
Week 4-5: Binary Relations

1 Binary Relations

The concept of relation is common in daily life and seems intuitively clear. For

instance, let X denote the set of all females and Y the set of all males. The

wife-husband relation R can be thought as a relation from X to Y . For a lady

x ∈ X and a gentleman y ∈ Y , we say that x is related to y by R if x is a wife

of y, written as xRy. To describe the relation R, we may list the collection of

all ordered pairs (x, y) such that x is related to y by R. The collection of all

such related ordered pairs is simply a subset of the Cartesian product X × Y .

This motivates the following definition of binary relations.

Definition 1.1. Let X and Y be nonempty sets. A binary relation from

X to Y is a subset

R ⊆ X × Y.

If (x, y) ∈ R, we say that x is related to y by R, denoted xRy. If (x, y) 6∈ R,

we say that x is not related to y, denoted xR̄y. For each element x ∈ X , we

denote by R(x) the subset of elements of Y that are related to x, that is,

R(x) = {y ∈ Y : xRy} = {y ∈ Y : (x, y) ∈ R}.
For each subset A ⊆ X , we define

R(A) = {y ∈ Y : ∃ x ∈ A such that xRy} =
⋃

x∈A

R(x).

When X = Y , we say that R is a binary relation on X .

Since binary relations from X to Y are subsets of X×Y , we can define inter-

section, union, and complement for binary relations. The complementary

relation of a binary relation R ⊆ X × Y is the binary relation R̄ ⊆ X × Y

defined by

xR̄y ⇔ (x, y) 6∈ R.

1



The converse relation (or reverse relation) of R is the binary relation

R−1 ⊆ Y ×X defined by

yR−1x ⇔ (x, y) ∈ R.

Example 1.1. Consider a family A with five children, Amy, Bob, Charlie,

Debbie, and Eric. We abbreviate the names to their first letters so that

A = {a, b, c, d, e}.
(a) The brother-sister relation Rbs is the set

Rbs = {(b, a), (b, d), (c, a), (c, d), (e, a), (e, d)}.

(b) The sister-brother relation Rsb is the set

Rsb = {(a, b), (a, c), (a, e), (d, b), (d, c), (d, e)}.

(c) The brother relation Rb is the set

{(b, b), (b, c), (b, e), (c, b), (c, c), (c, e), (e, b), (e, c), (e, e)}.

(d) The sister relation Rs is the set

{(a, a), (a, d), (d, a), (d, d)}.

The brother-sister relation Rbs is the inverse of the sister-brother relation Rsb,

i.e.,

Rbs = R−1
sb .

The brother or sister relation is the union of the brother relation and the sister

relation, i.e.,

Rb ∪Rs.

The complementary relation of the brother or sister relation is the brother-sister

or sister-brother relation, i.e.,

Rb ∪Rs = Rbs ∪Rsb.
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Example 1.2. (a) The graph of equation

x2

32
+

y2

22
= 1

is a binary relation on R. The graph is an ellipse.

(b) The relation less than, denoted by <, is a binary relation on R defined by

a < b if a is less than b.

As a subset of R2 = R× R, the relation is given by the set

{(a, b) ∈ R2 : a is less than b}.

(c) The relation greater than or equal to is a binary relation ≥ on R defined by

a ≥ b if a is greater than or equal to b.

As a subset of R2, the relation is given by the set

{(a, b) ∈ R2 : a is greater than or equal to b}.

(d) The divisibility relation | about integers, defined by

a | b if a divides b,

is a binary relation on the set Z of integers. As a subset of Z2, the relation

is given by

{(a, b) ∈ Z2 : a is a factor of b}.
Example 1.3. Any function f : X → Y can be viewed as a binary relation

from X to Y . The binary relation is just its graph

G(f ) = {(x, f (x)) : x ∈ X} ⊆ X × Y.

Proposition 1.2. Let R ⊆ X × Y be a binary relation from X to Y . Let

A,B ⊆ X be subsets.

(a) If A ⊆ B, then R(A) ⊆ R(B).

(b) R(A ∪B) = R(A) ∪R(B).
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(c) R(A ∩B) ⊆ R(A) ∩R(B).

Proof. (a) For any y ∈ R(A), there is an x ∈ A such that xRy. Since A ⊆ B,

then x ∈ B. Thus y ∈ R(B). This means that R(A) ⊆ R(B).

(b) For any y ∈ R(A∪B), there is an x ∈ A∪B such that xRy. If x ∈ A,

then y ∈ R(A). If x ∈ B, then y ∈ R(B). In either case, y ∈ R(A) ∪ R(B).

Thus

R(A ∪B) ⊆ R(A) ∪R(B).

On the other hand, it follows from (a) that

R(A) ⊆ R(A ∪B) and R(B) ⊆ R(A ∪B).

Thus R(A) ∪R(B) ⊆ R(A ∪B).

(c) It follows from (a) that

R(A ∩B) ⊆ R(A) and R(A ∩B) ⊆ R(B).

Thus R(A ∩B) ⊆ R(A) ∩R(B).

Proposition 1.3. Let R1, R2 ⊆ X × Y be relations from X to Y . If

R1(x) = R2(x) for all x ∈ X, then R1 = R2.

Proof. If xR1y, then y ∈ R1(x). Since R1(x) = R2(x), we have y ∈ R2(x).

Thus xR2y. A similar argument shows that if xR2y then xR1y. Therefore

R1 = R2.

2 Representation of Relations

Binary relations are the most important relations among all relations. Ternary

relations, quaternary relations, and multi-factor relations can be studied by

binary relations. There are two ways to represent a binary relation, one by a

directed graph and the other by a matrix.

Let R be a binary relation on a finite set V = {v1, v2, . . . , vn}. We may

describe the relation R by drawing a directed graph as follows: For each element

vi ∈ V , we draw a solid dot and name it by vi; the dot is called a vertex.

For two vertices vi and vj, if viRvj, we draw an arrow from vi to vj, called a

directed edge. When vi = vj, the directed edge becomes a directed loop.
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The resulted graph is a directed graph, called the digraph of R, and is denoted

by D(R). Sometimes the directed edges of a digraph may have to cross each

other when drawing the digraph on a plane. However, the intersection points

of directed edges are not considered to be vertices of the digraph.

The in-degree of a vertex v ∈ V is the number of vertices u such that uRv,

and is denoted by

indeg (v).

The out-degree of v is the number of vertices w such that vRw, and is

denoted by

outdeg (v).

If R ⊆ X × Y is a relation from X to Y , we define

outdeg (x) = |R(x)| for x ∈ X,

indeg (y) = |R−1(y)| for y ∈ Y.

The digraphs of the brother-sister relation Rbs and the brother or sister rela-

tion Rb ∪Rs are demonstrated in the following.
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Definition 2.1. Let R ⊆ X × Y be a binary relation from X to Y , where

X = {x1, x2, . . . , xm}, Y = {y1, y2, . . . , yn}.
The matrix of the relation R is an m×n matrix MR = [aij], whose (i, j)-entry

is given by

aij =

{
1 if xiRyj

0 if xiRyj.

The matrix MR is called the Boolean matrix of R. If X = Y , then m = n,

and the matrix MR is a square matrix.
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Let A = [aij] and B = [bij] be m × n Boolean matrices. If aij ≤ bij for all

(i, j)-entries, we write A ≤ B.

The matrix of the brother-sister relation Rbs on the set A = {a, b, c, d, e} is

the square matrix 


0 0 0 0 0

1 0 0 1 0

1 0 0 1 0

0 0 0 0 0

1 0 0 1 0




and the matrix of the brother or sister relation is the square matrix



1 0 0 1 0

0 1 1 0 1

0 1 1 0 1

1 0 0 1 0

0 1 1 0 1




Proposition 2.2. For any digraph D(R) of a binary relation R ⊆ V × V

on V , ∑

v∈V

indeg (v) =
∑

v∈V

outdeg (v) = |R|.

If R is a binary relation from X to Y , then
∑

x∈X

outdeg (x) =
∑

y∈Y

indeg (y) = |R|.

Proof. Trivial.

Let R be a relation on a set X . A directed path of length k from x to

y is a finite sequence x0, x1, . . ., xk (not necessarily distinct), beginning with

x0 = x and ending with xk = y, such that

x0Rx1, x1Rx2, . . . , xk−1Rxk.

A path that begins and ends at the same vertex is called a directed cycle.
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For any fixed positive integer k, let Rk ⊆ X ×X denote the relation on X

given by

xRky ⇔ ∃ a path of length k from x to y.

Let R∞ ⊆ X ×X denote the relation on X given by

xR∞y ⇔ ∃ a directed path from x to y.

The relation R∞ is called the connectivity relation for R. Clearly, we have

R∞ = R ∪R2 ∪R3 ∪ · · · =

∞⋃

k=1

Rk.

The reachability relation of R is the binary relation R∗ ⊆ X × X on X

defined by

xR∗y ⇔ x = y or xR∞y.

Obviously,

R∗ = I ∪R ∪R2 ∪R3 ∪ · · · =

∞⋃

k=0

Rk,

where I is the identity relation on X defined by

xIy ⇔ x = y.

We always assume that R0 = I for any relation R on a set X .

Example 2.1. Let X = {x1, . . . , xn} and R = {(xi, xi+1) : i = 1, . . . , n−1}.
Then

Rk = {(xi, xi+k) : i = 1, . . . , n− k}, 1 ≤ k ≤ n/2;

Rk = ∅, k ≥ (n + 1)/2;

R∞ = {(xi, xj) : i < j}.
If R = {(xi, xi+1) : i = 1, . . . , n} with xn+1 = x1, then R∞ = X ×X = X2.

3 Composition of Relations

Definition 3.1. Let R ⊆ X × Y and S ⊆ Y × Z binary relations. The

composition of R and S is a binary relation S ◦ R ⊆ X × Z from X to Z
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defined by

x(S ◦R)z ⇔ ∃ y ∈ Y such that xRy and ySz.

When X = Y , the relation R is a binary relation on X . We have

Rk = Rk−1 ◦R, k ≥ 2.

Remark. Given relations R ⊆ X×Y and S ⊆ Y ×Z, the composition S ◦R

of R and S is backward. However, some people use the notation R ◦ S instead

of our notation S ◦ R. But this usage is inconsistent with the composition of

functions. To avoid confusion and for aesthetic reason, we write S ◦R as

RS = {(x, z) ∈ X × Z : ∃y ∈ Y, xRy, ySz}.
Example 3.1. Let R ⊆ X × Y , S ⊆ Y × Z, where

X = {x1, x2, x3, x4}, Y = {y1, y2, y3}, Z = {z1, z2, z3, z4, x5}.

S

x

x

x

x1

3

4

2

1

2

3

y

y

y

z

z

z

z

z

1

2

3

4

5R

RS

x

x1

3

4

2

x

x

z1

z2

z3

z4

z5

Example 3.2. For the brother-sister relation, sister-brother relation, brother

relation, and sister relation on A = {a, b, c, d, e}, we have

RbsRsb = Rb, RsbRbs = Rs, RbsRs = Rbs,

RbsRbs = ∅, RbRb = Rb, RbRs = ∅.

Let X1, X2, . . ., Xn, Xn+1 be nonempty sets. Given relations

Ri ⊆ Xi ×Xi+1, 1 ≤ i ≤ n.
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We define a relation R1R2 · · ·Rn ⊆ X1 ×Xn+1 from X1 to Xn+1 by

xR1R2 · · ·Rny,

if and only if there exists a sequence x1, x2, . . ., xn, xn+1 with x1 = x, xn+1 = y

such that

x1R1x2, x2R2x3, . . . , xnRnxn+1.

Theorem 3.2. Given relations

R1 ⊆ X1 ×X2, R2 ⊆ X2 ×X3, R3 ⊆ X3 ×X4.

We have

R1R2R3 = R1(R2R3) = (R1R2)R3.

as relations from X1 to X4.

Proof. For x ∈ X1, y ∈ X4, we have

xR1(R2R3)y ⇔ ∃x2 ∈ X2, xR1x2, x2R2R3y

⇔ ∃x2 ∈ X2, xR1x2;

∃x3 ∈ X3, x2R2x3, x3R3y

⇔ ∃x2 ∈ X2, x3 ∈ X3,

xR1x2, x2R2x3, x3R3y

⇔ xR1R2R3y.

Similarly, x(R1R2)R3y ⇔ xR1R2R3y.

Proposition 3.3. Let Ri ⊆ X × Y be relations, i = 1, 2.

(a) If R ⊆ W ×X, then R(R1 ∪R2) = RR1 ∪RR2.

(b) If S ⊆ Y × Z, then (R1 ∪R2)S = R1S ∪R2S.

Proof. (a) For each wR(R1 ∪R2)y, ∃x ∈ X such that wRx and x(R1 ∪R2)y.

Then xR1y or xR2y. Thus wRR1y or wRR2y. Namely, w(RR1 ∪RR2)y.

Conversely, for each (w, y) ∈ RR1 ∪ RR2, we have either (w, y) ∈ RR1 or

(w, y) ∈ RR2. Then there exist x1, x2 ∈ X such that either (w, x1) ∈ R,

(x1, y) ∈ R1 ⊆ R1 ∪ R2 or (w, x2) ∈ R, (x2, y) ∈ R2 ⊆ R1 ∪ R2. This

means that there exists x ∈ X such that (w, x) ∈ R, (x, y) ∈ R1 ∪ R2. Thus

(w, y) ∈ R(R1 ∪R2).

The proof for (b) is similar.
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Exercise 1. Let Ri ⊆ X × Y be relations, i = 1, 2, . . . .

(a) If R ⊆ W ×X , then R (
⋃∞

i=1 Ri) =
⋃∞

i=1 RRi.

(b) If S ⊆ Y × Z, then (
⋃∞

i=1 Ri)S =
⋃∞

i=1 RiS.

For the convenience of representing composition of relations, we introduce

the Boolean operations ∧ and ∨ on real numbers. For a, b ∈ R, define

a ∧ b = min{a, b}, a ∨ b = max{a, b}.
Exercise 2. For a, b, c ∈ R,

a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c),

a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c).

Proof. We only prove the first formula. The second one is similar.

Case 1: b ≤ c. If a ≥ c, then the left side is a ∧ (b ∨ c) = a ∧ c = c. The

right side is (a ∧ b) ∨ (a ∧ c) = b ∨ c = c. If b ≤ a ≤ c, then the left side

is a ∧ (b ∨ c) = a ∧ c = a. The right side is (a ∧ b) ∨ (a ∧ c) = b ∨ a = a.

If a ≤ b ≤ c, then the left side is a ∧ (b ∨ c) = a ∧ c = a. The right side is

(a ∧ b) ∨ (a ∧ c) = a ∨ a = a.

Case 2: b ≥ c. If a ≤ c, then a∧(b∨c) = a∧c = a and (a∧b)∨(a∧c) = a∨
a = a. If b ≥ a ≥ c, then a∧(b∨c) = a∧c = a and (a∧b)∨(a∧c) = a∨c = a.

If a ≥ b, then a ∧ (b ∨ c) = a ∧ b = b and (a ∧ b) ∨ (a ∧ c) = b ∨ c = b.

Sometimes it is more convenient to write the Boolean operations as

a¯ b = min{a, b}, a⊕ b = max{a, b}.
For real numbers a1, a2, . . . , an, we define

n∨
i=1

ai =

n⊕
i=1

ai = max{a1, a2, . . . , an}.

For an m×n matrix A = [aij] and an n×p matrix B = [bjk], the Boolean

multiplication of A and B is an m×p matrix A∗B = [cik], whose (i, k)-entry

is defined by

cik =

n∨
j=1

(aij ∧ bjk) =

n⊕
j=1

(aij ¯ bjk).
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Theorem 3.4. Let R ⊆ X × Y , S ⊆ Y × Z be relations, where

X = {x1, . . . , xm}, Y = {y1, . . . , yn}, Z = {z1, . . . , zp}.
Let MR, MS, MRS be matrices of R, S, RS respectively. Then

MRS = MR ∗MS.

Proof. We write MR = [aij], MS = [bjk], and

MR ∗MS = [cik], MRS = [dik].

It suffices to show that cik = dik for any (i, k)-entry.

Case I: cik = 1.

Since cik =
∨n

j=1(aij ∧ bjk) = 1, there exists j0 such that aij0 ∧ bj0k = 1.

Then aij0 = bj0k = 1. In other words, xiRyj0 and yj0Szk. Thus xiRSzk by

definition of composition. Therefore dik = 1 by definition of Boolean matrix of

RS.

Case II: cik = 0.

Since cik =
∨n

j=1(aij ∧ bjk) = 0, we have aij ∧ bjk = 0 for all j. Then there

is no j such that aij = 1 and bjk = 1. In other words, there is no yj ∈ Y such

that both xiRyj and yjSzk. Thus xi is not related to zk by definition of RS.

Therefore dik = 0.

4 Special Relations

We are interested in some special relations satisfying certain properties. For

instance, the “less than” relation on the set of real numbers satisfies the so-

called transitive property: if a < b and b < c, then a < c.

Definition 4.1. A binary relation R on a set X is said to be

(a) reflexive if xRx for all x in X ;

(b) symmetric if xRy implies yRx;

(c) transitive if xRy and yRz imply xRz.
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A relation R is called an equivalence relation if it is reflexive, symmetric,

and transitive. And in this case, if xRy, we say that x and y are equivalent.

The relation IX = {(x, x) : x ∈ X} is called the identity relation. The

relation X2 is called the complete relation.

Example 4.1. Many family relations are binary relations on the set of human

beings.

(a) The strict brother relation Rb: xRby ⇔ x and y are both males and have

the same parents. (symmetric and transitive)

(b) The strict sister relation Rs: xRsy ⇔ x and y are both females and have

the same parents. (symmetric and transitive)

(c) The strict brother-sister relation Rbs: xRbsy ⇔ x is male, y is female, x

and y have the same parents.

(d) The strict sister-brother relation Rsb: xRsb ⇔ x is female, y is male, and

x and y have the same parents.

(e) The generalized brother relation R′
b: xR′

by ⇔ x and y are both males and

have the same father or the same mother. (symmetric, not transitive)

(f) The generalized sister relation R′
s: xR′

sy ⇔ x and y are both females and

have the same father or the same mother. (symmetric, not transitive)

(g) The relation R: xRy ⇔ x and y have the same parents. (reflexive, sym-

metric, and transitive; equivalence relation)

(h) The relation R′: xR′y ⇔ x and y have the same father or the same mother.

(reflexive and symmetric)

Example 4.2. (a) The less than relation < on the set of real numbers is a

transitive relation.

(b) The less than or equal to relation ≤ on the set of real numbers is a reflexive

and transitive relation.

(c) The divisibility relation on the set of positive integers is a reflexive and

transitive relation.
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(d) Given a positive integer n. The congruence modulo n is a relation ≡n

on Z defined by

a ≡n b ⇔ b− a is a multiple of n.

The standard notation for a ≡n b is a ≡ b mod n. The relation ≡n is an

equivalence relation on Z.

Theorem 4.2. Let R be a relation on a set X with matrix MR. Then

(a) R is reflexive ⇔ I ⊆ R ⇔ all diagonal entries of MR are 1.

(b) R is symmetric ⇔ R = R−1 ⇔ MR is a symmetric matrix.

(c) R is transitive ⇔ R2 ⊆ R ⇔ M 2
R ≤ MR.

Proof. (a) and (b) are trivial.

(c) “R is transitive ⇒ R2 ⊆ R.”

For any (x, y) ∈ R2, there exists z ∈ X such that (x, z) ∈ R, (z, y) ∈ R.

Since R is transitive, then (x, y) ∈ R. Thus R2 ⊆ R.

“R2 ⊆ R ⇒ R is transitive.”

For (x, z) ∈ R and (z, y) ∈ R, we have (x, y) ∈ R2 ⊂ R. Then (x, y) ∈ R.

Thus R is transitive.

Note that for any relations R and S on X , we have

R ⊆ S ⇔ MR ≤ MS.

Since MR is the matrix of R, then M 2
R = MRMR = MRR = MR2 is the matrix

of R2. Thus R2 ⊆ R ⇔ M 2
R ≤ MR.

5 Equivalence Relations and Partitions

The most important binary relations are equivalence relations. We will see that

an equivalence relation on a set X will partition X into disjoint equivalence

classes.

Example 5.1. Consider the congruence relation ≡3 on Z. For each a ∈ Z,

define

[a] = {b ∈ Z : a ≡3 b} = {b ∈ Z : a ≡ b mod 3}.
13



It is clear that Z is partitioned into three disjoint subsets

[0] = {0,±3,±6,±9, . . .} = {3k : k ∈ Z},
[1] = {1, 1± 3, 1± 6, 1± 9, . . .} = {3k + 1 : k ∈ Z},
[2] = {2, 2± 3, 2± 6, 2± 9, . . .} = {3k + 2 : k ∈ Z}.

Moreover, for all k ∈ Z,

[0] = [3k], [1] = [3k + 1], [2] = [3k + 2].

Theorem 5.1. Let ∼ be an equivalence relation on a set X. For each x

of X, let [x] denote the set of members equivalent to x, i.e.,

[x] := {y ∈ X : x ∼ y},
called the equivalence class of x under ∼. Then

(a) x ∈ [x] for any x ∈ X,

(b) [x] = [y] if x ∼ y,

(c) [x] ∩ [y] = ∅ if x 6∼ y,

(d) X =
⋃

x∈X [x].

The member x is called a representative of the equivalence class [x]. The

set of all equivalence classes

X/∼: {[x] : x ∈ X}
is called the quotient set of X under the equivalence relation ∼ or modulo

∼.

Proof. (a) It is trivial because ∼ is reflexive.

(b) For any z ∈ [x], we have x ∼ z by definition of [x]. Since x ∼ y, we have

y ∼ x by the symmetric property of ∼. Then y ∼ x and x ∼ z imply that

y ∼ z by transitivity of ∼. Thus z ∈ [y] by definition of [y]; that is, [x] ⊂ [y].

Since ∼ is symmetric, we have [y] ⊂ [x]. Therefore [x] = [y].

(c) Suppose [x] ∩ [y] is not empty, say z ∈ [x] ∩ [y]. Then x ∼ z and

y ∼ z. By symmetry of ∼, we have z ∼ y. Thus x ∼ y by transitivity of ∼, a

contradiction.

(d) This is obvious because x ∈ [x] for any x ∈ X .
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Definition 5.2. A partition of a nonempty set X is a collection

Π = {Aj : j ∈ J}
of subsets of X such that

(a) Ai 6= ∅ for all i;

(b) Ai ∩ Aj = ∅ if i 6= j;

(c) X =
⋃

j∈J Aj.

Each subset Aj is called a block of the partition Π.

Theorem 5.3. Let Π be a partition of a set X. Let RΠ denote the relation

on X defined by

xRΠy ⇔ ∃ a block Aj ∈ Π such that x, y ∈ Aj.

Then RΠ is an equivalence relation on X, called the equivalence relation

induced by Π.

Proof. (a) For each x ∈ X , there exits one Aj such that x ∈ Aj. Then by

definition of RΠ, xRΠx. Hence RΠ is reflexive.

(b) If xRΠy, then there is one Aj such that x, y ∈ Aj. By definition of RΠ,

yRΠx. Thus RΠ is symmetric.

(c) If xRΠy and yRΠz, then there exist Ai and Aj such that x, y ∈ Ai and

y, z ∈ Aj. Since y ∈ Ai ∩ Aj and Π is a partition, it forces Ai = Aj. Thus

xRΠz. Therefore RΠ is transitive.

Given an equivalence relation R on a set X . The collection

ΠR = {[x] : x ∈ X}
of equivalence classes of R is a partition of X , called the quotient set of X

modulo R. Let E(X) denote the set of all equivalence relations on X and

Π(X) the set of all partitions of X . Then we have two functions

f : E(X) → Π(X), f (R) = ΠR;

g : Π(X) → E(X), g(Π) = RΠ.

The functions f and g satisfy the following properties.
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Theorem 5.4. Let X be a nonempty set. Then for any equivalence rela-

tion R on X, and any partition Π of X, we have

(g ◦ f )(R) = R, (f ◦ g)(Π) = Π.

In other words, f and g are inverse of each other.

Proof. Recall (g ◦ f )(R) = g(f (R)), (f ◦ g)(Π) = f (g(Π)). Then

x[g(ΠR)]y ⇔ ∃A ∈ ΠR s.t. x, y ∈ A ⇔ xRy;

A ∈ f (RΠ) ⇔ ∃x ∈ X s.t. A = RΠ(x) ⇔ A ∈ Π.

Thus g(f (R)) = R and f (g(Π)) = Π.

Example 5.2. Let Z+ be the set of positive integers. Define a relation ∼
on Z× Z+ by

(a, b) ∼ (c, d) ⇔ ad = bc.

Is ∼ an equivalence relation? If Yes, what are the equivalence classes?

Let R be a relation on a set X . The reflexive closure of R is the smallest

reflexive relation r(R) on X that contains R; that is,

a) R ⊆ r(R),

b) if R′ is a reflexive relation on X and R ⊆ R′, then r(R) ⊆ R′.

The symmetric closure of R is the smallest symmetric relation s(R) on X

such that R ⊆ s(R); that is,

a) R ⊆ s(R),

b) if R′ is a symmetric relation on X and R ⊆ R′, then s(R) ⊆ R′.

The transitive closure of R is the smallest transitive relation t(R) on X

such that R ⊆ t(R); that is,

a) R ⊆ t(R),

b) if R′ is a transitive relation on X and R ⊆ R′, then t(R) ⊆ R′.

Obviously, the reflexive, symmetric, and transitive closures of R must be unique

respectively.
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Theorem 5.5. Let R be a relation R on a set X. Then

a) r(R) = R ∪ I;

b) s(R) = R ∪R−1;

c) t(R) =
⋃∞

k=1 Rk.

Proof. (a) and (b) are obvious.

(c) Note that R ⊆ ⋃∞
k=1 Rk and

( ∞⋃
i=1

Ri

)


∞⋃
j=1

Rj


 =

∞⋃
i,j=1

RiRj =

∞⋃
i,j=1

Ri+j =

∞⋃

k=2

Rk ⊆
∞⋃

k=1

Rk.

This shows that
⋃∞

k=1 Rk is a transitive relation, and R ⊆ ⋃∞
k=1 Rk. Since each

transitive relation that contains R must contain Rk for all integers k ≥ 1, we

see that
⋃∞

k=1 Rk is the transitive closure of R.

Example 5.3. Let X = {a, b, c, d, e, f, g} and consider the relation

R = {(a, b), (b, b), (b, c), (d, e), (e, f ), (f, g)}.
Then the reflexive closure of R is

r(R) = {(a, a), (a, b), (b, b), (b, c), (c, c), (d, d),

(d, e), (e, e), (e, f ), (f, f), (f, g), (g, g)} .

The symmetric closure is

s(R) = {((a, b), (b, a), (b, b), (b, c), (c, b), (d, e),

(e, d), (e, f ), (f, e), (f, g), (g, f )} .

The transitive closure is

t(R) = {(a, b), (a, c), (b, b), (b, c), (d, e),

(d, f ), (d, g), (e, f ), (e, g), (f, g)} .

R2 = {(a, b), (a, c), (b, b), (b, c), (d, f ), (e, g)}
R3 = {(a, b), (a, c), (b, b), (b, c), (d, g)},

Rk = {(a, b), (a, c), (b, b), (b, c)}, k ≥ 4.
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Theorem 5.6. Let R be a relation on a set X with |X| = n ≥ 2. Then

t(R) = R ∪R2 ∪ · · · ∪Rn−1.

In particular, if R is reflexive, then t(R) = Rn−1.

Proof. It is enough to show that for all k ≥ n,

Rk ⊆
n−1⋃
i=1

Ri.

This is equivalent to showing that Rk ⊆ ⋃k−1
i=1 Ri for all k ≥ n.

Let (x, y) ∈ Rk. There exist elements x1, . . . , xk−1 ∈ X such that

(x, x1), (x1, x2), . . . , (xk−1, y) ∈ R.

Since |X| = n ≥ 2 and k ≥ n, the following sequence

x = x0, x1, x2, . . . , xk−1, xk = y

has k + 1 terms, which is at least n + 1. Then two of them must be equal, say,

xp = xq with p < q. Thus q − p ≥ 1 and

(x0, x1), . . . , (xp−1, xp), (xq, xq+1), . . . , (xk−1, xk) ∈ R.

Therefore

(x, y) = (x0, xk) ∈ Rk−(q−p) ⊆
k−1⋃
i=1

Ri.

That is

Rk ⊆
k−1⋃
i=1

Ri.

If R is reflexive, then Rk ⊆ Rk+1 for all k ≥ 1. Hence

t(R) = Rn−1.

Proposition 5.7. Let R be a relation on a set X. Then

I ∪ t(R ∪R−1)

is an equivalence relation. In particular, if R is reflexive and symmetric,

then t(R) is an equivalence relation.
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Proof. Since I ∪ t(R ∪ R−1) is reflexive and transitive, we only need to show

that I ∪ t(R ∪R−1) is symmetric.

Let (x, y) ∈ I ∪ t(R ∪R−1). If x = y, then obviously

(y, x) ∈ I ∪ t(R ∪R−1).

If x 6= y, then (x, y) ∈ t(R ∪R−1). Thus (x, y) ∈ (R ∪R−1)k for some k ≥ 1.

Hence there is a sequence

x = x0, x1, . . . , xk = y

such that

(xi, xi+1) ∈ R ∪R−1, 0 ≤ i ≤ k − 1.

Since R ∪R−1 is symmetric, we have

(xi+1, xi) ∈ R ∪R−1, 0 ≤ i ≤ k − 1.

This means that (y, x) ∈ (R∪R−1)k. Hence (y, x) ∈ I∪t(R∪R−1). Therefore

I ∪ t(R ∪R−1) is symmetric.

In particular, if R is reflexive and symmetric, then obviously

I ∪ t(R ∪R−1) = t(R).

This means that t(R) is reflexive and symmetric. Since t(R) is automatically

transitive, so t(R) is an equivalence relation.

Let R be a relation on a set X . The reachability relation of R is a

relation R∗ on X defined by

xR∗y ⇔ x = y or ∃ finite x1, x2, . . . , xk

such that

(x, x1), (x1, x2), . . . , (xk, y) ∈ R.

That is, R∗ = I ∪ t(R).

Theorem 5.8. Let R be a relation on a set X. Let M and M ∗ be the

Boolean matrices of R and R∗ respectively. If |X| = n, then

M ∗ = I ∨M ∨M 2 ∨ · · · ∨Mn−1.
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Moreover, if R is reflexive, then

Rk ⊂ Rk+1, k ≥ 1;

M ∗ = Mn−1.

Proof. It follows from Theorem 5.6.

6 Washall’s Algorithm

Let R be a relation on X = {x1, . . . , xn}. Let y0, y1, . . . , ym be a path in R.

The vertices y1, . . . , ym−1 are called interior vertices of the path. For each

k with 0 ≤ k ≤ n, we define the Boolean matrix

Wk = [wij],

where wij = 1 if there is a path in R from xi to xj whose interior vertices are

contained in

Xk := {x1, . . . , xk},
otherwise wij = 0, where X0 = ∅.

Since the interior vertices of any path in R is obviously contained in the

whole set X = Xn = {x1, . . . , xn}, the (i, j)-entry of Wn is equal to 1 if there

is a path in R from xi to xj. Then Wn is the matrix of the transitive closure

t(R) of R, that is,

Wn = Mt(R).

Clearly, W0 = MR. We have a sequence of Boolean matrices

MR = W0, W1, W2, . . . , Wn.

The so-called Warshall’s algorithm is to compute Wk from Wk−1, k ≥ 1.

Let Wk−1 = [sij] and Wk = [tij]. If tij = 1, there must be a path

xi = y0, y1, . . . , ym = xj

from xi to xj whose interior vertices y1, . . . , ym−1 are contained in {x1, . . . , xk}.
We may assume that y1, . . . , ym−1 are distinct. If xk is not an interior vertex
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of this path, that is, all interior vertices are contained in {x1, . . . , xk−1}, then

sij = 1. If xk is an interior vertex of the path, say xk = yp, then there two

sub-paths
xi = y0, y1, . . . , yp = xk,

xk = yp, yp+1, . . . , ym = xj

whose interior vertices y1, . . . , yp−1, yp+1, . . . , ym−1 are contained in {x1, . . . , xk−1}
obviously. It follows that

sik = 1, skj = 1.

We conclude that

tij = 1 ⇔
{

sij = 1 or

sik = 1, skj = 1 for some k.

Theorem 6.1 (Warshall’s Algorithm for Transitive Closure). Working on

the Boolean matrix Wk−1 to produce Wk.

(a) If the (i, j)-entry of Wk−1 is 1, so is the entry in Wk. Keep 1 there.

(b) If the (i, j)-entry of Wk−1 is 0, then check the entries of Wk−1 at (i, k)

and (k, j). If both entries are 1, then change the (i, j)-entry in Wk−1

to 1. Otherwise, keep 0 there.

Example 6.1. Consider the relation R on A = {1, 2, 3, 4, 5} given by the

Boolean matrix

MR =




0 0 0 0 1

0 1 1 0 0

1 0 0 0 0

0 0 0 1 0

0 0 1 1 0




.
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By Warshall’s algorithm, we have

W0 =




0 0 0 0 1

0 1 1 0 0

1 0 0 0 0

0 0 0 1 0

0 0 1 1 0



⇒ W1 =




0 0 0 0 1

0 1 1 0 0

1 0 0 0 (1)

0 0 0 1 0

0 0 1 1 0




(3, 1), (1, 5)

⇒ W2 =




0 0 0 0 1

0 1 1 0 0

1 0 0 0 1

0 0 0 1 0

0 0 1 1 0




(no change)

⇒ W3 =




0 0 0 0 1

(1) 1 1 0 (1)

1 0 0 0 1

0 0 0 1 0

(1) 0 1 1 (1)




(2, 3), (3, 1)

(2, 3), (3, 5)

(5, 3), (3, 1)

(5, 3), (3, 5)

⇒ W4 =




0 0 0 0 1

1 1 1 0 1

1 0 0 0 1

0 0 0 1 0

1 0 1 1 1




(no change)

⇒ W5 =




(1) 0 (1) (1) 1

1 1 1 (1) 1

1 0 (1) (1) 1

0 0 0 1 0

1 0 1 1 1




(1, 5), (5, 1)

(1, 5), (5, 3)

(1, 5), (5, 4)

(2, 5), (5, 4)

(3, 5), (5, 3)

(3, 5), (5, 4)

.
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The binary relation for the Boolean matrix W5 is the transitive closure of R.

1

2

3

4

5

Definition 6.2. A binary relation R on a set X is called

a) asymmetric if xRy implies yR̄x;

b) antisymmetric if xRy and yRx imply x = y.

7 Modular Integers

For an equivalence relation∼ on a set X , the set of equivalence classes is usually

denoted by X/ ∼, called the quotient set of X modulo ∼. Given a positive

integer n ≥ 2. The relation modulo n, denoted ≡n, is a binary relation on

Z, defined as a ≡n b if b− a = kn for an integer k ∈ Z. Traditionally, a ≡n b

is written as a ≡ b (mod n). We denote the quotient set Z/ ≡n by

Zn = {[0], [1], . . . , [n− 1]}.
There addition and multiplication on Zn, defined as

[a] + [b] = [a + b], [a][b] = [ab].

The two operations are well defined since

[a + kn] + [b + ln] = [(a + b) + (k + l)n]] = [a + b],
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[a + kn][b + ln] = [[(a + kn)(b + ln)] = [ab + (al + bk + kl)n]] = [ab].

A modular integer [a] is said to be invertible if there exists an modular integer

[b] such that [a][b] = [1]. If so, [b] is called the inverse of [a], written

[b] = [a]−1.

If an inverse exists, it must be unique. If [b] is an inverse of [a], then [a] is an

inverse of [b].

A modular integer [a] is said to be invertible if there exists an modular

integer [c] such that [a][b] = [1]. If so, [b] is called the inverse of [a], written

[b] = [a]−1. If [a1], [a2] are invertible, then [a1][a2] = [a1a2] is invertible. Let

[b1], [b2] be inverses of [a1], [a2] respectively. Then [b1b2] is the inverse of [a1a2].

In fact, [a1a2][b1b2] = [a1][a2][b2][b1] = [a1][1][b1] = [a1][b1] = [1].

Example 7.1. What modular integers [a] are invertible in Zn?

When [a] has an inverse [b], we have [a][b] = 1, i.e., [ab] = [1]. This means

that ab and 1 are different by a multiple of n, say, ab + kn = 1 for an integer

k. Let d = gcd(a, n). Then d | (ab + kn), since d | a and d | n. Thus d | 1. It

forces d = 1. So gcd(a, n) = 1.

If gcd(a, n) = 1, by Euclidean Algorithm, there are integers x, y such that

ax+ny = 1. Then [ax+ny] = [ax] = [1], i.e., [a][x] = [1]. So [x] is the inverse

of [a].

Example 7.2. Given an integer a. Consider the function

fa : Zn → Zn, fa([x]) = [ax].

Find a condition for a so that fa is an invertible function.

Example 7.3. Is the function f45 : Z119 → Z119 by f45([x]) = [45x] invertible?

If yes, find its inverse function.

We need to find gcd(119, 45) first. Applying the Division Algorithm,

119 = 2 · 45 + 29

45 = 29 + 16

29 = 16 + 13

16 = 13 + 3

13 = 4 · 3 + 1
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So gcd(119, 45) = 1. The function f45 is invertible. To find the inverse of f45,

we apply the Euclidean Algorithm:

1 = 13− 4 · 3 = 13− 4(16− 13)

= 5 · 13− 4 · 16 = 5(29− 16)− 4 · 16

= 5 · 29− 9 · 16 = 5 · 29− 9(45− 29)

= 14 · 29− 9 · 45 = 14(119− 2 · 45)− 9 · 45

= 14 · 119 + (−37) · 45

The inverse of f45 is f−37, i.e., f82.

Theorem 7.1 (Fermat’s Little Theorem). Let p be a prime number and a

an integer. If p - a, then ap−1 ≡ 1 (mod p).

Proof. The function fa : Zp → Zp is invertible, since gcd(a, p) = 1. So fa is a

bijection and fa(Zp) = Zp. Since fa([0]) = [0], we must have

fa(Zp − {[0]}) = {[a], [2a], . . . , [(p− 1)a]} = {[1], . . . , [p− 1]}.
Thus

p−1∏

k=1

[ka] =

p−1∏

k=1

[k], i.e., [a]p−1

p−1∏

k=1

[k] =

p−1∏

k=1

[k][a] =

p−1∏

k=1

[k].

Since the product of invertible elements are still invertible, so
∏p−1

k=1[k] is invert-

ible. Thus [ap−1] = [a]p−1 = [1]. This means that ap−1 ≡ 1 (mod p).

Let ϕ(n) denote the number of positive integers coprime to n, i.e.,

ϕ(n) = |{a ∈ [n] : gcd(a, n) = 1}.
For example, p = 5, a = 6 and a - 5. Then 64 = 1296 = 1 (mod 5).

Theorem 7.2 (Euler’s Theorem). For integer n ≥ 2 and integer a such

that gcd(a, n) = 1,

aϕ(n) = 1 (mod n).

Proof. Let S denote the set of invertible elements of Zn. Then |S| = ϕ(n).

The elements [a][s], [s] ∈ S, are all distinct and invertible, i.e., [a][s1] 6= [a][s2]
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for [s1], [s2] ∈ S with [s1] 6= [s2]. In fact, [a][s1] = [a][s2] implies [s1] = [s2].

Consider the product

[a]|S|
∏

[s]∈S
[s] =

∏

[s]∈S
[a][s] =

∏

[s]∈S
[s].

It follows that [a]|S| = [1].

For example, n = 12, a = 35, gcd(35, 12) = 1, and ϕ(12) = {1, 5, 7, 11},
354 = 1500625 = 1 (mod 12).

Problem Set 3

1. Let R be a binary relation from X to Y , A,B ⊆ X .

(a) If A ⊆ B, then R(A) ⊆ R(B).

(b) R(A ∪B) = R(A) ∪R(B).

(c) R(A ∩B) ⊆ R(A) ∩R(B).

Proof. (a) For each y ∈ R(A), there is an x ∈ A such that (x, y) ∈ R.

Clearly, x ∈ B, since A ⊆ B. Thus y ∈ R(B). This means that R(A) ⊆
R(B).

(b) Since R(A) ⊆ R(A ∪B), R(B) ⊆ R(A ∪B), we have

R(A) ∪R(B) ⊆ R(A ∪B).

On the other hand, for each y ∈ R(A∪B), there is an x ∈ A∪B such that

(x, y) ∈ R. Then either x ∈ A or x ∈ B. Thus y ∈ R(A) or y ∈ R(B),

i.e., y ∈ R(A) ∪R(B). Therefore R(A) ∪R(B) ⊇ R(A ∪B).

(c) It follows from (a) that R(A ∩ B) ⊆ R(A) and R(A ∩ B) ⊆ R(B).

Hence R(A ∩B) ⊆ R(A ∩B).

2. Let R1 and R2 be relations from X to Y . If R1(x) = R2(x) for all x ∈ X ,

then R1 = R2.

Proof. For each (x, y) ∈ R1, we have y ∈ R1(x). Since R1(x) = R2(x),

then y ∈ R2(x). Thus (x, y) ∈ R2. Likewise, for each (x, y) ∈ R2, we have

(x, y) ∈ R2. Hence R1 = R2.
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3. Let a, b, c ∈ R. Then

a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c),

a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c).

Proof. Note that the cases b < c and b > c are equivalent. There are three

essential cases to be verified.

Case 1: a < b < c. We have

a ∧ (b ∨ c) = a = (a ∧ b) ∨ (a ∧ c),

a ∨ (b ∧ c) = b = (a ∨ b) ∧ (a ∨ c).

Case 2: b < a < c. We have

a ∧ (b ∨ c) = a = (a ∧ b) ∨ (a ∧ c),

a ∨ (b ∧ c) = a = (a ∨ b) ∧ (a ∨ c).

Case 3: b < c < a. We have

a ∧ (b ∨ c) = c = (a ∧ b) ∨ (a ∧ c),

a ∨ (b ∧ c) = a = (a ∨ b) ∧ (a ∨ c).

4. Let Ri ⊆ X × Y be a family of relations from X to Y , indexed by i ∈ I .

(a) If R ⊆ W ×X , then R
(⋃

i∈I Ri

)
=

⋃
i∈I RRi;

(b) If S ⊆ Y × Z, then
(⋃

i∈I Ri

)
S =

⋃
i∈I RiS.

Proof. (a) By definition of composition of relations, (w, y) ∈ R
(⋃

i∈I Ri

)
is equivalent to that there exists an x ∈ X such that (w, x) ∈ R and

(x, y) ∈ ⋃
i∈I Ri. Notice that (x, y) ∈ ⋃

i∈I Ri is further equivalent to that

there is an index i0 ∈ I such that (x, y) ∈ Ri0. Thus (w, y) ∈ R
(⋃

i∈I Ri

)
is equivalent to that there exists an i0 ∈ I such that (w, y) ∈ RRi, which

means (w, y) ∈ ⋃
i∈I RRi by definition of composition.
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(b) (x, z) ∈ (⋃
i∈I Ri

)
S ⇔ (by definition of composition) there exists

y ∈ Y such that (x, y) ∈ ⋃
i∈I Ri and (y, z) ∈ S ⇔ (by definition of set

union) there exists i0 ∈ I such that (x, y) ∈ Ri0 and (y, z) ∈ S ⇔ there

exists i0 ∈ I such that (w, y) ∈ RRi ⇔ (by definition of composition)

(w, y) ∈ ⋃
i∈I RRi.

5. Let Ri (1 ≤ i ≤ 3) be relations on A = {a, b, c, d, e} whose Boolean

matrices are

M1 =




0 1 1 0 1

0 0 0 0 0

0 0 0 0 0

0 1 1 0 1

0 0 0 0 0




, M2 =




1 0 0 1 0

0 0 0 0 0

0 0 0 0 0

1 0 0 1 0

0 0 0 0 0




,

M3 =




0 0 0 0 0

0 1 1 0 1

0 1 1 0 1

0 0 0 0 0

0 1 1 0 1




.

(a) Draw the digraphs of the relations R1, R2, R3.

(b) Find the Boolean matrices for the relations

R−1
1 , R2 ∪R3, R1R1, R1R

−1
1 , R−1

1 R1;

and verify that

R1R
−1
1 = R2, R−1

1 R1 = R3.

(c) Verify that R2∪R3 is an equivalence relation and find the quotient set

A/(R2 ∪R3).

Solution:

MR−1
1

=




0 0 0 0 0

1 0 0 1 0

1 0 0 1 0

0 0 0 0 0

1 0 0 1 0




, MR2∪R3 =




1 0 0 1 0

0 1 1 0 1

0 1 1 0 1

1 0 0 1 0

0 1 1 0 1




, MR2
1

=




0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0




,

28



MR1R
−1
1

=




1 0 0 1 0

0 0 0 0 0

0 0 0 0 0

1 0 0 1 0

0 0 0 0 0




= M2, MR−1
1 R1

=




0 0 0 0 0

0 1 1 0 1

0 1 1 0 1

0 0 0 0 0

0 1 1 0 1




= M3.

6. Let R be a relation on Z defined by aRb if a + b is an even integer.

(a) Show that R is an equivalence relation on Z.

(b) Find all equivalence classes of the relation R.

Proof. (a) For each a ∈ Z, a + a = 2a is clearly even, so aRa, i.e., R is

reflexive. If aRb, then a + b is even, of course b + a = a + b is even, so

bRa, i.e., R is symmetric. If aRb and bRc, then a + b and b + c are even;

thus a + c = (a + b) + (b + c)− 2b is even (sum of even numbers are even),

so aRc, i.e., R is transitive. Therefore R is an equivalence relation.

(b) Note that aRb if and only if both of a, b are odd or both are even.

Thus there are exactly two equivalence classes: one class is the set of even

integers, and the other class is the set of odd integers. The quotient set

Z/R is the set Z2 of integers modulo 2.

7. Let X = {1, 2, . . . , 10} and let R be a relation on X such that aRb if and

only if |a − b| ≤ 2. Determine whether R is an equivalence relation. Let

MR be the matrix of R. Compute M 8
R.

Solution: The following is the graph of the relation.

101 2 3 4 5 6 7 8 9

Then M 5
R is a Boolean matrix all whose entries are 1. Thus M 8

R is the same

as M 5
R. ¤

8. A relation R on a set X is called a preference relation if R is reflexive

and transitive. Show that R ∩R−1 is an equivalence relation.
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Proof. Since I ⊆ R, we have I = I−1 ⊆ R−1, so I ⊆ R ∩ R−1, i.e.,

R ∩R−1 is reflexive.

If x(R ∩ R−1)y, then xRy and xR−1y; by definition of converse, yR−1x

and yRx; thus y(R ∩R−1)x. This means that R ∩R−1 is symmetric.

If x(R ∩ R−1)y and y(R ∩ R−1)z, then xRy, yRz and yRx, zRy by con-

verse; thus xRz and zRx by transitivity; therefore xRz and xR−1z by

converse again; finally we have x(R ∩R−1)z. This means that R ∩R−1 is

transitive.

9. Let n be a positive integer. The congruence relation ∼ of modulo n is

an equivalence relation on Z. Let Zn denote the quotient set Z/∼ =

{[0], [1], . . . , [n− 1]}. Given an integer a ∈ Z, we define a function

fa : Zn → Zn by fa([x]) = [ax].

(a) Find the cardinality of the set fa(Zn).

(b) Find all integers a such that fa is invertible.

Solution: (a) Let d = gcd(a, n), a = kd, n = ld. Fix an integer x ∈ Z,

we write x = ql + r by division algorithm, where 0 ≤ r < l. Then

ax = kd(ql + r) = kdql + kdr = kqn + ar ≡ ar (mod n).

For two integers r1, r2 with 1 ≤ r1 < r2 < l, we claim ar1 6≡ ar2 (mod n).

In fact, suppose ar1 ≡ ar2 (mod n), then n | a(r2 − r1); since a = kd and

n = ld, it is equivalent to l | k(r2 − r1). Since gcd(k, l) = 1, we have l |
(r2−r1). Thus r1 = r2, which is a contradiction. Thus |fa(Zn)| = l = n/d

and

fa(Zn) = {[ar] : r ∈ Z, 0 ≤ r < l}.
(b) Since Zn is finite, then fa is a bijection if and only if fa is onto. However,

fa is onto if and only if |fa(Zn)| = n, i.e., gcd(a, n) = 1.

10. For a positive integer n, let φ(n) denote the number of positive integers

a ≤ n such that gcd(a, n) = 1, called Euler’s function. Let R be

the relation on X = {1, 2, . . . , n} defined by aRb if a ≤ b, b | n, and

gcd(a, b) = 1.
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(a) Find the cardinality |R−1(b)| for each b ∈ X .

(b) Show that

|R| =
∑

a|n
φ(a).

(c) Prove |R| = n by showing that the function f : R → X , defined by

f (a, b) = an/b, is a bijection.

Solution: (a) For each b ∈ X , if b - n, then R−1(b) = ∅. If b | n, we have

|R−1(b)| = |{a ∈ X : a ≤ b, gcd(a, b) = 1}| = φ(b).

(b) It follows that

|R| =
∑

b∈X

|R−1(b)| =
∑

b≥1, b|n
|R−1(b)| =

∑

b|n
φ(b).

(c) The function f is clearly well-defined. We first to show that f is in-

jective. For (a1, b1), (a2, b2) ∈ R, if f (a1, b1) = f (a2, b2), i.e., a1n/b1 =

a2n/b2, then a1/b1 = a2/b2, which is a rational number in reduced form,

since gcd(a1, b1) = 1 and gcd(a2, b2) = 1; it follows that (a1, b1) = (a2, b2).

Thus f is injective. To see that f is surjective, for each b ∈ X , let

d = gcd(b, n). Then f (b/n, n/b) = (b/d)n/(n/d) = b. This means that f

is surjective. So f is a bijection. We have obtained the following formula

n =
∑

b|n
φ(b).
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