Week 4-5: Binary Relations

1 Binary Relations

The concept of relation is common in daily life and seems intuitively clear. For instance, let X denote the set of all females and Y the set of all males. The wife-husband relation R can be thought as a relation from X to Y. For a lady $x \in X$ and a gentleman $y \in Y$, we say that x is related to y by R if x is a wife of y, written as $x R y$. To describe the relation R, we may list the collection of all ordered pairs (x, y) such that x is related to y by R. The collection of all such related ordered pairs is simply a subset of the Cartesian product $X \times Y$. This motivates the following definition of binary relations.

Definition 1.1. Let X and Y be nonempty sets. A binary relation from X to Y is a subset

$$
R \subseteq X \times Y .
$$

If $(x, y) \in R$, we say that x is related to y by R, denoted $x R y$. If $(x, y) \notin R$, we say that x is not related to y, denoted $x \bar{R} y$. For each element $x \in X$, we denote by $R(x)$ the subset of elements of Y that are related to x, that is,

$$
R(x)=\{y \in Y: x R y\}=\{y \in Y:(x, y) \in R\} .
$$

For each subset $A \subseteq X$, we define

$$
R(A)=\{y \in Y: \exists x \in A \text { such that } x R y\}=\bigcup_{x \in A} R(x) .
$$

When $X=Y$, we say that R is a binary relation on X.
Since binary relations from X to Y are subsets of $X \times Y$, we can define intersection, union, and complement for binary relations. The complementary relation of a binary relation $R \subseteq X \times Y$ is the binary relation $\bar{R} \subseteq X \times Y$ defined by

$$
x \bar{R} y \Leftrightarrow(x, y) \notin R .
$$

The converse relation (or reverse relation) of R is the binary relation $R^{-1} \subseteq Y \times X$ defined by

$$
y R^{-1} x \Leftrightarrow(x, y) \in R .
$$

Example 1.1. Consider a family A with five children, Amy, Bob, Charlie, Debbie, and Eric. We abbreviate the names to their first letters so that

$$
A=\{a, b, c, d, e\} .
$$

(a) The brother-sister relation $R_{b s}$ is the set

$$
R_{b s}=\{(b, a),(b, d),(c, a),(c, d),(e, a),(e, d)\} .
$$

(b) The sister-brother relation $R_{s b}$ is the set

$$
R_{s b}=\{(a, b),(a, c),(a, e),(d, b),(d, c),(d, e)\} .
$$

(c) The brother relation R_{b} is the set

$$
\{(b, b),(b, c),(b, e),(c, b),(c, c),(c, e),(e, b),(e, c),(e, e)\}
$$

(d) The sister relation R_{s} is the set

$$
\{(a, a),(a, d),(d, a),(d, d)\} .
$$

The brother-sister relation $R_{b s}$ is the inverse of the sister-brother relation $R_{s b}$, i.e.,

$$
R_{b s}=R_{s b}^{-1} .
$$

The brother or sister relation is the union of the brother relation and the sister relation, i.e.,

$$
R_{b} \cup R_{s} .
$$

The complementary relation of the brother or sister relation is the brother-sister or sister-brother relation, i.e.,

$$
{\overline{R_{b}} \cup R_{s}}=R_{b s} \cup R_{s b} .
$$

Example 1.2. (a) The graph of equation

$$
\frac{x^{2}}{3^{2}}+\frac{y^{2}}{2^{2}}=1
$$

is a binary relation on \mathbb{R}. The graph is an ellipse.
(b) The relation less than, denoted by $<$, is a binary relation on \mathbb{R} defined by

$$
a<b \quad \text { if } a \text { is less than } b
$$

As a subset of $\mathbb{R}^{2}=\mathbb{R} \times \mathbb{R}$, the relation is given by the set

$$
\left\{(a, b) \in \mathbb{R}^{2}: a \text { is less than } b\right\}
$$

(c) The relation greater than or equal to is a binary relation \geq on \mathbb{R} defined by

$$
a \geq b \quad \text { if } a \text { is greater than or equal to } b
$$

As a subset of \mathbb{R}^{2}, the relation is given by the set

$$
\left\{(a, b) \in \mathbb{R}^{2}: a \text { is greater than or equal to } b\right\}
$$

(d) The divisibility relation | about integers, defined by

$$
a \mid b \quad \text { if } a \text { divides } b
$$

is a binary relation on the set \mathbb{Z} of integers. As a subset of \mathbb{Z}^{2}, the relation is given by

$$
\left\{(a, b) \in \mathbb{Z}^{2}: a \text { is a factor of } b\right\}
$$

Example 1.3. Any function $f: X \rightarrow Y$ can be viewed as a binary relation from X to Y. The binary relation is just its graph

$$
G(f)=\{(x, f(x)): x \in X\} \subseteq X \times Y
$$

Proposition 1.2. Let $R \subseteq X \times Y$ be a binary relation from X to Y. Let $A, B \subseteq X$ be subsets.
(a) If $A \subseteq B$, then $R(A) \subseteq R(B)$.
(b) $R(A \cup B)=R(A) \cup R(B)$.
(c) $R(A \cap B) \subseteq R(A) \cap R(B)$.

Proof. (a) For any $y \in R(A)$, there is an $x \in A$ such that $x R y$. Since $A \subseteq B$, then $x \in B$. Thus $y \in R(B)$. This means that $R(A) \subseteq R(B)$.
(b) For any $y \in R(A \cup B)$, there is an $x \in A \cup B$ such that $x R y$. If $x \in A$, then $y \in R(A)$. If $x \in B$, then $y \in R(B)$. In either case, $y \in R(A) \cup R(B)$. Thus

$$
R(A \cup B) \subseteq R(A) \cup R(B)
$$

On the other hand, it follows from (a) that

$$
R(A) \subseteq R(A \cup B) \quad \text { and } \quad R(B) \subseteq R(A \cup B)
$$

Thus $R(A) \cup R(B) \subseteq R(A \cup B)$.
(c) It follows from (a) that

$$
R(A \cap B) \subseteq R(A) \quad \text { and } \quad R(A \cap B) \subseteq R(B)
$$

Thus $R(A \cap B) \subseteq R(A) \cap R(B)$.
Proposition 1.3. Let $R_{1}, R_{2} \subseteq X \times Y$ be relations from X to Y. If $R_{1}(x)=R_{2}(x)$ for all $x \in X$, then $R_{1}=R_{2}$.

Proof. If $x R_{1} y$, then $y \in R_{1}(x)$. Since $R_{1}(x)=R_{2}(x)$, we have $y \in R_{2}(x)$. Thus $x R_{2} y$. A similar argument shows that if $x R_{2} y$ then $x R_{1} y$. Therefore $R_{1}=R_{2}$.

2 Representation of Relations

Binary relations are the most important relations among all relations. Ternary relations, quaternary relations, and multi-factor relations can be studied by binary relations. There are two ways to represent a binary relation, one by a directed graph and the other by a matrix.

Let R be a binary relation on a finite set $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. We may describe the relation R by drawing a directed graph as follows: For each element $v_{i} \in V$, we draw a solid dot and name it by v_{i}; the dot is called a vertex. For two vertices v_{i} and v_{j}, if $v_{i} R v_{j}$, we draw an arrow from v_{i} to v_{j}, called a directed edge. When $v_{i}=v_{j}$, the directed edge becomes a directed loop.

The resulted graph is a directed graph, called the digraph of R, and is denoted by $D(R)$. Sometimes the directed edges of a digraph may have to cross each other when drawing the digraph on a plane. However, the intersection points of directed edges are not considered to be vertices of the digraph.

The in-degree of a vertex $v \in V$ is the number of vertices u such that $u R v$, and is denoted by

$$
\text { indeg }(v)
$$

The out-degree of v is the number of vertices w such that $v R w$, and is denoted by

$$
\text { outdeg }(v)
$$

If $R \subseteq X \times Y$ is a relation from X to Y, we define

$$
\begin{aligned}
\operatorname{outdeg}(x) & =|R(x)| \quad \text { for } \quad x \in X \\
\operatorname{indeg}(y) & =\left|R^{-1}(y)\right| \quad \text { for } \quad y \in Y .
\end{aligned}
$$

The digraphs of the brother-sister relation $R_{b s}$ and the brother or sister relation $R_{b} \cup R_{s}$ are demonstrated in the following.

Definition 2.1. Let $R \subseteq X \times Y$ be a binary relation from X to Y, where

$$
X=\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}, \quad Y=\left\{y_{1}, y_{2}, \ldots, y_{n}\right\} .
$$

The matrix of the relation R is an $m \times n$ matrix $M_{R}=\left[a_{i j}\right]$, whose (i, j)-entry is given by

$$
a_{i j}=\left\{\begin{array}{lll}
1 & \text { if } & x_{i} R y_{j} \\
0 & \text { if } & x_{i} \bar{R} y_{j} .
\end{array}\right.
$$

The matrix M_{R} is called the Boolean matrix of R. If $X=Y$, then $m=n$, and the matrix M_{R} is a square matrix.

Let $A=\left[a_{i j}\right]$ and $B=\left[b_{i j}\right]$ be $m \times n$ Boolean matrices. If $a_{i j} \leq b_{i j}$ for all (i, j)-entries, we write $A \leq B$.

The matrix of the brother-sister relation $R_{b s}$ on the set $A=\{a, b, c, d, e\}$ is the square matrix

$$
\left[\begin{array}{lllll}
0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0
\end{array}\right]
$$

and the matrix of the brother or sister relation is the square matrix

$$
\left[\begin{array}{lllll}
1 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 1 \\
0 & 1 & 1 & 0 & 1 \\
1 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 1
\end{array}\right]
$$

Proposition 2.2. For any digraph $D(R)$ of a binary relation $R \subseteq V \times V$ on V,

$$
\sum_{v \in V} \operatorname{indeg}(v)=\sum_{v \in V} \operatorname{outdeg}(v)=|R| .
$$

If R is a binary relation from X to Y, then

$$
\sum_{x \in X} \operatorname{outdeg}(x)=\sum_{y \in Y} \operatorname{indeg}(y)=|R| .
$$

Proof. Trivial.

Let R be a relation on a set X. A directed path of length k from x to y is a finite sequence $x_{0}, x_{1}, \ldots, x_{k}$ (not necessarily distinct), beginning with $x_{0}=x$ and ending with $x_{k}=y$, such that

$$
x_{0} R x_{1}, x_{1} R x_{2}, \ldots, x_{k-1} R x_{k} .
$$

A path that begins and ends at the same vertex is called a directed cycle.

For any fixed positive integer k, let $R^{k} \subseteq X \times X$ denote the relation on X given by

$$
x R^{k} y \Leftrightarrow \exists \text { a path of length } k \text { from } x \text { to } y .
$$

Let $R^{\infty} \subseteq X \times X$ denote the relation on X given by

$$
x R^{\infty} y \Leftrightarrow \exists \text { a directed path from } x \text { to } y .
$$

The relation R^{∞} is called the connectivity relation for R. Clearly, we have

$$
R^{\infty}=R \cup R^{2} \cup R^{3} \cup \cdots=\bigcup_{k=1}^{\infty} R^{k}
$$

The reachability relation of R is the binary relation $R^{*} \subseteq X \times X$ on X defined by

$$
x R^{*} y \Leftrightarrow x=y \text { or } x R^{\infty} y .
$$

Obviously,

$$
R^{*}=I \cup R \cup R^{2} \cup R^{3} \cup \cdots=\bigcup_{k=0}^{\infty} R^{k}
$$

where I is the identity relation on X defined by

$$
x I y \quad \Leftrightarrow \quad x=y .
$$

We always assume that $R^{0}=I$ for any relation R on a set X.
Example 2.1. Let $X=\left\{x_{1}, \ldots, x_{n}\right\}$ and $R=\left\{\left(x_{i}, x_{i+1}\right): i=1, \ldots, n-1\right\}$. Then

$$
\begin{gathered}
R^{k}=\left\{\left(x_{i}, x_{i+k}\right): i=1, \ldots, n-k\right\}, \quad 1 \leq k \leq n / 2 ; \\
R^{k}=\varnothing, \quad k \geq(n+1) / 2 ; \\
R^{\infty}=\left\{\left(x_{i}, x_{j}\right): i<j\right\} .
\end{gathered}
$$

If $R=\left\{\left(x_{i}, x_{i+1}\right): i=1, \ldots, n\right\}$ with $x_{n+1}=x_{1}$, then $R^{\infty}=X \times X=X^{2}$.

3 Composition of Relations

Definition 3.1. Let $R \subseteq X \times Y$ and $S \subseteq Y \times Z$ binary relations. The composition of R and S is a binary relation $S \circ R \subseteq X \times Z$ from X to Z
defined by

$$
x(S \circ R) z \Leftrightarrow \exists y \in Y \text { such that } x R y \text { and } y S z .
$$

When $X=Y$, the relation R is a binary relation on X. We have

$$
R^{k}=R^{k-1} \circ R, \quad k \geq 2
$$

Remark. Given relations $R \subseteq X \times Y$ and $S \subseteq Y \times Z$, the composition $S \circ R$ of R and S is backward. However, some people use the notation $R \circ S$ instead of our notation $S \circ R$. But this usage is inconsistent with the composition of functions. To avoid confusion and for aesthetic reason, we write $S \circ R$ as

$$
R S=\{(x, z) \in X \times Z: \exists y \in Y, x R y, y S z\}
$$

Example 3.1. Let $R \subseteq X \times Y, S \subseteq Y \times Z$, where

$$
X=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}, Y=\left\{y_{1}, y_{2}, y_{3}\right\}, Z=\left\{z_{1}, z_{2}, z_{3}, z_{4}, x_{5}\right\} .
$$

Example 3.2. For the brother-sister relation, sister-brother relation, brother relation, and sister relation on $A=\{a, b, c, d, e\}$, we have

$$
\begin{gathered}
R_{b s} R_{s b}=R_{b}, \quad R_{s b} R_{b s}=R_{s}, \quad R_{b s} R_{s}=R_{b s} \\
R_{b s} R_{b s}=\varnothing, \quad R_{b} R_{b}=R_{b}, \quad R_{b} R_{s}=\varnothing
\end{gathered}
$$

Let $X_{1}, X_{2}, \ldots, X_{n}, X_{n+1}$ be nonempty sets. Given relations

$$
R_{i} \subseteq X_{i} \times X_{i+1}, \quad 1 \leq i \leq n
$$

We define a relation $R_{1} R_{2} \cdots R_{n} \subseteq X_{1} \times X_{n+1}$ from X_{1} to X_{n+1} by

$$
x R_{1} R_{2} \cdots R_{n} y
$$

if and only if there exists a sequence $x_{1}, x_{2}, \ldots, x_{n}, x_{n+1}$ with $x_{1}=x, x_{n+1}=y$ such that

$$
x_{1} R_{1} x_{2}, \quad x_{2} R_{2} x_{3}, \quad \ldots, \quad x_{n} R_{n} x_{n+1}
$$

Theorem 3.2. Given relations

$$
R_{1} \subseteq X_{1} \times X_{2}, \quad R_{2} \subseteq X_{2} \times X_{3}, \quad R_{3} \subseteq X_{3} \times X_{4}
$$

We have

$$
R_{1} R_{2} R_{3}=R_{1}\left(R_{2} R_{3}\right)=\left(R_{1} R_{2}\right) R_{3} .
$$

as relations from X_{1} to X_{4}.
Proof. For $x \in X_{1}, y \in X_{4}$, we have

$$
\begin{aligned}
x R_{1}\left(R_{2} R_{3}\right) y \Leftrightarrow & \exists x_{2} \in X_{2}, x R_{1} x_{2}, x_{2} R_{2} R_{3} y \\
\Leftrightarrow & \exists x_{2} \in X_{2}, x R_{1} x_{2} ; \\
& \exists x_{3} \in X_{3}, x_{2} R_{2} x_{3}, x_{3} R_{3} y \\
\Leftrightarrow & \exists x_{2} \in X_{2}, x_{3} \in X_{3}, \\
& x R_{1} x_{2}, x_{2} R_{2} x_{3}, x_{3} R_{3} y \\
\Leftrightarrow & x R_{1} R_{2} R_{3} y .
\end{aligned}
$$

Similarly, $x\left(R_{1} R_{2}\right) R_{3} y \Leftrightarrow x R_{1} R_{2} R_{3} y$.
Proposition 3.3. Let $R_{i} \subseteq X \times Y$ be relations, $i=1,2$.
(a) If $R \subseteq W \times X$, then $R\left(R_{1} \cup R_{2}\right)=R R_{1} \cup R R_{2}$.
(b) If $S \subseteq Y \times Z$, then $\left(R_{1} \cup R_{2}\right) S=R_{1} S \cup R_{2} S$.

Proof. (a) For each $w R\left(R_{1} \cup R_{2}\right) y, \exists x \in X$ such that $w R x$ and $x\left(R_{1} \cup R_{2}\right) y$. Then $x R_{1} y$ or $x R_{2} y$. Thus $w R R_{1} y$ or $w R R_{2} y$. Namely, $w\left(R R_{1} \cup R R_{2}\right) y$.

Conversely, for each $(w, y) \in R R_{1} \cup R R_{2}$, we have either $(w, y) \in R R_{1}$ or $(w, y) \in R R_{2}$. Then there exist $x_{1}, x_{2} \in X$ such that either $\left(w, x_{1}\right) \in R$, $\left(x_{1}, y\right) \in R_{1} \subseteq R_{1} \cup R_{2}$ or $\left(w, x_{2}\right) \in R,\left(x_{2}, y\right) \in R_{2} \subseteq R_{1} \cup R_{2}$. This means that there exists $x \in X$ such that $(w, x) \in R,(x, y) \in R_{1} \cup R_{2}$. Thus $(w, y) \in R\left(R_{1} \cup R_{2}\right)$.

The proof for (b) is similar.

Exercise 1. Let $R_{i} \subseteq X \times Y$ be relations, $i=1,2, \ldots$.
(a) If $R \subseteq W \times X$, then $R\left(\bigcup_{i=1}^{\infty} R_{i}\right)=\bigcup_{i=1}^{\infty} R R_{i}$.
(b) If $S \subseteq Y \times Z$, then $\left(\bigcup_{i=1}^{\infty} R_{i}\right) S=\bigcup_{i=1}^{\infty} R_{i} S$.

For the convenience of representing composition of relations, we introduce the Boolean operations \wedge and \vee on real numbers. For $a, b \in \mathbb{R}$, define

$$
a \wedge b=\min \{a, b\}, \quad a \vee b=\max \{a, b\} .
$$

Exercise 2. For $a, b, c \in \mathbb{R}$,

$$
\begin{aligned}
& a \wedge(b \vee c)=(a \wedge b) \vee(a \wedge c), \\
& a \vee(b \wedge c)=(a \vee b) \wedge(a \vee c) .
\end{aligned}
$$

Proof. We only prove the first formula. The second one is similar.
Case 1: $b \leq c$. If $a \geq c$, then the left side is $a \wedge(b \vee c)=a \wedge c=c$. The right side is $(a \wedge b) \vee(a \wedge c)=b \vee c=c$. If $b \leq a \leq c$, then the left side is $a \wedge(b \vee c)=a \wedge c=a$. The right side is $(a \wedge b) \vee(a \wedge c)=b \vee a=a$. If $a \leq b \leq c$, then the left side is $a \wedge(b \vee c)=a \wedge c=a$. The right side is $(a \wedge b) \vee(a \wedge c)=a \vee a=a$.

Case 2: $b \geq c$. If $a \leq c$, then $a \wedge(b \vee c)=a \wedge c=a$ and $(a \wedge b) \vee(a \wedge c)=a \vee$ $a=a$. If $b \geq a \geq c$, then $a \wedge(b \vee c)=a \wedge c=a$ and $(a \wedge b) \vee(a \wedge c)=a \vee c=a$. If $a \geq b$, then $a \wedge(b \vee c)=a \wedge b=b$ and $(a \wedge b) \vee(a \wedge c)=b \vee c=b$.

Sometimes it is more convenient to write the Boolean operations as

$$
a \odot b=\min \{a, b\}, \quad a \oplus b=\max \{a, b\} .
$$

For real numbers $a_{1}, a_{2}, \ldots, a_{n}$, we define

$$
\bigvee_{i=1}^{n} a_{i}=\bigoplus_{i=1}^{n} a_{i}=\max \left\{a_{1}, a_{2}, \ldots, a_{n}\right\}
$$

For an $m \times n$ matrix $A=\left[a_{i j}\right]$ and an $n \times p$ matrix $B=\left[b_{j k}\right]$, the Boolean multiplication of A and B is an $m \times p$ matrix $A * B=\left[c_{i k}\right]$, whose (i, k)-entry is defined by

$$
c_{i k}=\bigvee_{j=1}^{n}\left(a_{i j} \wedge b_{j k}\right)=\bigoplus_{j=1}^{n}\left(a_{i j} \odot b_{j k}\right) .
$$

Theorem 3.4. Let $R \subseteq X \times Y, S \subseteq Y \times Z$ be relations, where

$$
X=\left\{x_{1}, \ldots, x_{m}\right\}, \quad Y=\left\{y_{1}, \ldots, y_{n}\right\}, \quad Z=\left\{z_{1}, \ldots, z_{p}\right\} .
$$

Let $M_{R}, M_{S}, M_{R S}$ be matrices of $R, S, R S$ respectively. Then

$$
M_{R S}=M_{R} * M_{S} .
$$

Proof. We write $M_{R}=\left[a_{i j}\right], M_{S}=\left[b_{j k}\right]$, and

$$
M_{R} * M_{S}=\left[c_{i k}\right], \quad M_{R S}=\left[d_{i k}\right] .
$$

It suffices to show that $c_{i k}=d_{i k}$ for any (i, k)-entry.
Case I: $c_{i k}=1$.
Since $c_{i k}=\bigvee_{j=1}^{n}\left(a_{i j} \wedge b_{j k}\right)=1$, there exists j_{0} such that $a_{i j_{0}} \wedge b_{j_{0} k}=1$. Then $a_{i j_{0}}=b_{j_{0} k}=1$. In other words, $x_{i} R y_{j_{0}}$ and $y_{j 0} S z_{k}$. Thus $x_{i} R S z_{k}$ by definition of composition. Therefore $d_{i k}=1$ by definition of Boolean matrix of $R S$.

Case II: $c_{i k}=0$.
Since $c_{i k}=\bigvee_{j=1}^{n}\left(a_{i j} \wedge b_{j k}\right)=0$, we have $a_{i j} \wedge b_{j k}=0$ for all j. Then there is no j such that $a_{i j}=1$ and $b_{j k}=1$. In other words, there is no $y_{j} \in Y$ such that both $x_{i} R y_{j}$ and $y_{j} S z_{k}$. Thus x_{i} is not related to z_{k} by definition of $R S$. Therefore $d_{i k}=0$.

4 Special Relations

We are interested in some special relations satisfying certain properties. For instance, the "less than" relation on the set of real numbers satisfies the socalled transitive property: if $a<b$ and $b<c$, then $a<c$.

Definition 4.1. A binary relation R on a set X is said to be
(a) reflexive if $x R x$ for all x in X;
(b) symmetric if $x R y$ implies $y R x$;
(c) transitive if $x R y$ and $y R z$ imply $x R z$.

A relation R is called an equivalence relation if it is reflexive, symmetric, and transitive. And in this case, if $x R y$, we say that x and y are equivalent.
The relation $I_{X}=\{(x, x): x \in X\}$ is called the identity relation. The relation X^{2} is called the complete relation.

Example 4.1. Many family relations are binary relations on the set of human beings.
(a) The strict brother relation $R_{b}: x R_{b} y \Leftrightarrow x$ and y are both males and have the same parents. (symmetric and transitive)
(b) The strict sister relation $R_{s}: x R_{s} y \Leftrightarrow x$ and y are both females and have the same parents. (symmetric and transitive)
(c) The strict brother-sister relation $R_{b s}: x R_{b s} y \Leftrightarrow x$ is male, y is female, x and y have the same parents.
(d) The strict sister-brother relation $R_{s b}: x R_{s b} \Leftrightarrow x$ is female, y is male, and x and y have the same parents.
(e) The generalized brother relation $R_{b}^{\prime}: x R_{b}^{\prime} y \Leftrightarrow x$ and y are both males and have the same father or the same mother. (symmetric, not transitive)
(f) The generalized sister relation $R_{s}^{\prime}: x R_{s}^{\prime} y \Leftrightarrow x$ and y are both females and have the same father or the same mother. (symmetric, not transitive)
(g) The relation $R: x R y \Leftrightarrow x$ and y have the same parents. (reflexive, symmetric, and transitive; equivalence relation)
(h) The relation $R^{\prime}: x R^{\prime} y \Leftrightarrow x$ and y have the same father or the same mother. (reflexive and symmetric)

Example 4.2. (a) The less than relation < on the set of real numbers is a transitive relation.
(b) The less than or equal to relation \leq on the set of real numbers is a reflexive and transitive relation.
(c) The divisibility relation on the set of positive integers is a reflexive and transitive relation.
(d) Given a positive integer n. The congruence modulo n is a relation $\equiv{ }_{n}$ on \mathbb{Z} defined by

$$
a \equiv_{n} b \Leftrightarrow b-a \text { is a multiple of } n \text {. }
$$

The standard notation for $a \equiv_{n} b$ is $a \equiv b \bmod n$. The relation \equiv_{n} is an equivalence relation on \mathbb{Z}.

Theorem 4.2. Let R be a relation on a set X with matrix M_{R}. Then
(a) R is reflexive $\Leftrightarrow I \subseteq R \Leftrightarrow$ all diagonal entries of M_{R} are 1 .
(b) R is symmetric $\Leftrightarrow R=R^{-1} \Leftrightarrow M_{R}$ is a symmetric matrix.
(c) R is transitive $\Leftrightarrow R^{2} \subseteq R \Leftrightarrow M_{R}^{2} \leq M_{R}$.

Proof. (a) and (b) are trivial.
(c) " R is transitive $\Rightarrow R^{2} \subseteq R$."

For any $(x, y) \in R^{2}$, there exists $z \in X$ such that $(x, z) \in R,(z, y) \in R$. Since R is transitive, then $(x, y) \in R$. Thus $R^{2} \subseteq R$.
" $R^{2} \subseteq R \Rightarrow R$ is transitive."
For $(x, z) \in R$ and $(z, y) \in R$, we have $(x, y) \in R^{2} \subset R$. Then $(x, y) \in R$. Thus R is transitive.

Note that for any relations R and S on X, we have

$$
R \subseteq S \Leftrightarrow M_{R} \leq M_{S}
$$

Since M_{R} is the matrix of R, then $M_{R}^{2}=M_{R} M_{R}=M_{R R}=M_{R^{2}}$ is the matrix of R^{2}. Thus $R^{2} \subseteq R \Leftrightarrow M_{R}^{2} \leq M_{R}$.

5 Equivalence Relations and Partitions

The most important binary relations are equivalence relations. We will see that an equivalence relation on a set X will partition X into disjoint equivalence classes.

Example 5.1. Consider the congruence relation \equiv_{3} on \mathbb{Z}. For each $a \in \mathbb{Z}$, define

$$
[a]=\left\{b \in \mathbb{Z}: a \equiv_{3} b\right\}=\{b \in \mathbb{Z}: a \equiv b \bmod 3\}
$$

It is clear that \mathbb{Z} is partitioned into three disjoint subsets

$$
\begin{array}{ll}
{[0]=\{0, \pm 3, \pm 6, \pm 9, \ldots\}} & =\{3 k: k \in \mathbb{Z}\} \\
{[1]=\{1,1 \pm 3,1 \pm 6,1 \pm 9, \ldots\}} & =\{3 k+1: k \in \mathbb{Z}\} \\
{[2]=\{2,2 \pm 3,2 \pm 6,2 \pm 9, \ldots\}} & =\{3 k+2: k \in \mathbb{Z}\}
\end{array}
$$

Moreover, for all $k \in \mathbb{Z}$,

$$
[0]=[3 k], \quad[1]=[3 k+1], \quad[2]=[3 k+2]
$$

Theorem 5.1. Let \sim be an equivalence relation on a set X. For each x of X, let $[x]$ denote the set of members equivalent to x, i.e.,

$$
[x]:=\{y \in X: x \sim y\}
$$

called the equivalence class of x under \sim. Then
(a) $x \in[x]$ for any $x \in X$,
(b) $[x]=[y]$ if $x \sim y$,
(c) $[x] \cap[y]=\varnothing$ if $x \nsim y$,
(d) $X=\bigcup_{x \in X}[x]$.

The member x is called a representative of the equivalence class $[x]$. The set of all equivalence classes

$$
X / \sim:\{[x]: x \in X\}
$$

is called the quotient set of X under the equivalence relation \sim or modulo \sim.

Proof. (a) It is trivial because \sim is reflexive.
(b) For any $z \in[x]$, we have $x \sim z$ by definition of $[x]$. Since $x \sim y$, we have $y \sim x$ by the symmetric property of \sim. Then $y \sim x$ and $x \sim z$ imply that $y \sim z$ by transitivity of \sim. Thus $z \in[y]$ by definition of $[y]$; that is, $[x] \subset[y]$. Since \sim is symmetric, we have $[y] \subset[x]$. Therefore $[x]=[y]$.
(c) Suppose $[x] \cap[y]$ is not empty, say $z \in[x] \cap[y]$. Then $x \sim z$ and $y \sim z$. By symmetry of \sim, we have $z \sim y$. Thus $x \sim y$ by transitivity of \sim, a contradiction.
(d) This is obvious because $x \in[x]$ for any $x \in X$.

Definition 5.2. A partition of a nonempty set X is a collection

$$
\Pi=\left\{A_{j}: j \in J\right\}
$$

of subsets of X such that
(a) $A_{i} \neq \varnothing$ for all i;
(b) $A_{i} \cap A_{j}=\varnothing$ if $i \neq j$;
(c) $X=\bigcup_{j \in J} A_{j}$.

Each subset A_{j} is called a block of the partition Π.
Theorem 5.3. Let Π be a partition of a set X. Let R_{Π} denote the relation on X defined by

$$
x R_{\Pi} y \Leftrightarrow \exists \text { a block } A_{j} \in \Pi \text { such that } x, y \in A_{j} .
$$

Then R_{Π} is an equivalence relation on X, called the equivalence relation induced by Π.

Proof. (a) For each $x \in X$, there exits one A_{j} such that $x \in A_{j}$. Then by definition of $R_{\Pi}, x R_{\Pi} x$. Hence R_{Π} is reflexive.
(b) If $x R_{\Pi} y$, then there is one A_{j} such that $x, y \in A_{j}$. By definition of R_{Π}, $y R_{\Pi} x$. Thus R_{Π} is symmetric.
(c) If $x R_{\Pi} y$ and $y R_{\Pi} z$, then there exist A_{i} and A_{j} such that $x, y \in A_{i}$ and $y, z \in A_{j}$. Since $y \in A_{i} \cap A_{j}$ and Π is a partition, it forces $A_{i}=A_{j}$. Thus $x R_{\Pi} z$. Therefore R_{Π} is transitive.

Given an equivalence relation R on a set X. The collection

$$
\Pi_{R}=\{[x]: x \in X\}
$$

of equivalence classes of R is a partition of X, called the quotient set of X modulo R. Let $\boldsymbol{E}(X)$ denote the set of all equivalence relations on X and $\boldsymbol{\Pi}(X)$ the set of all partitions of X. Then we have two functions

$$
\begin{array}{ll}
f: \boldsymbol{E}(X) \rightarrow \boldsymbol{\Pi}(X), & f(R)=\Pi_{R} \\
g: \boldsymbol{\Pi}(X) \rightarrow \boldsymbol{E}(X), & g(\Pi)=R_{\Pi}
\end{array}
$$

The functions f and g satisfy the following properties.

Theorem 5.4. Let X be a nonempty set. Then for any equivalence relation R on X, and any partition Π of X, we have

$$
(g \circ f)(R)=R, \quad(f \circ g)(\Pi)=\Pi .
$$

In other words, f and g are inverse of each other.
Proof. Recall $(g \circ f)(R)=g(f(R)),(f \circ g)(\Pi)=f(g(\Pi))$. Then

$$
\begin{aligned}
& x\left[g\left(\Pi_{R}\right)\right] y \Leftrightarrow \exists A \in \Pi_{R} \text { s.t. } x, y \in A \Leftrightarrow x R y ; \\
& A \in f\left(R_{\Pi}\right) \Leftrightarrow \exists x \in X \text { s.t. } A=R_{\Pi}(x) \Leftrightarrow A \in \Pi .
\end{aligned}
$$

Thus $g(f(R))=R$ and $f(g(\Pi))=\Pi$.
Example 5.2. Let \mathbb{Z}_{+}be the set of positive integers. Define a relation ~ on $\mathbb{Z} \times \mathbb{Z}_{+}$by

$$
(a, b) \sim(c, d) \Leftrightarrow a d=b c .
$$

Is \sim an equivalence relation? If Yes, what are the equivalence classes?
Let R be a relation on a set X. The reflexive closure of R is the smallest reflexive relation $r(R)$ on X that contains R; that is,
a) $R \subseteq r(R)$,
b) if R^{\prime} is a reflexive relation on X and $R \subseteq R^{\prime}$, then $r(R) \subseteq R^{\prime}$.

The symmetric closure of R is the smallest symmetric relation $s(R)$ on X such that $R \subseteq s(R)$; that is,
a) $R \subseteq s(R)$,
b) if R^{\prime} is a symmetric relation on X and $R \subseteq R^{\prime}$, then $s(R) \subseteq R^{\prime}$.

The transitive closure of R is the smallest transitive relation $t(R)$ on X such that $R \subseteq t(R)$; that is,
a) $R \subseteq t(R)$,
b) if R^{\prime} is a transitive relation on X and $R \subseteq R^{\prime}$, then $t(R) \subseteq R^{\prime}$.

Obviously, the reflexive, symmetric, and transitive closures of R must be unique respectively.

Theorem 5.5. Let R be a relation R on a set X. Then
a) $r(R)=R \cup I$;
b) $s(R)=R \cup R^{-1}$;
c) $t(R)=\bigcup_{k=1}^{\infty} R^{k}$.

Proof. (a) and (b) are obvious.
(c) Note that $R \subseteq \bigcup_{k=1}^{\infty} R^{k}$ and

$$
\left(\bigcup_{i=1}^{\infty} R^{i}\right)\left(\bigcup_{j=1}^{\infty} R^{j}\right)=\bigcup_{i, j=1}^{\infty} R^{i} R^{j}=\bigcup_{i, j=1}^{\infty} R^{i+j}=\bigcup_{k=2}^{\infty} R^{k} \subseteq \bigcup_{k=1}^{\infty} R^{k} .
$$

This shows that $\bigcup_{k=1}^{\infty} R^{k}$ is a transitive relation, and $R \subseteq \bigcup_{k=1}^{\infty} R^{k}$. Since each transitive relation that contains R must contain R^{k} for all integers $k \geq 1$, we see that $\bigcup_{k=1}^{\infty} R^{k}$ is the transitive closure of R.
Example 5.3. Let $X=\{a, b, c, d, e, f, g\}$ and consider the relation

$$
R=\{(a, b),(b, b),(b, c),(d, e),(e, f),(f, g)\} .
$$

Then the reflexive closure of R is

$$
\begin{aligned}
& r(R)=\{(a, a),(a, b),(b, b),(b, c),(c, c),(d, d) \\
& \quad(d, e),(e, e),(e, f),(f, f),(f, g),(g, g)\} .
\end{aligned}
$$

The symmetric closure is

$$
\begin{array}{r}
s(R)=\{((a, b),(b, a),(b, b),(b, c),(c, b),(d, e), \\
(e, d),(e, f),(f, e),(f, g),(g, f)\} .
\end{array}
$$

The transitive closure is

$$
\begin{gathered}
t(R)=\{(a, b),(a, c),(b, b),(b, c),(d, e), \\
(d, f),(d, g),(e, f),(e, g),(f, g)\} . \\
R^{2}=\{(a, b),(a, c),(b, b),(b, c),(d, f),(e, g)\} \\
R^{3}=\{(a, b),(a, c),(b, b),(b, c),(d, g)\}, \\
R^{k}=\{(a, b),(a, c),(b, b),(b, c)\}, \quad k \geq 4 .
\end{gathered}
$$

Theorem 5.6. Let R be a relation on a set X with $|X|=n \geq 2$. Then

$$
t(R)=R \cup R^{2} \cup \cdots \cup R^{n-1} .
$$

In particular, if R is reflexive, then $t(R)=R^{n-1}$.
Proof. It is enough to show that for all $k \geq n$,

$$
R^{k} \subseteq \bigcup_{i=1}^{n-1} R^{i}
$$

This is equivalent to showing that $R^{k} \subseteq \bigcup_{i=1}^{k-1} R^{i}$ for all $k \geq n$.
Let $(x, y) \in R^{k}$. There exist elements $x_{1}, \ldots, x_{k-1} \in X$ such that

$$
\left(x, x_{1}\right),\left(x_{1}, x_{2}\right), \ldots,\left(x_{k-1}, y\right) \in R .
$$

Since $|X|=n \geq 2$ and $k \geq n$, the following sequence

$$
x=x_{0}, x_{1}, x_{2}, \ldots, x_{k-1}, x_{k}=y
$$

has $k+1$ terms, which is at least $n+1$. Then two of them must be equal, say, $x_{p}=x_{q}$ with $p<q$. Thus $q-p \geq 1$ and

$$
\left(x_{0}, x_{1}\right), \ldots,\left(x_{p-1}, x_{p}\right),\left(x_{q}, x_{q+1}\right), \ldots,\left(x_{k-1}, x_{k}\right) \in R .
$$

Therefore

$$
(x, y)=\left(x_{0}, x_{k}\right) \in R^{k-(q-p)} \subseteq \bigcup_{i=1}^{k-1} R^{i}
$$

That is

$$
R^{k} \subseteq \bigcup_{i=1}^{k-1} R^{i}
$$

If R is reflexive, then $R^{k} \subseteq R^{k+1}$ for all $k \geq 1$. Hence

$$
t(R)=R^{n-1} .
$$

Proposition 5.7. Let R be a relation on a set X. Then

$$
I \cup t\left(R \cup R^{-1}\right)
$$

is an equivalence relation. In particular, if R is reflexive and symmetric, then $t(R)$ is an equivalence relation.

Proof. Since $I \cup t\left(R \cup R^{-1}\right)$ is reflexive and transitive, we only need to show that $I \cup t\left(R \cup R^{-1}\right)$ is symmetric.

Let $(x, y) \in I \cup t\left(R \cup R^{-1}\right)$. If $x=y$, then obviously

$$
(y, x) \in I \cup t\left(R \cup R^{-1}\right) .
$$

If $x \neq y$, then $(x, y) \in t\left(R \cup R^{-1}\right)$. Thus $(x, y) \in\left(R \cup R^{-1}\right)^{k}$ for some $k \geq 1$. Hence there is a sequence

$$
x=x_{0}, x_{1}, \ldots, x_{k}=y
$$

such that

$$
\left(x_{i}, x_{i+1}\right) \in R \cup R^{-1}, \quad 0 \leq i \leq k-1
$$

Since $R \cup R^{-1}$ is symmetric, we have

$$
\left(x_{i+1}, x_{i}\right) \in R \cup R^{-1}, \quad 0 \leq i \leq k-1 .
$$

This means that $(y, x) \in\left(R \cup R^{-1}\right)^{k}$. Hence $(y, x) \in I \cup t\left(R \cup R^{-1}\right)$. Therefore $I \cup t\left(R \cup R^{-1}\right)$ is symmetric.

In particular, if R is reflexive and symmetric, then obviously

$$
I \cup t\left(R \cup R^{-1}\right)=t(R)
$$

This means that $t(R)$ is reflexive and symmetric. Since $t(R)$ is automatically transitive, so $t(R)$ is an equivalence relation.

Let R be a relation on a set X. The reachability relation of R is a relation R^{*} on X defined by

$$
x R^{*} y \Leftrightarrow x=y \quad \text { or } \quad \exists \text { finite } x_{1}, x_{2}, \ldots, x_{k}
$$

such that

$$
\left(x, x_{1}\right),\left(x_{1}, x_{2}\right), \ldots,\left(x_{k}, y\right) \in R .
$$

That is, $R^{*}=I \cup t(R)$.
Theorem 5.8. Let R be a relation on a set X. Let M and M^{*} be the Boolean matrices of R and R^{*} respectively. If $|X|=n$, then

$$
M^{*}=I \vee M \vee M^{2} \vee \cdots \vee M^{n-1}
$$

Moreover, if R is reflexive, then

$$
\begin{gathered}
R^{k} \subset R^{k+1}, k \geq 1 \\
M^{*}=M^{n-1}
\end{gathered}
$$

Proof. It follows from Theorem 5.6.

6 Washall's Algorithm

Let R be a relation on $X=\left\{x_{1}, \ldots, x_{n}\right\}$. Let $y_{0}, y_{1}, \ldots, y_{m}$ be a path in R. The vertices y_{1}, \ldots, y_{m-1} are called interior vertices of the path. For each k with $0 \leq k \leq n$, we define the Boolean matrix

$$
W_{k}=\left[w_{i j}\right],
$$

where $w_{i j}=1$ if there is a path in R from x_{i} to x_{j} whose interior vertices are contained in

$$
X_{k}:=\left\{x_{1}, \ldots, x_{k}\right\},
$$

otherwise $w_{i j}=0$, where $X_{0}=\varnothing$.
Since the interior vertices of any path in R is obviously contained in the whole set $X=X_{n}=\left\{x_{1}, \ldots, x_{n}\right\}$, the (i, j)-entry of W_{n} is equal to 1 if there is a path in R from x_{i} to x_{j}. Then W_{n} is the matrix of the transitive closure $t(R)$ of R, that is,

$$
W_{n}=M_{t(R)} .
$$

Clearly, $W_{0}=M_{R}$. We have a sequence of Boolean matrices

$$
M_{R}=W_{0}, \quad W_{1}, \quad W_{2}, \quad \ldots, \quad W_{n}
$$

The so-called Warshall's algorithm is to compute W_{k} from $W_{k-1}, k \geq 1$.
Let $W_{k-1}=\left[s_{i j}\right]$ and $W_{k}=\left[t_{i j}\right]$. If $t_{i j}=1$, there must be a path

$$
x_{i}=y_{0}, y_{1}, \ldots, y_{m}=x_{j}
$$

from x_{i} to x_{j} whose interior vertices y_{1}, \ldots, y_{m-1} are contained in $\left\{x_{1}, \ldots, x_{k}\right\}$. We may assume that y_{1}, \ldots, y_{m-1} are distinct. If x_{k} is not an interior vertex
of this path, that is, all interior vertices are contained in $\left\{x_{1}, \ldots, x_{k-1}\right\}$, then $s_{i j}=1$. If x_{k} is an interior vertex of the path, say $x_{k}=y_{p}$, then there two sub-paths

$$
\begin{array}{llll}
x_{i}=y_{0}, & y_{1}, & \ldots, & y_{p}=x_{k}, \\
x_{k}=y_{p}, & y_{p+1}, & \ldots, & y_{m}=x_{j}
\end{array}
$$

whose interior vertices $y_{1}, \ldots, y_{p-1}, y_{p+1}, \ldots, y_{m-1}$ are contained in $\left\{x_{1}, \ldots, x_{k-1}\right\}$ obviously. It follows that

$$
s_{i k}=1, \quad s_{k j}=1
$$

We conclude that

$$
t_{i j}=1 \Leftrightarrow\left\{\begin{array}{l}
s_{i j}=1 \quad \text { or } \\
s_{i k}=1, \quad s_{k j}=1 \quad \text { for some } \quad k
\end{array}\right.
$$

Theorem 6.1 (Warshall's Algorithm for Transitive Closure). Working on the Boolean matrix W_{k-1} to produce W_{k}.
(a) If the (i, j)-entry of W_{k-1} is 1 , so is the entry in W_{k}. Keep 1 there.
(b) If the (i, j)-entry of W_{k-1} is 0 , then check the entries of W_{k-1} at (i, k) and (k, j). If both entries are 1 , then change the (i, j)-entry in W_{k-1} to 1. Otherwise, keep 0 there.

Example 6.1. Consider the relation R on $A=\{1,2,3,4,5\}$ given by the Boolean matrix

$$
M_{R}=\left[\begin{array}{lllll}
0 & 0 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 0
\end{array}\right]
$$

By Warshall's algorithm, we have

$$
\begin{aligned}
W_{0}=\left[\begin{array}{lllll}
0 & 0 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 0
\end{array}\right] & \Rightarrow W_{1}=\left[\begin{array}{lllll}
0 & 0 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & (1) \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 0
\end{array}\right] \\
& \Rightarrow W_{2}=\left[\begin{array}{lllll}
0 & 0 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 0
\end{array}\right] \\
& \Rightarrow W_{3}=\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
(1) & 1 & 1 & 0 \\
1 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 1 \\
1 \\
(1) & 0 & 1 & 1 \\
(1),(1,5)
\end{array}\right] \begin{array}{c}
(2,3),(3,1) \\
(2,3),(3,5) \\
(5,3),(3,1) \\
(5,3),(3,5)
\end{array} \\
& \Rightarrow W_{4}=\left[\begin{array}{ccccc}
0 & 0 & 0 & 0 & 1 \\
1 & 1 & 1 & 0 & 1 \\
1 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 \\
1 & 0 & 1 & 1 & 1
\end{array}\right] \quad(\mathrm{no} \mathrm{change)}
\end{aligned}
$$

The binary relation for the Boolean matrix W_{5} is the transitive closure of R.

Definition 6.2. A binary relation R on a set X is called
a) asymmetric if $x R y$ implies $y \bar{R} x$;
b) antisymmetric if $x R y$ and $y R x$ imply $x=y$.

7 Modular Integers

For an equivalence relation \sim on a set X, the set of equivalence classes is usually denoted by X / \sim, called the quotient set of X modulo \sim. Given a positive integer $n \geq 2$. The relation modulo n, denoted \equiv_{n}, is a binary relation on \mathbb{Z}, defined as $a \equiv_{n} b$ if $b-a=k n$ for an integer $k \in \mathbb{Z}$. Traditionally, $a \equiv_{n} b$ is written as $a \equiv b(\bmod n)$. We denote the quotient set \mathbb{Z} / \equiv_{n} by

$$
\mathbb{Z}_{n}=\{[0],[1], \ldots,[n-1]\} .
$$

There addition and multiplication on \mathbb{Z}_{n}, defined as

$$
[a]+[b]=[a+b], \quad[a][b]=[a b] .
$$

The two operations are well defined since

$$
[a+k n]+[b+l n]=[(a+b)+(k+l) n]]=[a+b],
$$

$$
[a+k n][b+l n]=[[(a+k n)(b+l n)]=[a b+(a l+b k+k l) n]]=[a b] .
$$

A modular integer $[a]$ is said to be invertible if there exists an modular integer $[b]$ such that $[a][b]=[1]$. If so, $[b]$ is called the inverse of $[a]$, written

$$
[b]=[a]^{-1}
$$

If an inverse exists, it must be unique. If $[b]$ is an inverse of $[a]$, then $[a]$ is an inverse of $[b]$.

A modular integer $[a]$ is said to be invertible if there exists an modular integer $[c]$ such that $[a][b]=[1]$. If so, $[b]$ is called the inverse of $[a]$, written $[b]=[a]^{-1}$. If $\left[a_{1}\right],\left[a_{2}\right]$ are invertible, then $\left[a_{1}\right]\left[a_{2}\right]=\left[a_{1} a_{2}\right]$ is invertible. Let $\left[b_{1}\right],\left[b_{2}\right]$ be inverses of $\left[a_{1}\right],\left[a_{2}\right]$ respectively. Then $\left[b_{1} b_{2}\right]$ is the inverse of $\left[a_{1} a_{2}\right]$. In fact, $\left[a_{1} a_{2}\right]\left[b_{1} b_{2}\right]=\left[a_{1}\right]\left[a_{2}\right]\left[b_{2}\right]\left[b_{1}\right]=\left[a_{1}\right][1]\left[b_{1}\right]=\left[a_{1}\right]\left[b_{1}\right]=[1]$.
Example 7.1. What modular integers $[a]$ are invertible in \mathbb{Z}_{n} ?
When $[a]$ has an inverse $[b]$, we have $[a][b]=1$, i.e., $[a b]=[1]$. This means that $a b$ and 1 are different by a multiple of n, say, $a b+k n=1$ for an integer k. Let $d=\operatorname{gcd}(a, n)$. Then $d \mid(a b+k n)$, since $d \mid a$ and $d \mid n$. Thus $d \mid$. It forces $d=1$. So $\operatorname{gcd}(a, n)=1$.

If $\operatorname{gcd}(a, n)=1$, by Euclidean Algorithm, there are integers x, y such that $a x+n y=1$. Then $[a x+n y]=[a x]=[1]$, i.e., $[a][x]=[1]$. So $[x]$ is the inverse of $[a]$.

Example 7.2. Given an integer a. Consider the function

$$
f_{a}: \mathbb{Z}_{n} \rightarrow \mathbb{Z}_{n}, \quad f_{a}([x])=[a x] .
$$

Find a condition for a so that f_{a} is an invertible function.
Example 7.3. Is the function $f_{45}: \mathbb{Z}_{119} \rightarrow \mathbb{Z}_{119}$ by $f_{45}([x])=[45 x]$ invertible? If yes, find its inverse function.

We need to find $\operatorname{gcd}(119,45)$ first. Applying the Division Algorithm,

$$
\begin{aligned}
119 & =2 \cdot 45+29 \\
45 & =29+16 \\
29 & =16+13 \\
16 & =13+3 \\
13 & =4 \cdot 3+1
\end{aligned}
$$

So $\operatorname{gcd}(119,45)=1$. The function f_{45} is invertible. To find the inverse of f_{45}, we apply the Euclidean Algorithm:

$$
\begin{aligned}
1 & =13-4 \cdot 3=13-4(16-13) \\
& =5 \cdot 13-4 \cdot 16=5(29-16)-4 \cdot 16 \\
& =5 \cdot 29-9 \cdot 16=5 \cdot 29-9(45-29) \\
& =14 \cdot 29-9 \cdot 45=14(119-2 \cdot 45)-9 \cdot 45 \\
& =14 \cdot 119+(\underline{-37}) \cdot 45
\end{aligned}
$$

The inverse of f_{45} is f_{-37}, i.e., f_{82}.
Theorem 7.1 (Fermat's Little Theorem). Let p be a prime number and a an integer. If $p \nmid a$, then $a^{p-1} \equiv 1(\bmod p)$.

Proof. The function $f_{a}: \mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p}$ is invertible, since $\operatorname{gcd}(a, p)=1$. So f_{a} is a bijection and $f_{a}\left(\mathbb{Z}_{p}\right)=\mathbb{Z}_{p}$. Since $f_{a}([0])=[0]$, we must have

$$
f_{a}\left(\mathbb{Z}_{p}-\{[0]\}\right)=\{[a],[2 a], \ldots,[(p-1) a]\}=\{[1], \ldots,[p-1]\} .
$$

Thus

$$
\prod_{k=1}^{p-1}[k a]=\prod_{k=1}^{p-1}[k], \quad \text { i.e., } \quad[a]^{p-1} \prod_{k=1}^{p-1}[k]=\prod_{k=1}^{p-1}[k][a]=\prod_{k=1}^{p-1}[k] .
$$

Since the product of invertible elements are still invertible, so $\prod_{k=1}^{p-1}[k]$ is invertible. Thus $\left[a^{p-1}\right]=[a]^{p-1}=[1]$. This means that $a^{p-1} \equiv 1(\bmod p)$.

Let $\varphi(n)$ denote the number of positive integers coprime to n, i.e.,

$$
\varphi(n)=\mid\{a \in[n]: \operatorname{gcd}(a, n)=1\} .
$$

For example, $p=5, a=6$ and $a \nmid 5$. Then $6^{4}=1296=1(\bmod 5)$.
Theorem 7.2 (Euler's Theorem). For integer $n \geq 2$ and integer a such that $\operatorname{gcd}(a, n)=1$,

$$
a^{\varphi(n)}=1(\bmod n) .
$$

Proof. Let \mathbb{S} denote the set of invertible elements of \mathbb{Z}_{n}. Then $|\mathbb{S}|=\varphi(n)$. The elements $[a][s],[s] \in \mathbb{S}$, are all distinct and invertible, i.e., $[a]\left[s_{1}\right] \neq[a]\left[s_{2}\right]$
for $\left[s_{1}\right],\left[s_{2}\right] \in S$ with $\left[s_{1}\right] \neq\left[s_{2}\right]$. In fact, $[a]\left[s_{1}\right]=[a]\left[s_{2}\right]$ implies $\left[s_{1}\right]=\left[s_{2}\right]$. Consider the product

$$
[a]^{|\mathbb{S}|} \prod_{[s] \in \mathbb{S}}[s]=\prod_{[s] \in \mathbb{S}}[a][s]=\prod_{[s] \in \mathbb{S}}[s] .
$$

It follows that $[a]^{|\mathbb{S}|}=[1]$.
For example, $n=12, a=35, \operatorname{gcd}(35,12)=1$, and $\varphi(12)=\{1,5,7,11\}$, $35^{4}=1500625=1(\bmod 12)$.

Problem Set 3

1. Let R be a binary relation from X to $Y, A, B \subseteq X$.
(a) If $A \subseteq B$, then $R(A) \subseteq R(B)$.
(b) $R(A \cup B)=R(A) \cup R(B)$.
(c) $R(A \cap B) \subseteq R(A) \cap R(B)$.

Proof. (a) For each $y \in R(A)$, there is an $x \in A$ such that $(x, y) \in R$. Clearly, $x \in B$, since $A \subseteq B$. Thus $y \in R(B)$. This means that $R(A) \subseteq$ $R(B)$.
(b) Since $R(A) \subseteq R(A \cup B), R(B) \subseteq R(A \cup B)$, we have

$$
R(A) \cup R(B) \subseteq R(A \cup B)
$$

On the other hand, for each $y \in R(A \cup B)$, there is an $x \in A \cup B$ such that $(x, y) \in R$. Then either $x \in A$ or $x \in B$. Thus $y \in R(A)$ or $y \in R(B)$, i.e., $y \in R(A) \cup R(B)$. Therefore $R(A) \cup R(B) \supseteq R(A \cup B)$.
(c) It follows from (a) that $R(A \cap B) \subseteq R(A)$ and $R(A \cap B) \subseteq R(B)$. Hence $R(A \cap B) \subseteq R(A \cap B)$.
2. Let R_{1} and R_{2} be relations from X to Y. If $R_{1}(x)=R_{2}(x)$ for all $x \in X$, then $R_{1}=R_{2}$.

Proof. For each $(x, y) \in R_{1}$, we have $y \in R_{1}(x)$. Since $R_{1}(x)=R_{2}(x)$, then $y \in R_{2}(x)$. Thus $(x, y) \in R_{2}$. Likewise, for each $(x, y) \in R_{2}$, we have $(x, y) \in R_{2}$. Hence $R_{1}=R_{2}$.
3. Let $a, b, c \in \mathbb{R}$. Then

$$
\begin{aligned}
& a \wedge(b \vee c)=(a \wedge b) \vee(a \wedge c) \\
& a \vee(b \wedge c)=(a \vee b) \wedge(a \vee c)
\end{aligned}
$$

Proof. Note that the cases $b<c$ and $b>c$ are equivalent. There are three essential cases to be verified.
Case 1: $a<b<c$. We have

$$
\begin{aligned}
& a \wedge(b \vee c)=a=(a \wedge b) \vee(a \wedge c) \\
& a \vee(b \wedge c)=b=(a \vee b) \wedge(a \vee c)
\end{aligned}
$$

Case 2: $b<a<c$. We have

$$
\begin{aligned}
& a \wedge(b \vee c)=a=(a \wedge b) \vee(a \wedge c) \\
& a \vee(b \wedge c)=a=(a \vee b) \wedge(a \vee c)
\end{aligned}
$$

Case 3: $b<c<a$. We have

$$
\begin{aligned}
& a \wedge(b \vee c)=c=(a \wedge b) \vee(a \wedge c), \\
& a \vee(b \wedge c)=a=(a \vee b) \wedge(a \vee c)
\end{aligned}
$$

4. Let $R_{i} \subseteq X \times Y$ be a family of relations from X to Y, indexed by $i \in I$.
(a) If $R \subseteq W \times X$, then $R\left(\bigcup_{i \in I} R_{i}\right)=\bigcup_{i \in I} R R_{i}$;
(b) If $S \subseteq Y \times Z$, then $\left(\bigcup_{i \in I} R_{i}\right) S=\bigcup_{i \in I} R_{i} S$.

Proof. (a) By definition of composition of relations, $(w, y) \in R\left(\bigcup_{i \in I} R_{i}\right)$ is equivalent to that there exists an $x \in X$ such that $(w, x) \in R$ and $(x, y) \in \bigcup_{i \in I} R_{i}$. Notice that $(x, y) \in \bigcup_{i \in I} R_{i}$ is further equivalent to that there is an index $i_{0} \in I$ such that $(x, y) \in R_{i_{0}}$. Thus $(w, y) \in R\left(\bigcup_{i \in I} R_{i}\right)$ is equivalent to that there exists an $i_{0} \in I$ such that $(w, y) \in R R_{i}$, which means $(w, y) \in \bigcup_{i \in I} R R_{i}$ by definition of composition.
(b) $(x, z) \in\left(\bigcup_{i \in I} R_{i}\right) S \Leftrightarrow$ (by definition of composition) there exists $y \in Y$ such that $(x, y) \in \bigcup_{i \in I} R_{i}$ and $(y, z) \in S \Leftrightarrow$ (by definition of set union) there exists $i_{0} \in I$ such that $(x, y) \in R_{i_{0}}$ and $(y, z) \in S \Leftrightarrow$ there exists $i_{0} \in I$ such that $(w, y) \in R R_{i} \Leftrightarrow$ (by definition of composition) $(w, y) \in \bigcup_{i \in I} R R_{i}$.
5. Let $R_{i}(1 \leq i \leq 3)$ be relations on $A=\{a, b, c, d, e\}$ whose Boolean matrices are

$$
\begin{gathered}
M_{1}=\left[\begin{array}{lllll}
0 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right], M_{2}=\left[\begin{array}{lllll}
1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right], \\
M_{3}=\left[\begin{array}{lllll}
0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 \\
0 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 1
\end{array}\right] .
\end{gathered}
$$

(a) Draw the digraphs of the relations R_{1}, R_{2}, R_{3}.
(b) Find the Boolean matrices for the relations

$$
R_{1}^{-1}, \quad R_{2} \cup R_{3}, \quad R_{1} R_{1}, \quad R_{1} R_{1}^{-1}, \quad R_{1}^{-1} R_{1} ;
$$

and verify that

$$
R_{1} R_{1}^{-1}=R_{2}, \quad R_{1}^{-1} R_{1}=R_{3} .
$$

(c) Verify that $R_{2} \cup R_{3}$ is an equivalence relation and find the quotient set $A /\left(R_{2} \cup R_{3}\right)$.
Solution:

$$
M_{R_{1}^{-1}}=\left[\begin{array}{lllll}
0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0
\end{array}\right], M_{R_{2} \cup R_{3}}=\left[\begin{array}{lllll}
1 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 1 \\
0 & 1 & 1 & 0 & 1 \\
1 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 1
\end{array}\right], M_{R_{1}^{2}}=\left[\begin{array}{llll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right.
$$

$$
M_{R_{1} R_{1}^{-1}}=\left[\begin{array}{ccccc}
1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]=M_{2}, \quad M_{R_{1}^{-1} R_{1}}=\left[\begin{array}{lllll}
0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 \\
0 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 1
\end{array}\right]=M_{3} .
$$

6. Let R be a relation on \mathbb{Z} defined by $a R b$ if $a+b$ is an even integer.
(a) Show that R is an equivalence relation on \mathbb{Z}.
(b) Find all equivalence classes of the relation R.

Proof. (a) For each $a \in \mathbb{Z}, a+a=2 a$ is clearly even, so $a R a$, i.e., R is reflexive. If $a R b$, then $a+b$ is even, of course $b+a=a+b$ is even, so $b R a$, i.e., R is symmetric. If $a R b$ and $b R c$, then $a+b$ and $b+c$ are even; thus $a+c=(a+b)+(b+c)-2 b$ is even (sum of even numbers are even), so $a R c$, i.e., R is transitive. Therefore R is an equivalence relation.
(b) Note that $a R b$ if and only if both of a, b are odd or both are even. Thus there are exactly two equivalence classes: one class is the set of even integers, and the other class is the set of odd integers. The quotient set \mathbb{Z} / R is the set \mathbb{Z}_{2} of integers modulo 2 .
7. Let $X=\{1,2, \ldots, 10\}$ and let R be a relation on X such that $a R b$ if and only if $|a-b| \leq 2$. Determine whether R is an equivalence relation. Let M_{R} be the matrix of R. Compute M_{R}^{8}.
Solution: The following is the graph of the relation.

Then M_{R}^{5} is a Boolean matrix all whose entries are 1 . Thus M_{R}^{8} is the same as M_{R}^{5}.
8. A relation R on a set X is called a preference relation if R is reflexive and transitive. Show that $R \cap R^{-1}$ is an equivalence relation.

Proof. Since $I \subseteq R$, we have $I=I^{-1} \subseteq R^{-1}$, so $I \subseteq R \cap R^{-1}$, i.e., $R \cap R^{-1}$ is reflexive.
If $x\left(R \cap R^{-1}\right) y$, then $x R y$ and $x R^{-1} y$; by definition of converse, $y R^{-1} x$ and $y R x$; thus $y\left(R \cap R^{-1}\right) x$. This means that $R \cap R^{-1}$ is symmetric.
If $x\left(R \cap R^{-1}\right) y$ and $y\left(R \cap R^{-1}\right) z$, then $x R y, y R z$ and $y R x, z R y$ by converse; thus $x R z$ and $z R x$ by transitivity; therefore $x R z$ and $x R^{-1} z$ by converse again; finally we have $x\left(R \cap R^{-1}\right) z$. This means that $R \cap R^{-1}$ is transitive.
9. Let n be a positive integer. The congruence relation \sim of modulo n is an equivalence relation on \mathbb{Z}. Let \mathbb{Z}_{n} denote the quotient set $\mathbb{Z} / \sim=$ $\{[0],[1], \ldots,[n-1]\}$. Given an integer $a \in \mathbb{Z}$, we define a function

$$
f_{a}: \mathbb{Z}_{n} \rightarrow \mathbb{Z}_{n} \quad \text { by } \quad f_{a}([x])=[a x] .
$$

(a) Find the cardinality of the set $f_{a}\left(\mathbb{Z}_{n}\right)$.
(b) Find all integers a such that f_{a} is invertible.

Solution: (a) Let $d=\operatorname{gcd}(a, n), a=k d, n=l d$. Fix an integer $x \in \mathbb{Z}$, we write $x=q l+r$ by division algorithm, where $0 \leq r<l$. Then

$$
a x=k d(q l+r)=k d q l+k d r=k q n+a r \equiv a r(\bmod n) .
$$

For two integers r_{1}, r_{2} with $1 \leq r_{1}<r_{2}<l$, we claim $a r_{1} \not \equiv a r_{2}(\bmod n)$. In fact, suppose $a r_{1} \equiv a r_{2}(\bmod n)$, then $n \mid a\left(r_{2}-r_{1}\right)$; since $a=k d$ and $n=l d$, it is equivalent to $l \mid k\left(r_{2}-r_{1}\right)$. Since $\operatorname{gcd}(k, l)=1$, we have $l \mid$ $\left(r_{2}-r_{1}\right)$. Thus $r_{1}=r_{2}$, which is a contradiction. Thus $\left|f_{a}\left(\mathbb{Z}_{n}\right)\right|=l=n / d$ and

$$
f_{a}\left(\mathbb{Z}_{n}\right)=\{[a r]: r \in \mathbb{Z}, 0 \leq r<l\} .
$$

(b) Since \mathbb{Z}_{n} is finite, then f_{a} is a bijection if and only if f_{a} is onto. However, f_{a} is onto if and only if $\left|f_{a}\left(\mathbb{Z}_{n}\right)\right|=n$, i.e., $\operatorname{gcd}(a, n)=1$.
10. For a positive integer n, let $\phi(n)$ denote the number of positive integers $a \leq n$ such that $\operatorname{gcd}(a, n)=1$, called Euler's function. Let R be the relation on $X=\{1,2, \ldots, n\}$ defined by $a R b$ if $a \leq b, b \mid n$, and $\operatorname{gcd}(a, b)=1$.
(a) Find the cardinality $\left|R^{-1}(b)\right|$ for each $b \in X$.
(b) Show that

$$
|R|=\sum_{a \mid n} \phi(a) .
$$

(c) Prove $|R|=n$ by showing that the function $f: R \rightarrow X$, defined by $f(a, b)=a n / b$, is a bijection.

Solution: (a) For each $b \in X$, if $b \nmid n$, then $R^{-1}(b)=\varnothing$. If $b \mid n$, we have

$$
\left|R^{-1}(b)\right|=|\{a \in X: a \leq b, \operatorname{gcd}(a, b)=1\}|=\phi(b) .
$$

(b) It follows that

$$
|R|=\sum_{b \in X}\left|R^{-1}(b)\right|=\sum_{b \geq 1, b \mid n}\left|R^{-1}(b)\right|=\sum_{b \mid n} \phi(b) .
$$

(c) The function f is clearly well-defined. We first to show that f is injective. For $\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right) \in R$, if $f\left(a_{1}, b_{1}\right)=f\left(a_{2}, b_{2}\right)$, i.e., $a_{1} n / b_{1}=$ $a_{2} n / b_{2}$, then $a_{1} / b_{1}=a_{2} / b_{2}$, which is a rational number in reduced form, since $\operatorname{gcd}\left(a_{1}, b_{1}\right)=1$ and $\operatorname{gcd}\left(a_{2}, b_{2}\right)=1$; it follows that $\left(a_{1}, b_{1}\right)=\left(a_{2}, b_{2}\right)$. Thus f is injective. To see that f is surjective, for each $b \in X$, let $d=\operatorname{gcd}(b, n)$. Then $f(b / n, n / b)=(b / d) n /(n / d)=b$. This means that f is surjective. So f is a bijection. We have obtained the following formula

$$
n=\sum_{b \mid n} \phi(b)
$$

