ Z such that
1 = as + nt by the Euclidean Algorithm. Thus as ≡ 1 mod n. This means
that s is an inverse of a.

4 Fermat’s Little Theorem

Theorem 9. Let p be a prime number. If a is an integer not divisible by p,
then

ap−1 ≡ 1 mod p.

Proof. Consider the numbers a, 2a, . . . , (p−1)a modulo p in Zp = {0, 1, . . . , p−
1}. These integers modulo p are distinct, for if xa ≡ ya mod p for some
x, y ∈ Zp, then x ≡ y mod p, so x = y, and since 1, 2, . . . , p − 1 are distinct.
Thus these integers modulo p are just the list 1, 2, . . . , p − 1. Multiplying
these p− 1 integers together, we have

ap−1 · (p− 1)! ≡ (p− 1)! mod p.

Since (p− 1)! and p are coprime each other, we thus have

ap−1 ≡ 1 mod p.
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Proposition 10 (Generalized Fermat’s Little Theorem). Let p, q be distinct
prime numbers. If a is an integer such that p - a and q - a, then

a(p−1)(q−1) ≡ 1 mod pq.

Proof. By Fermat’s Little Theorem we have ap−1 ≡ 1 mod p. Raising both
sides to the (q − 1)th power, we have

a(p−1)(q−1) ≡ 1 mod p.

This means that p|(a(p−1)(q−1) − 1
)
. Analogously, q|(a(p−1)(q−1) − 1

)
. Since

p and q are coprime each other, we then have pq|(a(p−1)(q−1) − 1
)
, namely,

a(p−1)(q−1) ≡ 1 mod pq.

5 Roots of Unity Modulo n

Proposition 11. Let p be a prime. Let k be a positive integer coprime to
p− 1. Then

(a) There exists a positive integer s such that sk ≡ 1 mod p− 1.

(b) For each b ∈ Z such that p - b, the congruence equation

xk ≡ b mod p

has a unique solution x = bs, where s is as in (a), i.e., the inverse of k

modulo p− 1.

Proof. (a) By the Euclidean Algorithm there exist integers s, t ∈ Z such that
sk − t(p− 1) = 1. Hence sk ≡ 1 mod p− 1.

(b) Suppose that x is a solution to xk ≡ b mod p. Since p does not divide
b, it does not divide x; i.e., gcd(x, p) = 1. By Fermat’s Little Theorem we
have xp−1 ≡ 1 mod p. Then xt(p−1) ≡ 1 mod p. Thus

x ≡ x1+t(p−1) ≡ xsk ≡ (xk)s ≡ bs mod p.

Indeed, x = bs is a solution as

(bs)k ≡ bsk ≡ b1+t(p−1) ≡ b · (bp−1)t ≡ b mod p.
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Proposition 12. Let p, q be distinct primes. Let k be a positive integer
coprime to both p− 1 and q − 1. Then the following statements are valid.

(a) There exists a positive integer s such that sk ≡ 1 mod (p− 1)(q − 1).

(b) For each b ∈ Z such that p - b and q - b, the congruence equation

xk ≡ b mod pq

has a unique solution x = bs, where s is as in (a).

Proof. (a) It follows from the Euclidean Algorithm. In fact, there exists
s, t ∈ Z such that sk − t(p− 1)(q − 1) = 1. Then sk ≡ 1 mod (p− 1)(q − 1).

(b) Suppose x is a solution for xk ≡ b mod pq. Since p - b and q - b, we
have p - x and q - x. By the Generalized Fermat’s Little Theorem, we have
x(p−1)(q−1) ≡ 1 mod pq. Then xt(p−1)(q−1) ≡ 1 mod pq. Hence

x ≡ x1+t(p−1)(q−1) ≡ xsk ≡ (xk)s ≡ bs mod pq.

Indeed x = bs is a solution,

(bs)k ≡ bsk ≡ b1+t(p−1)(q−1) ≡ b · bt(p−1)(q−1) ≡ b mod pq.

Proposition 13. Let p be a prime. If a is an integer such that a2 ≡ 1 mod p,
then either a ≡ 1 mod p or a ≡ −1 mod p.

Proof. Since a2 ≡ 1 mod p, then p|(a2 − 1), i.e., p|(a − 1)(a + 1). Hence we
have either p|(a−1) or p|(a+1). In other words, we have either a ≡ 1 mod p

or a ≡ −1 mod p.

6 RSA Cryptography System

Definition 14. An RSA public key cryptography system is a tuple
(S, N, e, d, E,D), where S = {0, 1, 2, . . . , N−1}, N = pq, p and q are distinct
primes numbers, e and d are positive integers such that ed ≡ 1 mod (p −
1)(q − 1), and E, D : S → S are functions defined by E(x) = xe mod N and
D(x) = xd mod N . The number e is known as the encryption number
and d as the decryption number, the maps E and D are known as the
encryption map and the decryption map. The pair (N, e) is called the
public key of the system. RSA stands for three math guys, Ron Rivest, Adi
Shamir and Leonard Adleman.
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Theorem 15. For any RSA cryptography system (S, N, e, d, E,D), the maps
E and D are inverse each other, i.e., for all x ∈ S,

D(E(x)) ≡ x mod N, E(D(x)) ≡ x mod N.

The two numbers N, e are given in public.

Proof. Case 1: x = 0. It is trivial that xed ≡ x mod N .
Case 2: gcd(x,N) = 1. Since ed ≡ 1 mod (p − 1)(q − 1), then ed =

1 + k(p− 1)(q − 1) for some k ∈ Z. Thus

xed = x1+k(p−1)(q−1) = x(x(p−1)(q−1))k

Since x(p−1)(q−1) ≡ 1 mod N , we have

xed ≡ x mod N.

Case 3: gcd(x,N) 6= 1. Since N = pq, we either have x = ap for some
1 ≤ a < q or x = bq for some 1 ≤ b < p. In the formal case, we have

xed = (ap)1+k(p−1)(q−1) = ((ap)q−1)k(p−1)(ap).

Note that q - ap, by Fermat’s Little Theorem, (ap)q−1 ≡ 1 mod q. Thus
(ap)q−1 ≡ 1 mod q. Hence xed ≡ ap ≡ x mod q. Note that xed ≡ (ap)ed ≡
0 ≡ x mod p. Therefore p | (xed − x) and q | (xed − x). Since gcd(p, q) = 1,
we have pq | (xed − x), i.e., xed ≡ x mod N .

Example 3. Let p = 3 and q = 5. Then N = 3 · 5 = 15, (p − 1)(q − 1) =
2 · 4 = 8. The encryption key e can be selected to be the numbers 1, 3, 5, 7;
Their corresponding decryption keys are also 1, 3, 5, 7, respectively.

(e, d) = (3, 11), (5, 5), (7, 7),(9,1),(11,3), (13, 5), and (15, 7) are encryption-
decryption pairs. For instance, for (e, d) = (11, 3), we have

x 1 2 3 4 5 6 7 8 9 10 11 12 13 14

E(x) 1 8 12 4 5 6 13 2 9 10 11 3 7 14

In fact, in this special case the inverse of E is itself, i.e., D = E−1 = E. This
example is too special.

Example 4. Let p = 11, q = 13. Then N = pq = 143, (p− 1)(q − 1) = 120.
Then there are RSA systems with (e, d) = (7, 103); (e, d) = (11, 11); and
(e, d) = (13, 37). For the RSA system with (e, d) = (13, 37), we have

E(2) = 213 ≡ 41 mod 143
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(22 = 4, 24 = 16, 28 = 162 ≡ 113, 213 = 28 · 24 · 2 ≡ 113 · 16 · 2 ≡ 41); and

D(41) = 4137 ≡ 2 mod 143

(412 ≡ 108, 414 ≡ 1082 ≡ 81, 418 ≡ 812 ≡ −17, 4116 ≡ 172 ≡ 3, 4132 ≡ 9,
4137 = 4132 · 414 · 41 ≡ 2). Note that E(41) ≡ 418 · 414 · 41 ≡ 28, we see that
E 6= D.

Example 5. Let p = 19 and q = 17. Then N = 19 ·17 = 323, (p−1)(q−1) =
18 · 16 = 288. Given encryption number e = 25; find a decryption number d.
(d = 265)

Given (N, e); we shall know the two prime numbers p, q in principle since
N = pq. However, assuming that we cannot factor integers effectively, actu-
ally we don’t know the numbers p, q. To break the system, the only possible
way is to find the number (p − 1)(q − 1), then use e to find d. Suppose
(p−1)(q−1) = pq−p−q+1 = N−(p+q)+1 is known. Then p+q is known.
Thus p, q can be found by solving the quadratic equation x2−(p+q)x+N = 0,
as p, q are its two roots. This is equivalent to factorizing the number N .

Example 6. Given N = pq = 18779 and (p− 1)(q − 1) = 18480. Then

p + q = N − (p− 1)(q − 1) + 1 = 300.

The equation x2 − 300x + 18779 = 0 implies p = 89, q = 211.
Note that (p − 1)(q − 1) = 88 · 210 = 24 · 3 · 5 · 7 · 11. One can choose

e = 13, 17, 19, 23, 29, etc. Say e = 29, then d can be found as follows:
18480 = 637 · 29 + 7, 29 = 4 · 7 + 1;

1 = 29− 4 · 7 = 29− 4(18480− 637 · 29) = −4 · 18480 + 2549 · 29.

Thus d = 2549.
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