Week 1-2

1 Some Warm-up Questions

Abstraction: The process going from specific cases to general problem.
Proof: A sequence of arguments to show certain conclusion to be true.
"If ... then ...": The part after "if" is called the hypothesis, the part after "then" is called the conclusion of the sentence or statement.

Fact 1: If m, n are integers with $m \leq n$, then there are exactly $n-m+1$ integers i between m and n inclusive, i.e., $m \leq i \leq n$.

Fact 2: Let k, n be positive integers. Then the number of multiples of k between 1 and n inclusive is $\lfloor n / k\rfloor$.

Proof. The integers we want to count are the integers

$$
1 k, 2 k, 3 k, \ldots, m k
$$

such that $m k \leq n$. Then $m \leq n / k$. Since m is an integer, we have $m=\lfloor n / k\rfloor$, the largest integer less than or equal to n / k.

Theorem 1.1. Let m, n be integers with $m \leq n$, and k a positive integer. Then the number of multiples of k between m and n inclusive is

$$
\left\lfloor\frac{n}{k}\right\rfloor-\left\lfloor\frac{m-1}{k}\right\rfloor .
$$

Proof. The number of multiples of k between m and n inclusive are the integers

$$
a k,(a+1) k,(a+2) k, \ldots,(b-1) k, b k,
$$

where $a k \geq m$ and $b k \leq n$. It follows that $a \geq m / k$ and $b \leq n / k$. We then have $a=\lceil m / k\rceil$ and $b=\lfloor n / k\rfloor$. Thus by Fact 1 , the number of multiples between m and n inclusive is

$$
b-a+1=\left\lfloor\frac{n}{k}\right\rfloor-\left\lceil\frac{m}{k}\right\rceil+1 .
$$

Now by definition of the ceiling function, m can be written as $m=a k-r$, where $0 \leq r<k$. Then

$$
m-1=(a-1) k+(k-r-1) .
$$

Let $s=k-r-1$. Since $k>r$, i.e., $k-1 \geq r$, then $s \geq 0$. Since $r \geq 0$, then $s \leq k-1$, i.e., $s<k$. So we have

$$
m-1=(a-1) k+s, 0 \leq s<k .
$$

By definition of the floor function, this means that

$$
\left\lceil\frac{m}{k}\right\rceil-1=a-1=\left\lfloor\frac{m-1}{k}\right\rfloor .
$$

2 Factors and Multiples

A prime is an integer that is greater than 1 and is not a product of any two smaller positive integers.

Given two integers m and n. If there is an integer k such that $n=k m$, we say that n is a multiple of m or say that m is a factor or divisor of n; we also say that m divides n or n is divisible by m, denoted
$m \mid n$.
If m does not divide n, we write $\boldsymbol{m} \dagger \boldsymbol{n}$.
Proposition 2.1. An integer $p \geq 2$ is a prime if and only if its only positive divisors are 1 and p.

Theorem 2.2 (Unique Prime Factorization). Every positive integer n can be written as a product of primes. Moreover, there is only one way to write n in this form except for rearranging the order of the terms.

Let m, n, q be positive integers. If $m \mid n$, then $m \leq n$. If $m \mid n$ and $n \mid q$, then $m \mid q$.

A common factor or common divisor of two positive integers m and n is any integer that divides both m and n. The integer 1 is always a common divisor of m and n. There are only finite number of common divisors for any two positive integers m and n. The very largest one among all common factors of m, n is called the greatest common divisor of m and n, denoted

$$
\operatorname{gcd}(m, n)
$$

Two positive integers m, n are said to be relatively prime if 1 is the only common factor of m and n, i.e., $\operatorname{gcd}(m, n)=1$.

Proposition 2.3. Let m, n be positive integers. A positive integer d is the greatest common divisor of m, n, i.e., $d=\operatorname{gcd}(a, b)$, if and only if
(i) $d|m, d| n$, and
(ii) if c is a positive integer such that $c|m, c| n$, then $c \mid d$.

Theorem 2.4 (Division Algorithm). Let m be a positive integer. Then for each integer n there exist unique integers q, r such that

$$
n=q m+r \quad \text { with } \quad 0 \leq r<m
$$

Proposition 2.5. Let m, n be positive integers. If $n=q m+r$ with integers $q \geq 0$ and $r>0$, then $\operatorname{gcd}(n, m)=\operatorname{gcd}(m, r)$.

Theorem 2.6 (Euclidean Algorithm). For arbitrary integers m and n, there exist integers s, t such that

$$
\operatorname{gcd}(m, n)=s m+t n
$$

Example 2.1. For the greatest common divisor of integers 231 and 525 is 21, that is, $\operatorname{gcd}(231,525)=21$. In fact,

$$
525=2 \times 231+63 ; \quad 231=3 \times 63+42 ; \quad 63=1 \times 42+21 .
$$

Then

$$
\begin{aligned}
21 & =63-42=63-(231-3 \times 63) \\
& =4 \times 63-231=4 \times(525-2 \times 231)-231 \\
& =4 \times 525-9 \times 231
\end{aligned}
$$

A common multiple of two positive integers m and n is any integer that is a multiple of both m and n. The product $m n$ is one such common multiple. There are infinite number of common multiples of m and n. The smallest among all positive common multiples of m and n is called the least common multiple of m and n, denoted

$$
\operatorname{lcm}(m, n)
$$

Let a, b be integers. The minimum and maximum of a and b are denoted by $\min \{a, b\}$ and $\max \{a, b\}$ respectively. We have

$$
\min \{a, b\}+\max \{a, b\}=a+b
$$

Theorem 2.7. For positive integers m and n, we have

$$
\operatorname{gcd}(m, n) \operatorname{lcm}(m, n)=m n
$$

Proof. (Bases on the Unique Prime Factorization) Let us write

$$
m=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{k}^{e_{k}}, \quad n=q_{1}^{f_{1}} q_{2}^{f_{2}} \cdots q_{l}^{f_{l}}
$$

where p_{i}, q_{j} are primes and e_{i}, f_{j} are nonnegative integers with $1 \leq i \leq k$, $1 \leq j \leq l$, and

$$
p_{1}<p_{2}<\cdots<p_{k}, \quad q_{1}<q_{2}<\cdots<q_{l} .
$$

We may put the primes p_{i}, q_{j} together and order them as $t_{1}<t_{2}<\cdots<t_{r}$. Then

$$
m=t_{1}^{a_{1}} t_{2}^{a_{2}} \cdots t_{r}^{a_{r}}, \quad n=t_{1}^{b_{1}} t_{2}^{b_{2}} \cdots t_{r}^{b_{r}},
$$

where a_{i} are nonnegative integers with $1 \leq i \leq r$. Thus

$$
\begin{gathered}
\operatorname{gcd}(m, n)=t_{1}^{\min \left\{a_{1}, b_{1}\right\}} t_{2}^{\min \left\{a_{2}, b_{2}\right\}} \cdots t_{r}^{\min \left\{a_{r}, b_{r}\right\}}=\prod_{i=1}^{r} t_{i}^{\min \left\{a_{i}, b_{i}\right\}} \\
\operatorname{gcd}(m, n)=t_{1}^{\max \left\{a_{1}, b_{1}\right\}} t_{2}^{\max \left\{a_{2}, b_{2}\right\}} \cdots t_{r}^{\max \left\{a_{r}, b_{r}\right\}}=\prod_{i=1}^{r} t_{i}^{\max \left\{a_{i}, b_{i}\right\}} \\
m n=t_{1}^{a_{1}+b_{1}} t_{2}^{a_{2}+b_{2}} \cdots t_{r}^{a_{r}+b_{r}}=\prod_{i=1}^{r} t_{i}^{a_{i}+b_{i}}
\end{gathered}
$$

Since $\min \left\{a_{i}, b_{i}\right\}+\max \left\{a_{i}, b_{i}\right\}=a_{i}+b_{i}$ for all $1 \leq i \leq r$, we have

$$
\begin{aligned}
\operatorname{gcd}(m, n) \operatorname{lcm}(m, n) & =\prod_{i=1}^{r} t_{i}^{\min \left\{a_{i}, b_{i}\right\}+\max \left\{a_{i}, b_{i}\right\}} \\
& =\prod_{i=1}^{r} t_{i}^{a_{i}+b_{i}} \\
& =m n
\end{aligned}
$$

Theorem 2.8. Let m and n be positive integers.
(a) If a divides both m and n, then a divides $\operatorname{gcd}(m, n)$.
(b) If b is a multiple of both m and n, then b is a multiple of $\operatorname{lcm}(m, n)$.

Proof. (a) Let us write $m=k a$ and $n=l a$. By the Euclidean Algorithm, we have $\operatorname{gcd}(m, n)=s m+t n$ for some integers s, t. Then

$$
\operatorname{gcd}(m, n)=s k a+t l a=(s k+t l) a
$$

This means that a is a factor of $\operatorname{gcd}(m, n)$.
(b) Let b be a common multiple of m and n. By the Division Algorithm, $b=q \operatorname{lcm}(m, n)+r$ for some integer q and r with $0 \leq r<\operatorname{lcm}(m, n)$. Now both b and $\operatorname{lcm}(m, n)$ are common multiples of m and n. It follows that $r=$ $b-q \operatorname{lcm}(m, n)$ is a common multiple of m and n. Since $0 \leq r<\operatorname{lcm}(m, n)$, we must have $r=0$. This means that $\operatorname{lcm}(m, n)$ divides b.

3 Sets and Subsets

A set is a collection of distinct objects, called elements or members, satisfying certain properties. A set is considered to be a whole entity and is different from its elements. Sets are usually denoted by uppercase letters, while elements of a set are usually denoted by lowercase letters.

Given a set A. We write " $x \in A$ " to say that x is an element of A or x belongs to A. We write " $x \notin A$ " to say that x is not an element of A or x does not belong to A.

The collection of all integers forms a set, called the set of integers, denoted

$$
\mathbb{Z}:=\{\ldots,-2,-1,0,1,2, \ldots\} .
$$

The collection of all nonnegative integers is a set, called the set of natural numbers, denoted

$$
\mathbb{N}:=\{0,1,2, \ldots\}
$$

The set of positive integers is denoted by

$$
\mathbb{P}:=\{1,2, \ldots\}
$$

We have
\mathbb{Q} : set of rational numbers;
\mathbb{R} : set of real numbers;
\mathbb{C} : set of complex numbers.
There are two ways to express a set. One is to list all elements of the set; the other one is to point out the attributes of the elements of the set. For instance, let A be the set of integers whose absolute values are less than or equal to 2 . The set A can be described in two ways:

$$
\begin{aligned}
A & =\{-2,-1,0,1,2\} \text { and } \\
A & =\{a: a \in \mathbb{Z},|a| \leq 2\} \\
& =\{a \in \mathbb{Z}:|a| \leq 2\} \\
& =\{a \in \mathbb{Z}| | a \mid \leq 2\} .
\end{aligned}
$$

Two sets A and B are said to be equal, written $A=B$, if every element of A is an element of B and every element of B is also an element of A. As usual, we write " $A \neq B$ " to say that the sets A and B are not equal. In other words, there is at least one element of A which is not an element of B, or, there is at least one element of B which is not an element of A.

A set A is called a subset of a set B, written $A \subseteq B$, if every element of A is an element of B; if so, we say that A is contained in B or B contains A. If A is not a subset of B, written $A \nsubseteq B$, it means that there exists an element $x \in A$ such that $x \notin B$.

Given two sets A and B. If $A \subseteq B$, it is common to say that B is a superset of A, written $B \supseteq A$. If $A \subseteq B$ and $A \neq B$, we abbreviate it as $A \subsetneq B$. The equality $A=B$ is equivalent to $A \subseteq B$ and $B \subseteq A$.

A set is called finite if it has only finite number of elements; otherwise, it is called infinite. For a finite set A, we denote by $|A|$ the number of elements of A, called an cardinality of A. The sets $\mathbb{P}, \mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ are all infinite sets and

$$
\mathbb{P} \subsetneq \mathbb{N} \subsetneq \mathbb{Z} \subsetneq \mathbb{Q} \subsetneq \mathbb{R} \subsetneq \mathbb{C} .
$$

Let a, b be real numbers with $a \leq b$. We define intervals:

$$
\begin{aligned}
& {[a, b]=\{x \in \mathbb{R}: a \leq x \leq b\},} \\
& (a, b)=\{x \in \mathbb{R}: a<x<b\}, \\
& (a, b]=\{x \in \mathbb{R}: a<x \leq b\}, \\
& {[a, b)=\{x \in \mathbb{R}: a \leq x<b\} .}
\end{aligned}
$$

We define infinite intervals:

$$
\begin{aligned}
{[a, \infty) } & =\{x \in \mathbb{R}: a \leq x\} \\
(a, \infty) & =\{x \in \mathbb{R}: a<x\} \\
(-\infty, a] & =\{x \in \mathbb{R}: x \leq a\}, \\
(-\infty, a) & =\{x \in \mathbb{R}: x<a\}
\end{aligned}
$$

Consider the set A of real numbers satisfying the equation $x^{2}+1=0$. We see that the set contains no elements at all; we call it empty. The set without elements is called the empty set. There is one and only one empty set, and is denoted by the symbol

\varnothing.

The empty set \varnothing is a subset of every set, and its cardinality $|\varnothing|$ is 0 .
The collection of everything is not a set. Is $\{x: x \notin x\}$ a set?
Exercise 1. Let $A=\{1,2,3,4, a, b, c, d\}$. Identify each of the following as true or false:

$$
\begin{array}{lllll}
2 \in A ; & 3 \notin A ; & c \in A ; & d \notin A ; & 6 \in A ; \\
8 \notin A ; & f \notin A ; & \quad \varnothing \in A ; & A \in A ; & \} \in A ;
\end{array}, \quad, \in A .
$$

Exercise 2. List all subsets of a set A with

$$
A=\varnothing ; \quad A=\{1\} ; \quad A=\{1,2\} ; \quad A=\{1,2,3\} .
$$

A convenient way to visualize sets in a universal set U is the Venn diagram. We usually use a rectangle to represent the universal set U, and use circles or ovals to represent its subsets as follows:

Exercise 3. Draw the Venn diagram that represents the following relationships.

1. $A \subseteq B, A \subseteq C, B \nsubseteq C$, and $C \nsubseteq B$.
2. $x \in A, x \in B, x \notin C, y \in B, y \in C$, and $y \notin A$.
3. $A \subseteq B, x \notin A, x \in B, A \nsubseteq C, y \in B, y \in C$.

The power set of a set A, written $\mathcal{P}(A)$, is the set of all subsets of A. Note that the empty set \varnothing and the set A itself are two elements of $\mathcal{P}(A)$. For instance, the power set of the set $A=\{a, b, c\}$ is the set

$$
\mathcal{P}(A)=\{\varnothing,\{a\},\{b\},\{c\},\{a, b\},\{a, c\},\{b, c\},\{a, b, c\}\} .
$$

Let Σ be finite nonempty set, called alphabet, whose elements are called letters. A word of length n over Σ is a string

$$
a_{1} a_{2} \cdots a_{n}
$$

with the letters $a_{1}, a_{2}, \ldots, a_{n}$ from Σ. When $n=0$, the word has no letters, called the empty word (or null word), denoted λ. We denote by $\Sigma^{(n)}$ the set of words of length n and by Σ^{*} the set of all words of finite length over Σ. Then

$$
\Sigma^{*}=\bigcup_{n=0}^{\infty} \Sigma^{(n)}
$$

A subset of Σ^{*} is called a language over Σ.
If $\Sigma=\{a, b\}$, then $\Sigma^{(0)}=\{\lambda\}, \Sigma^{(1)}=\Sigma, \Sigma^{(2)}=\{a a, a b, b a, b b\}$, and

$$
\Sigma^{(3)}=\{a a a, a a b, a b a, a b b, b a a, b a b, b b a, b b b\}, \ldots
$$

If $\Sigma=\{a\}$, then

$$
\Sigma^{*}=\{\lambda, a, a a, a a a, a a a a, \text { aaaaa }, \text { aaaaaa }, \ldots\} .
$$

4 Set Operations

Let A and B be two sets. The intersection of A and B, written $A \cap B$, is the set of all elements common to the both sets A and B. In set notation,

$$
A \cap B=\{x \mid x \in A \text { and } x \in B\} .
$$

The union of A and B, written $A \cup B$, is the set consisting of the elements belonging to either the set A or the set B, i.e.,

$$
A \cup B=\{x \mid x \in A \text { or } x \in B\} .
$$

The relative complement of A in B is the set consisting of the elements of B that is not in A, i.e.,

$$
B \backslash A=\{x \mid x \in B, x \notin A\} .
$$

When we only consider subsets of a fixed set U, this fixed set U is sometimes called a universal set. Note that a universal set is not universal; it does not mean that it contains everything. For a universal set U and a subset $A \subseteq U$, the relative complement $U \backslash A$ is just called the complement of A, written

$$
\bar{A}=U \backslash A .
$$

Since we always consider the elements in U, so, when $x \in \bar{A}$, it is equivalent to saying $x \in U$ and $x \notin A$ (in practice no need to mention $x \in U$). Similarly, $x \in A$ is equivalent to $x \notin \bar{A}$. Another way to say about "equivalence" is the phrase "if and only if." For instance, $x \in \bar{A}$ if and only if $x \notin A$. To save space in writing or to make writing succinct, we sometimes use the symbol " \Longleftrightarrow "
instead of writing "is (are) equivalent to" and "if and only if." For example, we may write " $x \in \bar{A}$ if and only $x \notin A$ " as " $x \in \bar{A} \Longleftrightarrow x \notin A$."

Let $A_{1}, A_{2}, \ldots, A_{n}$ be a family of sets. The intersection of $A_{1}, A_{2}, \ldots, A_{n}$ is the set consisting of elements common to all $A_{1}, A_{2}, \ldots, A_{n}$, i.e.,

$$
\bigcap_{i=1}^{n} A_{i}=A_{1} \cap A_{2} \cap \cdots \cap A_{n}=\left\{x: x \in A_{1}, x \in A_{2}, \ldots, x \in A_{n}\right\}
$$

Similarly, the union of $A_{1}, A_{2}, \ldots, A_{n}$ is the set, each of its element is contained in at least one A_{i}, i.e.,

$$
\begin{aligned}
& \bigcup_{i=1}^{n} A_{i}=A_{1} \cup A_{2} \cup \cdots \cup A_{n} \\
& \quad=\left\{x: \text { there exists at least one } A_{i} \text { such that } x \in A_{i}\right\} .
\end{aligned}
$$

We define the intersection and union of infinitely many set A_{1}, A_{2}, \ldots as follows:

$$
\bigcap_{i=1}^{\infty} A_{i}=A_{1} \cap A_{2} \cap \cdots=\left\{x: x \in A_{i}, i=1,2, \ldots\right\}
$$

$\bigcup_{i=1}^{\infty} A_{i}=A_{1} \cup A_{2} \cup \cdots=\left\{x\right.$: there exists one i such that $\left.x \in A_{i}\right\}$.
In general, let A_{i} with $i \in I$ be a family of sets. We can also define the intersection and union

$$
\begin{gathered}
\bigcap_{i \in I} A_{i}=\left\{x: x \in A_{i} \text { for all } i \in I\right\} \\
\bigcup_{i \in I} A_{i}=\left\{x: x \in A_{i} \text { for at least one } i \in I\right\}
\end{gathered}
$$

Theorem 4.1 (DeMorgan Law). Let A and B be subsets of a universal set U. Then
(1) $\overline{\bar{A}}=A$,
(2) $\overline{A \cap B}=\bar{A} \cup \bar{B}$,
(3) $\overline{A \cup B}=\bar{A} \cap \bar{B}$.

Proof. (1) By definition of complement, $x \in \overline{\bar{A}}$ is equivalent to $x \notin \bar{A}$. Again by definition of complement, $x \notin \bar{A}$ is equivalent to $x \in A$.
(2) By definition of complement, $x \in \overline{A \cap B}$ is equivalent to $x \notin A \cap B$. By definition of intersection, $x \notin A \cap B$ is equivalent to either $x \notin A$ or $x \notin B$. Again by definition of complement, $x \notin A$ or $x \notin B$ can be written as $x \in \bar{A}$ or $x \in \bar{B}$. Now by definition of union, this is equivalent to $x \in \bar{A} \cup \bar{B}$.
(3) To show that $\overline{A \cup B}=\bar{A} \cap \bar{B}$, it suffices to show that their complements are the same. In fact, applying parts (1) and (2) we have

$$
\overline{\overline{A \cup B}}=A \cup B, \quad \overline{\bar{A} \cap \bar{B}}=\overline{\bar{A}} \cup \overline{\bar{B}}=A \cup B
$$

Their complements are indeed the same.
The Cartesian product (or product) of two sets A and B, written $A \times B$, is the set consisting of all ordered pairs (a, b), where $a \in A$ and $b \in B$, i.e.,

$$
A \times B=\{(a, b): a \in A \text { and } b \in B\} .
$$

The product of a finite family of sets $A_{1}, A_{2}, \ldots, A_{n}$ is the set

$$
\begin{aligned}
\prod_{i=1}^{n} A_{i} & =A_{1} \times A_{2} \times \cdots \times A_{n} \\
& =\left\{\left(a_{1}, a_{2}, \ldots, a_{n}\right): a_{1} \in A_{1}, a_{2} \in A_{2}, \ldots, a_{n} \in A_{n}\right\}
\end{aligned}
$$

the element $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is called an ordered n-tuple. The product of an infinite family A_{1}, A_{2}, \ldots of sets is the set

$$
\prod_{i=1}^{\infty} A_{i}=A_{1} \times A_{2} \times \cdots=\left\{\left(a_{1}, a_{2}, \ldots\right): a_{1} \in A_{1}, a_{2} \in A_{2}, \ldots\right\} .
$$

Each element of $\prod_{i=1}^{\infty} A_{i}$ can be considered as an infinite sequence. If $A=$ $A_{1}=A_{2}=\cdots$, we write

$$
\begin{aligned}
A^{n} & =\underbrace{A \times \cdots \times A}_{n} \\
A^{\infty} & =\underbrace{A \times A \times \cdots}_{\infty}
\end{aligned}
$$

Example 4.1. For sets $A=\{0,1\}, B=\{a, b, c\}$, the product A and B is the set

$$
A \times B=\{(0, a),(0, b),(0, c),(1, a),(1, b),(1, c)\} ;
$$

and the product $A^{3}=A \times A \times A$ is the set

$$
A^{3}=\{(0,0,0),(0,0,1),(0,1,1),(1,0,0),(1,0,1),(1,1,0),(1,1,1)\} .
$$

For the set \mathbb{R} of real numbers, the product \mathbb{R}^{2} is the 2-dimensional coordinate plane, and \mathbb{R}^{3} is the 3 -dimensional coordinate space.

A sequence of a nonempty set A is a list (elements can repeat) of finite or infinite number of objects of A in order:

$$
\begin{array}{ll}
a_{1}, a_{2}, \ldots, a_{n} & \text { (finite sequence) } \\
a_{1}, a_{2}, a_{3}, \ldots & \text { (infinite sequence) }
\end{array}
$$

where $a_{i} \in A$. The sequence is called finite in the former case and infinite in the latter case.
Exercise 4. Let A be a set, and let $A_{i}, i \in I$, be a family of sets. Show that

$$
\begin{aligned}
\overline{\bigcup_{i \in I} A_{i}} & =\bigcap_{i \in I} \overline{A_{i}} ; \\
\overline{\bigcap_{i \in I} A_{i}} & =\bigcup_{i \in I} \overline{A_{i}} ; \\
A \cap \bigcup_{i \in I} A_{i} & =\bigcup_{i \in I}\left(A \cap A_{i}\right) ; \\
A \cup \bigcap_{i \in I} A_{i} & =\bigcap_{i \in I}\left(A \cup A_{i}\right) .
\end{aligned}
$$

Exercise 5. Let A, B, C be finite sets. Use Venn diagram to show that

$$
\begin{aligned}
& |A \cup B \cup C|=|A|+|B|+|C| \\
& \quad-|A \cap B|-|A \cap C|-|B \cap C|+|A \cap B \cap C| .
\end{aligned}
$$

5 Functions

The elements of any set are distinct. For instance, the collection

$$
A=\{a, d, c, d, 1,2,3,4,5,6\}
$$

is a set. However, the collection

$$
B=\{a, b, c, c, d, d, d, 1,2,2,2\}
$$

is not a set.
Definition 5.1. Let X and Y be nonempty sets. A function f of (from) X to Y is a rule such that every element x of X is assigned (or sent to) a unique element y in Y. The function f is denoted by

$$
f: X \rightarrow Y .
$$

If an element x of X is sent to an element y in Y, we write

$$
y=f(x) ;
$$

we call y the image (or value) of x under f, and x the inverse image of y. The set X is called the domain and Y the codomain of f. The image of f is the set

$$
\operatorname{Im}(f)=f(X)=\{f(x): x \in X\} .
$$

Two functions $f: X \rightarrow Y$ and $g: X \rightarrow Y$ are said to be equal, written as $f=g$, if

$$
f(x)=g(x) \quad \text { for all } \quad x \in X .
$$

Example 5.1. Let $X=\{a, b, c, d\}, Y=\{1,2,3,4,5\}$. Let

$$
f(a)=3, \quad f(b)=2, \quad f(c)=5, \quad f(d)=3 .
$$

Then the function $f: X \rightarrow Y$ can be demonstrated by the figure

However, the following assignments are not functions

In calculus, for a function $y=f(x)$, the variable x is usually called an independent variable and y the dependent variable of f.
Example 5.2. Some ordinary functions.

1. The usual function $y=x^{2}$ is considered as the function

$$
f: \mathbb{R} \rightarrow \mathbb{R}, \quad f(x)=x^{2}
$$

Its domain and codomain are \mathbb{R}. The function $y=x^{2}$ can be also considered as a function

$$
g: \mathbb{R} \rightarrow \mathbb{R}_{\geq 0}, \quad g(x)=x^{2}
$$

2. The exponential function $y=e^{x}$ is considered as the function

$$
f: \mathbb{R} \rightarrow \mathbb{R}_{+}, \quad f(x)=e^{x}
$$

The domain of f is \mathbb{R} and the codomain of f is \mathbb{R}_{+}. The function $y=e^{x}$ can be also considered as a function

$$
g: \mathbb{R} \rightarrow \mathbb{R}, \quad g(x)=e^{x}
$$

3. The logarithmic function $y=\log x$ is the function

$$
\log : \mathbb{R}_{+} \rightarrow \mathbb{R}, \quad \log (x)=\log x
$$

Its domain is \mathbb{R}_{+}and codomain is \mathbb{R}.
4. The formal rule

$$
f: \mathbb{R} \rightarrow \mathbb{R}, \quad f(x)=\sqrt{x}
$$

is not a function from \mathbb{R} to \mathbb{R}. However,

$$
g: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}, \quad g(x)=\sqrt{x}
$$

is a function from $\mathbb{R}_{\geq 0}$ to \mathbb{R}.
5. The following rule

$$
f: \mathbb{R} \rightarrow \mathbb{R}, \quad f(x)=\frac{1}{x-1}
$$

is not a function from \mathbb{R} to \mathbb{R}. However,

$$
g: \mathbb{R} \backslash\{1\} \rightarrow \mathbb{R}, \quad g(x)=\frac{1}{x-1}
$$

is a function from the set $\mathbb{R} \backslash\{1\}=\{x \in \mathbb{R}: x \neq 1\}$ to \mathbb{R}.
6. The absolute value function $y=|x|$ is a function from \mathbb{R} to $\mathbb{R}_{\geq 0}$. It can be also considered as a function from \mathbb{R} to \mathbb{R}.
7. The sine function $y=\sin x$ is a function $\sin : \mathbb{R} \rightarrow[-1,1]$. It can be also considered as a function from \mathbb{R} to \mathbb{R}.

Let $f: X \rightarrow Y$ be a function. For each subset $A \subseteq X$, the set

$$
f(A)=\{f(a) \in Y: a \in A\},
$$

is called the image of A. For each subset $B \subseteq Y$, the set

$$
f^{-1}(B)=\{x \in X: f(x) \in B\}
$$

is called the inverse image (or pre-image) of B under f. For each $y \in Y$, the set of all inverse images of y under f is the set

$$
f^{-1}(y):=\{x \in X: f(x)=y\} .
$$

Clearly,

$$
f^{-1}(B)=\bigcup_{y \in B} f^{-1}(y)
$$

The graph of a function $f: X \rightarrow Y$ is the set

$$
G(f)=\operatorname{Graph}(f):=\{(x, y) \in X \times Y \mid f(x)=y\} .
$$

Example 5.3. Let $X=\{a, b, c, d\}, Y=\{1,2,3,4,5\}$. Let $f: X \rightarrow Y$ be a function given by the figure

Then

$$
\begin{array}{ll}
f(\{b, d\}) & =\{2,3\}, \\
f(\{a, b, c\} & =\{2,3,5\}, \\
f(\{a, b, c, d\}) & =\{2,3,5\} ; \\
f^{-1}(\{1,2\}) & =\{b\}, \\
f^{-1}(\{2,3,4\}) & =\{a, b, d\}, \\
f^{-1}(\{1,4\}) & =\varnothing, \\
f^{-1}(\{2,3,5\}) & =\{a, b, c, d\} .
\end{array}
$$

The graph of the function f is the product set

$$
G(f)=\{(a, 3),(b, 2),(c, 5),(d, 3)\} .
$$

Example 5.4. Some functions to appear in the coming lectures.

1. A finite sequence

$$
s_{1}, s_{2}, \ldots, s_{n}
$$

of a set A can be viewed as a function

$$
s:\{1,2, \ldots, n\} \rightarrow A,
$$

defined by

$$
s(k)=s_{k}, \quad k=1,2, \ldots, n .
$$

2. An infinite sequence s_{1}, s_{2}, \ldots of A can be viewed as a function

$$
s: \mathbb{P} \rightarrow A, \quad s(k)=s_{k}, \quad k \in \mathbb{P} .
$$

3. The factorial is a function $f: \mathbb{N} \rightarrow \mathbb{P}$ defined by

$$
\begin{aligned}
f(0) & =0!=1 \\
f(n) & =n!=n(n-1) \cdots 3 \cdot 2 \cdot 1, \quad n \geq 1 .
\end{aligned}
$$

4. The floor function is the function $\rfloor: \mathbb{R} \rightarrow \mathbb{Z}$, defined by

$$
\lfloor x\rfloor=\text { greatest integer } \leq x .
$$

5. The ceiling function is the function $\rceil: \mathbb{R} \rightarrow \mathbb{Z}$, defined by

$$
\lceil x\rceil=\text { smallest integer } \geq x .
$$

6. Given a universal set X. The characteristic function of a subset $A \subseteq$ X is the function

$$
1_{A}: X \rightarrow\{0,1\}
$$

defined by

$$
1_{A}(x)= \begin{cases}1 & \text { if } x \in A \\ 0 & \text { if } x \notin A .\end{cases}
$$

The function 1_{A} can be also viewed as a function from X to \mathbb{Z}, and from X to \mathbb{R}.

If $X=\{1,2, \ldots, n\}$, then the subsets can be identified as sequences of 0 and 1 of length n. For instance, let

$$
X=\{1,2,3,4,5,6,7,8\}, \quad A=\{2,4,5,7,8\} .
$$

The characteristic function of A corresponds to the sequence

0	1	0	1	1	0	1	1
1	2	3	4	5	6	7	8

7. Let a be a positive integer. Then for each integer b there exist unique integers q and r such that

$$
b=q a+r, \quad 0 \leq r<a .
$$

We then have the function $\mathrm{Quo}_{a}: \mathbb{Z} \rightarrow \mathbb{Z}$, defined by

$$
\operatorname{Quo}_{a}(b)=q, \quad b \in \mathbb{Z} ;
$$

and the function $\operatorname{Rem}_{a}: \mathbb{Z} \rightarrow\{0,1,2, \ldots, a-1\}$, defined by

$$
\operatorname{Rem}_{a}(b)=r, \quad b \in \mathbb{Z}
$$

8. Let a be a positive real number. Then for each real number x there exist unique integers q and r such that

$$
x=q a+r, \quad 0 \leq r<a .
$$

We then have the function $\mathrm{Quo}_{a}: \mathbb{R} \rightarrow \mathbb{Z}$, defined by

$$
\operatorname{Quo}_{a}(x)=q, \quad x \in \mathbb{R} ;
$$

and the function $\operatorname{Rem}_{a}: \mathbb{R} \rightarrow[0, a)$, defined by

$$
\operatorname{Rem}_{a}(x)=r, \quad x \in \mathbb{R}
$$

Let $f: X \rightarrow \mathbb{R}$ and $g: X \rightarrow \mathbb{R}$ be two functions. The addition of f and g is a function $f+g: X \rightarrow \mathbb{R}$ defined by

$$
(f+g)(x)=f(x)+g(x), \quad x \in X
$$

The subtraction of f and g is a function $f-g: X \rightarrow \mathbb{R}$ defined by

$$
(f-g)(x)=f(x)-g(x), \quad x \in X .
$$

The scalar multiplication of f by a constant c is a function $c f: X \rightarrow \mathbb{R}$ defined by

$$
(c f)(x)=c f(x), \quad x \in X
$$

The multiplication of f and g is a function $f \cdot g: X \rightarrow \mathbb{R}$ defined by

$$
(f \cdot g)(x)=f(x) g(x), \quad x \in X
$$

Usually, we simply write $f \cdot g$ as $f g$.
Example 5.5. Given a universal set X and subsets $A \subseteq X, B \subseteq X$. Find the characteristic function $1_{\bar{A}}$ of \bar{A} in terms of 1_{A} and the characteristic function $1_{A \cup B}$ in terms of $1_{A}, 1_{B}$, and $1_{A \cap B}$.

By definition of characteristic function, we have

$$
1_{\bar{A}}(x)=\left\{\begin{array}{ll}
1 & \text { if } \\
0 & x \in \bar{A} \\
0 & \text { if } \\
x \notin \bar{A}
\end{array}=\left\{\begin{array}{lll}
1 & \text { if } & x \notin A \\
0 & \text { if } & x \in A
\end{array} .\right.\right.
$$

Note that

$$
\begin{aligned}
\left(1_{X}-1_{A}\right)(x) & =1_{X}(x)-1_{A}(x) \\
& = \begin{cases}1-0 & \text { if } x \notin A \\
1-1 & \text { if } x \in A\end{cases} \\
& = \begin{cases}1 & \text { if } \\
0 & \text { if } \\
x \in A\end{cases}
\end{aligned}
$$

Then

$$
\left(1_{X}-1_{A}\right)(x)=1_{\bar{A}}(x) \text { for all } \quad x \in X .
$$

This means that

$$
\begin{aligned}
& 1_{\bar{A}}=1_{X}-1_{A} . \\
& \left(1_{A} \cdot 1_{B}\right)(x)=1_{A}(x) \cdot 1_{B}(x) \\
& =\left\{\begin{array}{lll}
1 \cdot 1 & \text { if } & x \in A \cap B \\
1 \cdot 0 & \text { if } & x \in A \backslash B \\
0 \cdot 1 & \text { if } & x \in B \backslash A
\end{array}\right. \\
& =\left\{\begin{array}{lll}
1 & \text { if } & x \in A \cap B \\
0 & \text { if } & x \notin A \cap B
\end{array}\right. \\
& =1_{A \cap B}(x) \text { for all } x \in X \text {. }
\end{aligned}
$$

Thus

$$
1_{A} \cdot 1_{B}=1_{A \cap B} .
$$

6 Injection, Surjection, and Bijection

Definition 6.1. A function $f: X \rightarrow Y$ is said to be

1. injective (or one-to-one) if distinct elements of X are mapped to distinct elements in Y. That is, for $x_{1}, x_{2} \in X$,
if $x_{1} \neq x_{2}$, then $f\left(x_{1}\right) \neq f\left(x_{2}\right)$.

An injective function is also called an injection (or one-to-one mapping).
2. surjective (or onto) if every element in Y is an image of some elements of X; that is, for each $y \in Y$, there exist $x \in X$ such that $f(x)=y$. In other words, $f(X)=Y$. A surjective function is also called a surjection (or onto mapping).
3. bijective if it is both injective and surjective. A bijective function is also called a bijection (or one-to-one correspondence).

Example 6.1. Let $X=\{a, b, c, d\}, Y=\{1,2,3,4,5\}$. The function given by the figure

is injective, but not surjective. The function given by the figure

is neither injective nor surjective.
Example 6.2. Let $X=\{a, b, c, d\}, Y=\{1,2,3\}$. The function given by the figure

is surjective, but not injective.
Example 6.3. Let $X=\{a, b, c, d\}, Y=\{1,2,3,4\}$. The function given by the figure

is bijective.

Example 6.4. 1. The function $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=e^{x}$, is injective, but not surjective.
2. The function $f: \mathbb{R} \rightarrow \mathbb{R}_{\geq 0}$ defined by $f(x)=x^{2}$ is surjective, but not injective.
3. The function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=x^{3}$ is bijective.
4. The function $f: \mathbb{R}_{+} \rightarrow \mathbb{R}$ defined by $f(x)=\log x$ is bijective.

Definition 6.2. The composition of functions

$$
f: X \rightarrow Y \quad \text { and } \quad g: Y \rightarrow Z
$$

is a function $g \circ f: X \rightarrow Z$, defined by

$$
(g \circ f)(x)=g(f(x)), \quad x \in X .
$$

Example 6.5. Let $X=\{a, b, c, d\}, Y=\{1,2,3,4,5\}, Z=\{\alpha, \beta, \gamma\}$. Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be given by

The composition $g \circ f: X \rightarrow Z$ is given by

Theorem 6.3 (Associativity of Composition). Given functions

$$
f: X \rightarrow Y, \quad g: Y \rightarrow Z, \quad h: Z \rightarrow W .
$$

Then

$$
h \circ(g \circ f)=(h \circ g) \circ f,
$$

as functions from X to W. We write

$$
h \circ g \circ f=h \circ(g \circ f)=(h \circ g) \circ f .
$$

Proof. For any $x \in X$, we have

$$
\begin{aligned}
(h \circ(g \circ f))(x) & =h((g \circ f)(x)) \\
& =h((g(f(x))) \\
& =(h \circ g)(f(x)) \\
& =((h \circ g) \circ f)(x) .
\end{aligned}
$$

Example 6.6. Let $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=2 x+1$ and $g: \mathbb{R} \rightarrow \mathbb{R}, g(x)=\frac{x}{x^{2}+2}$. Then both $g \circ f$ and $f \circ g$ are functions from \mathbb{R} to \mathbb{R}, and for $x \in \mathbb{R}$,

$$
\begin{aligned}
(g \circ f)(x) & =g(f(x))=g(2 x+1) \\
& =\frac{2 x+1}{(2 x+1)^{2}+2} \\
& =\frac{2 x+1}{4 x^{2}+4 x+3} ; \\
(f \circ g)(x) & =f(g(x))=f\left(\frac{x}{x^{2}+2}\right) \\
& =\frac{2 x}{x^{2}+2}+1 \\
& =\frac{x^{2}+2 x+2}{x^{2}+2} .
\end{aligned}
$$

Obviously,

$$
f \circ g \neq g \circ f
$$

The identity function of a set X is the function

$$
\operatorname{id}_{X}: X \rightarrow X, \quad \operatorname{id}_{X}(x)=x \quad \text { for all } \quad x \in X
$$

Definition 6.4. A function $f: X \rightarrow Y$ is said to be invertible if there exists a function $g: Y \rightarrow X$ such that

$$
\begin{aligned}
& g(f(x))=x \quad \text { for } \quad x \in X, \\
& f(g(y))=y \text { for } y \in Y .
\end{aligned}
$$

In other words,

$$
g \circ f=\operatorname{id}_{X}, \quad f \circ g=\operatorname{id}_{Y} .
$$

The function g is called the inverse of f, written as $g=f^{-1}$.

Remark. Given a function $f: X \rightarrow Y$. For each element $y \in Y$ and each subset $B \subseteq Y$, we define their inverse images

$$
\begin{aligned}
f^{-1}(y) & =\{x \in X: f(x)=y\} \\
f^{-1}(B) & =\{x \in X: f(x) \in B\} .
\end{aligned}
$$

Here $f^{-1}(y)$ and $f^{-1}(B)$ are just notations for the above sets; it does not mean that f is invertible. So $f^{-1}(y)$ and $f^{-1}(B)$ are meaningful for every function f. However, f^{-1} alone is meaningful only if f is invertible.

If $f: X \rightarrow Y$ is invertible, then the inverse of f is unique. In fact, let g and h be inverse functions of f, i.e.,

$$
\begin{aligned}
& g(f(x))=h(f(x))=x \quad \text { for } \quad x \in X ; \\
& f(g(y))=f(h(y))=y \quad \text { for } \quad y \in Y .
\end{aligned}
$$

For each fixed $y \in Y$, write $x_{1}=g(y), x_{2}=h(y)$. Apply f to x_{1}, x_{2}, we have

$$
f\left(x_{1}\right)=f(g(y))=y=f(h(y))=f\left(x_{2}\right) .
$$

Apply g to $f\left(x_{1}\right), f\left(x_{2}\right)$, we obtain

$$
x_{1}=g\left(f\left(x_{1}\right)\right)=g\left(f\left(x_{2}\right)\right)=x_{2} .
$$

This means that $g(y)=h(y)$ for all $y \in Y$. Hence, $g=h$.
The inverse function f^{-1} of any invertible function f is invertible, and the inverse of f^{-1} is the function f, i.e., $\left(f^{-1}\right)^{-1}=f$.
Theorem 6.5. A function $f: X \rightarrow Y$ is invertible if and only if f is one-to-one and onto.

Proof. Necessity (" \Rightarrow "): Since f is invertible, there is a function $g: Y \rightarrow X$ such that

$$
g \circ f=\operatorname{id}_{X}, \quad f \circ g=\operatorname{id}_{Y} .
$$

For any $x_{1}, x_{2} \in X$, if $f\left(x_{1}\right)=f\left(x_{2}\right)$, then

$$
x_{1}=g\left(f\left(x_{1}\right)\right)=g\left(f\left(x_{2}\right)\right)=x_{2}
$$

This means that f is one-to-one. On the other hand, for each $y \in Y$ we have $g(y) \in X$ and $f(g(y))=y$. This means that f is onto.

Sufficiency (" \Leftarrow "): Since f is one-to-one and onto, then for each $y \in Y$ there is one and only one element $x \in X$ such that $f(x)=y$. We define a function

$$
g: Y \rightarrow X, \quad g(y)=x
$$

where x is the unique element in X such that $f(x)=y$. Then

$$
\begin{array}{ll}
(g \circ f)(x)=g(f(x))=g(y)=x, & x \in X, \\
(f \circ g)(y)=f(g(y))=f(x)=y, & y \in Y .
\end{array}
$$

By definition, f is invertible, and $g=f^{-1}$.
Example 6.7. Let $2 \mathbb{Z}$ denote the set of even integers. The function

$$
f: \mathbb{Z} \rightarrow 2 \mathbb{Z}, \quad f(n)=2 n
$$

is invertible. Its inverse is the function

$$
f^{-1}: 2 \mathbb{Z} \rightarrow \mathbb{Z}, \quad f^{-1}(n)=\frac{n}{2}
$$

Check: For each $n \in \mathbb{Z}$,

$$
\left(f^{-1} \circ f\right)(n)=f^{-1}(f(n))=f^{-1}(2 n)=\frac{2 n}{2}=n .
$$

For each $m=2 k \in 2 \mathbb{Z}$,

$$
\left(f \circ f^{-1}\right)(m)=f\left(\frac{m}{2}\right)=2 \cdot \frac{m}{2}=m .
$$

However, the function

$$
f_{1}: \mathbb{Z} \rightarrow \mathbb{Z}, \quad f_{1}(n)=2 n
$$

is not invertible; and the function

$$
f_{2}: \mathbb{Z} \rightarrow 2 \mathbb{Z}, \quad f_{2}(n)=n(n-1)
$$

is also not invertible.

Example 6.8. The function

$$
f: \mathbb{R} \rightarrow \mathbb{R}, \quad f(x)=x^{3}
$$

is invertible. Its inverse is the function

$$
f^{-1}: \mathbb{R} \rightarrow \mathbb{R}, \quad f^{-1}(x)=\sqrt[3]{x}
$$

Check: For each $x \in \mathbb{R}$,

$$
\begin{aligned}
& \left(f^{-1} \circ f\right)(x)=f^{-1}(f(x))=f^{-1}\left(x^{3}\right)=\sqrt[3]{x^{3}}=x \\
& \left(f \circ f^{-1}\right)(x)=f\left(f^{-1}(x)\right)=f(\sqrt[3]{x})=(\sqrt[3]{x})^{3}=x
\end{aligned}
$$

Example 6.9. The function

$$
f: \mathbb{R} \rightarrow \mathbb{R}_{+}, \quad g(x)=e^{x}
$$

is invertible. Its inverse is the function

$$
g: \mathbb{R}_{+} \rightarrow \mathbb{R}, \quad g^{-1}(x)=\log x
$$

Check:

$$
\begin{aligned}
& g \circ f(x)=g\left(e^{x}\right)=\log \left(e^{x}\right)=x, \quad x \in \mathbb{R} \\
& f \circ g(y)=f(\log y)=e^{\log y}=y, \quad y \in \mathbb{R}_{+}
\end{aligned}
$$

Example 6.10.

The function

$$
f: \mathbb{R} \rightarrow \mathbb{R}, \quad f(x)=x^{2}
$$

is not invertible. However, the function

$$
f_{1}: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}, \quad f_{1}(x)=x^{2}
$$

is invertible; its inverse is the function

$$
f_{1}^{-1}: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}, \quad f_{1}^{-1}(x)=\sqrt{x}
$$

Likewise the function

$$
f_{2}: \mathbb{R}_{\leq 0} \rightarrow \mathbb{R}_{\geq 0}, \quad f_{2}(x)=x^{2}
$$

is invertible; its inverse is the function

$$
f_{2}^{-1}: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\leq 0}, \quad f_{2}^{-1}(x)=-\sqrt{x}
$$

The function $f: \mathbb{R} \rightarrow[-1,1], f(x)=\sin x$, is not invertible. However, the function

$$
f_{1}:\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \rightarrow[-1,1], \quad f_{1}(x)=\sin x
$$

is invertible (which is the restriction of f to $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$) and has the inverse

$$
f_{1}^{-1}:[-1,1] \rightarrow\left[-\frac{\pi}{2}, \frac{\pi}{2}\right], \quad f_{1}^{-1}(x)=\arcsin x
$$

Exercise 6. Let $f: X \rightarrow Y$ be a function.

1. For subsets $A_{1}, A_{2} \subseteq X$, show that

$$
\begin{aligned}
& f\left(A_{1} \cap A_{2}\right) \subseteq f\left(A_{1}\right) \cap f\left(A_{2}\right), \\
& f\left(A_{1} \cup A_{2}\right)=f\left(A_{1}\right) \cup f\left(A_{2}\right) ;
\end{aligned}
$$

2. For subsets $B_{1}, B_{2} \subseteq Y$, show that

$$
\begin{aligned}
& f^{-1}\left(B_{1} \cap B_{2}\right)=f^{-1}\left(B_{1}\right) \cap f^{-1}\left(B_{2}\right), \\
& f^{-1}\left(B_{1} \cup B_{2}\right)=f^{-1}\left(B_{1}\right) \cup f^{-1}\left(B_{2}\right) .
\end{aligned}
$$

Example 6.11. Let $f: X \rightarrow X$ be a function. If X is a finite set, then the following statements are equivalent.
(1) f is bijective.
(2) f is one-to-one.
(3) f is onto.

Exercise 7. Let $f: X \rightarrow X$ be a function. Let

$$
\begin{aligned}
f^{0} & =\operatorname{id}_{X}, \\
f^{n} & =\underbrace{f \circ \cdots \circ f}_{n}=f^{n-1} \circ f, \quad n \in \mathbb{Z}_{+} .
\end{aligned}
$$

It is easy to see that for nonnegative integers $m, n \in \mathbb{N}$,

$$
f^{m} \circ f^{n}=f^{m+n} .
$$

Exercise 8. Let $f: X \rightarrow X$ be an invertible function. Let $f^{-n}=\left(f^{-1}\right)^{n}$ for $n \in \mathbb{Z}_{+}$. Then

$$
f^{m} \circ f^{n}=f^{m+n} \quad \text { for all } \quad m, n \in \mathbb{Z}
$$

Proof. Note that f^{0} is the identity function id_{X}. We see that for each function $g: X \rightarrow X$,

$$
f^{0} \circ g=g \circ f^{0}=g .
$$

For each positive integer k,

$$
\begin{aligned}
f^{k} \circ f^{-k} & =\underbrace{f \circ \cdots \circ f}_{k} \circ \underbrace{f^{-1} \circ \cdots \circ f^{-1}}_{k} \\
& =\underbrace{f \circ \cdots \circ f}_{k-1} \circ\left(f \circ f^{-1}\right) \circ \underbrace{f^{-1} \circ \cdots \circ f^{-1}}_{k-1} \\
& =\underbrace{f \circ \cdots \circ f}_{k-1} \circ f^{0} \circ \underbrace{f^{-1} \circ \cdots \circ f^{-1}}_{k-1} \\
& =\underbrace{f \circ \cdots \circ f}_{k-1} \circ \underbrace{f^{-1} \circ \cdots \circ f^{-1}}_{k-1} \\
& =\cdots=f \circ f^{-1}=f^{0} .
\end{aligned}
$$

Likewise, $f^{-k} \circ f^{k}=\underbrace{f^{-1} \circ \cdots \circ f^{-1}}_{k} \circ \underbrace{f \circ \cdots \circ f}_{k}=f^{0}$. Thus for all $k \in \mathbb{Z}$,

$$
f^{k} \circ f^{-k}=f^{0}=\operatorname{id}_{X}, \quad \text { i.e., } \quad\left(f^{k}\right)^{-1}=\left(f^{-1}\right)^{k} .
$$

Now we divide the situation into four cases: (i) $m \geq 0, n \geq 0$; (ii) $m \leq$ $0, n \leq 0$; (iii) $m>0, n<0$; and (iv) $m<0, n>0$. The cases (i) and (ii) are trivial.

Case (iii). We have two subcases: (a) $m \geq-n$, and (b) $m \leq-n$. For the subcase (a), we write $k=-n$ and $m=k+a$, where a is a nonnegative integer. Then $a=m+n$, and

$$
f^{m} \circ f^{n}=f^{a} \circ f^{k} \circ f^{-k}=f^{a} \circ f^{0}=f^{a}=f^{m+n}
$$

For the subcase (b), we write $n=-m-a$, where a is a nonnegative integer. Then $-a=m+n$, and

$$
f^{m} \circ f^{n}=f^{m} \circ f^{-m} \circ f^{-a}=f^{0} \circ f^{-a}=f^{-a}=f^{m+n}
$$

Case (iv). There are also two subcases: (a) $-m \geq n$, and (b) $-m \leq n$. For the subcase (a), let $m=-n-a$. Then

$$
f^{m} \circ f^{n}=f^{-a} \circ f^{-n} \circ f^{n}=f^{-a} \circ f^{0}=f^{-a}=f^{m+n}
$$

For the subcase (b), let $k=-m$ and write $n=k+a$. Then

$$
f^{m} \circ f^{n}=f^{-k} \circ f^{k} \circ f^{a}=f^{0} \circ f^{a}=f^{a}=f^{m+n} .
$$

Example 6.12. Let $f: X \rightarrow X$ be an invertible function. For each $x \in X$, the orbit of x under f is the set

$$
\operatorname{Orb}(f, x)=\left\{f^{n}(x): n \in \mathbb{Z}\right\} .
$$

Show that if $\operatorname{Orb}\left(f, x_{1}\right) \cap \operatorname{Orb}\left(f, x_{2}\right) \neq \varnothing$ then $\operatorname{Orb}\left(f, x_{1}\right)=\operatorname{Orb}\left(f, x_{2}\right)$.
Proof. Let $x_{0} \in \operatorname{Orb}\left(f, x_{1}\right) \cap \operatorname{Orb}\left(f, x_{2}\right)$. There exist integers m and n such that $x_{0}=f^{m}\left(x_{1}\right)$ and $x_{0}=f^{n}\left(x_{2}\right)$, that is, $f^{m}\left(x_{1}\right)=f^{n}\left(x_{2}\right)$. Applying the function f^{-m} to both sides, we have

$$
\begin{aligned}
x_{1} & =f^{0}\left(x_{1}\right)=\left(f^{-m} \circ f^{m}\right)\left(x_{1}\right)=f^{-m}\left(f^{m}\left(x_{1}\right)\right) \\
& =f^{-m}\left(f^{n}\left(x_{2}\right)\right)=\left(f^{-m} \circ f^{n}\right)\left(x_{2}\right)=f^{n-m}\left(x_{2}\right) .
\end{aligned}
$$

Thus for each $f^{k}\left(x_{1}\right) \in \operatorname{Orb}\left(f, x_{1}\right)$ with $k \in \mathbb{Z}$, we have

$$
f^{k}\left(x_{1}\right)=f^{k}\left(f^{n-m}\left(x_{2}\right)\right)=f^{k+n-m}\left(x_{2}\right) \in \operatorname{Orb}\left(f, x_{2}\right) .
$$

This means that $\operatorname{Orb}\left(f, x_{1}\right) \subset \operatorname{Orb}\left(f, x_{2}\right)$. Likewise, $\operatorname{Orb}\left(f, x_{2}\right) \subset \operatorname{Orb}\left(f, x_{1}\right)$. Hence $\operatorname{Orb}\left(f, x_{1}\right)=\operatorname{Orb}\left(f, x_{2}\right)$.

Example 6.13. Let X be a finite set. A bijection $f: X \rightarrow X$ is called a permutation of X. A permutation f of $X=\{1,2, \ldots, 8\}$ can be stated as follows:

$$
\left(\begin{array}{cccc}
1 & 2 & \cdots & 8 \\
f(1) & f(2) & \cdots & f(8)
\end{array}\right)=\left(\begin{array}{cccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
6 & 7 & 5 & 4 & 3 & 8 & 2 & 1
\end{array}\right) .
$$

Then

$$
\operatorname{Orb}(f, 1)=\operatorname{Orb}(f, 6)=\operatorname{Orb}(f, 8)=\{1,6,8\} ;
$$

$$
\begin{gathered}
\operatorname{Orb}(f, 2)=\operatorname{Orb}(f, 7)=\{2,7\} \\
\operatorname{Orb}(f, 3)=\operatorname{Orb}(f, 5)=\{3,5\} ; \\
\operatorname{Orb}(f, 4)=\{4\}
\end{gathered}
$$

Exercise 9. Let $f: \mathbb{R} \backslash \mathbb{Q} \rightarrow \mathbb{R} \backslash \mathbb{Q}$ be defined by

$$
f(x)=\frac{1}{x-1}, \quad x \in \mathbb{R} \backslash \mathbb{Q} .
$$

(a) Show that f is invertible.
(b) List all elements of the set $\left\{f^{k}: k \in \mathbb{Z}\right\}$.

7 Infinite Sets

Let A be a finite set of m elements. When we count the elements of A, we have the 1st element a_{1}, the 2 nd element a_{2}, the 3 rd element a_{3}, and so on. The result is to have listed the elements of A as follows

$$
a_{1}, a_{2}, \ldots, a_{m}
$$

Then a bijection $f:\{1,2, \ldots, m\} \rightarrow A$ is automatically given by

$$
f(i)=a_{i}, \quad i=1,2, \ldots, m .
$$

To compare the number of elements of A with another finite B of n elements. We do the same thing by listing the elements of B as follows

$$
b_{1}, b_{2}, \ldots, b_{n}
$$

If $m=n$, we automatically have a bijection $g: A \rightarrow B$, given by

$$
g\left(a_{i}\right)=b_{i}, \quad i=1,2, \ldots, m .
$$

If $m \neq n$, there is no bijection from A to B.
Theorem 7.1. Two finite sets A and B have the same number of elements if and only if there is a bijection $f: A \rightarrow B$, i.e., they are in one-to-one correspondent.

Definition 7.2. A set A is said to be equivalent to a set B, written as $A \sim B$, if there is a bijection $f: A \rightarrow B$.

If $A \sim B$, i.e., there is a bijection $f: A \rightarrow B$, then f has the inverse function $f^{-1}: B \rightarrow A$. Of course, f^{-1} is a bijection. Thus B is equivalent to A, i.e., $B \sim A$.

If $A \sim B$ and $B \sim C$, there are bijections $f: A \rightarrow B$ and $g: B \rightarrow C$. Obviously, the composition $g \circ f: A \rightarrow C$ is a bijection. Thus $A \sim C$.

For infinite sets, to compare the "number" of elements of one set with another, the right method is to use one-to-one correspondence. We say that two sets A and B have the same cardinality if $A \sim B$, written as

$$
|A|=|B| .
$$

The symbol $|A|$ is called the cardinality of A, meaning the size of A. If A is finite, we have

$$
|A|=\text { number of elements of } A \text {. }
$$

Example 7.1. The set \mathbb{Z} of integers is equivalent to the set \mathbb{N} of nonnegative integers, i.e., $\mathbb{Z} \sim \mathbb{N}$.

The function $f: \mathbb{Z} \rightarrow \mathbb{N}$, defined by

$$
f(n)= \begin{cases}2 n & \text { if } \quad n \geq 0 \\ -2 n-1 & \text { if } \quad n<0\end{cases}
$$

is a bijection. Its inverse function $f^{-1}: \mathbb{N} \rightarrow \mathbb{Z}$ is given by

$$
f^{-1}(n)=\left\{\begin{array}{lll}
n / 2 & \text { if } & n=\text { even } \\
-(n+1) / 2 & \text { if } & n=\text { odd }
\end{array}\right.
$$

We can say that \mathbb{Z} and \mathbb{N} have the same cardinality, i.e.,

$$
|\mathbb{Z}|=|\mathbb{N}| .
$$

Example 7.2. For any real numbers $a<b$, the closed interval $[a, b]$ is the set

$$
[a, b]=\{x \in \mathbb{R}: a \leq x \leq b\} .
$$

Then $[a, b]$ is equivalent to $[0,1]$, i.e., $[a, b] \sim[0,1]$.

The function $f:[a, b] \rightarrow[0,1]$, defined by

$$
f(x)=\frac{x-a}{b-a},
$$

is a bijection. Its inverse $f^{-1}:[0,1] \rightarrow[a, b]$ is given by

$$
f^{-1}(x)=(b-a) x+a, \quad x \in[0,1] .
$$

Definition 7.3. A set A is called countable if,

- A is either finite, or
- there is bijection from A to the set \mathbb{P} of positive integers.

In other words, the elements of A can be listed as either a finite sequence

$$
a_{1}, a_{2}, \ldots, a_{n} ;
$$

or an infinite sequence

$$
a_{1}, a_{2}, a_{3}, \ldots
$$

Sets that are not countable are said to be uncountable.
Proposition 7.4. Every infinite set contains an infinite countable subset. Proof. Let A be an infinite set. Select an element a_{1} from A. Since A is infinite, the set $A_{1}=A \backslash\left\{a_{1}\right\}$ is still infinite. One can select an element a_{2} from A_{1}. Similarly, the set

$$
A_{2}=A_{1} \backslash\left\{a_{2}\right\}=A \backslash\left\{a_{1}, a_{2}\right\}
$$

is infinite, one can select an element a_{3} from A_{2}, and the set

$$
A_{3}=A_{2} \backslash\left\{a_{3}\right\}=A \backslash\left\{a_{1}, a_{2}, a_{3}\right\}
$$

is infinite. Continue this procedure, we obtain an infinite sequence

$$
a_{1}, a_{2}, a_{3}, \ldots
$$

of distinct elements from A. The set $\left\{a_{1}, a_{2}, a_{3}, \ldots\right\}$ is an infinite countable subset of A.

Theorem 7.5. If A and B are countable subsets, then $A \cup B$ is countable.

Proof. It is obviously true if one of A and B is finite. Let

$$
A=\left\{a_{1}, a_{2}, \ldots\right\}, \quad B=\left\{b_{1}, b_{2}, \ldots\right\}
$$

be countably infinite. If $A \cap B=\varnothing$, then

$$
A \cup B=\left\{a_{1}, b_{1}, a_{2}, b_{2}, \ldots\right\}
$$

is countable as demonstrated. If $A \cap B \neq \varnothing$, we just need to delete the elements that appeared more than once in the sequence $a_{1}, b_{1}, a_{2}, b_{2}, \ldots$ Then the leftover is the set $A \cup B$.

Theorem 7.6. Let $A_{i}, i=1,2, \cdots$, be countable sets. If $A_{i} \cap A_{j}=\varnothing$ for any $i \neq j$, then $\bigcup_{i=1}^{\infty} A_{i}$ is countable.
Proof. We assume that each A_{i} is countably infinite. Write

$$
A_{i}=\left\{a_{i 1}, a_{i 2}, a_{i 3}, \cdots\right\}, \quad i=1,2, \ldots
$$

The countability of $\bigcup_{i=1}^{\infty} A_{i}$ can be demonstrated as

The condition of disjointness in Theorem 7.6 can be omitted.
Theorem 7.7. The closed interval $[0,1]$ of real numbers is uncountable.
Proof. Suppose the set $[0,1]$ is countable. Then the numbers in $[0,1]$ can be listed as an infinite sequence $\left\{\alpha_{i}\right\}_{i=1}^{\infty}$. Write all real numbers α_{i} in infinite decimal forms, say in base 10, as follows:

$$
\begin{aligned}
& \alpha_{1}=0 . a_{1} a_{2} a_{3} a_{4} \cdots \\
& \alpha_{2}=0 . b_{1} b_{2} b_{3} b_{4} \cdots \\
& \alpha_{3}=0 . c_{1} c_{2} c_{3} c_{4} \cdots
\end{aligned}
$$

. . .

We construct a number $x=0 . x_{1} x_{2} x_{3} x_{4} \cdots$, where x_{i} are given as follows:

$$
\begin{aligned}
& x_{1}= \begin{cases}1 & \text { if } a_{1}=2 \\
2 & \text { if } a_{1} \neq 2\end{cases} \\
& x_{2}= \begin{cases}1 & \text { if } b_{2}=2 \\
2 & \text { if } b_{2} \neq 2\end{cases} \\
& x_{3}= \begin{cases}1 & \text { if } c_{3}=2 \\
2 & \text { if } c_{3} \neq 2\end{cases}
\end{aligned}
$$

Obviously, x is an infinite decimal number between 0 and 1 , i.e., $x \in[0,1]$. Note that

$$
x_{1} \neq a_{1}, \quad x_{2} \neq a_{2}, \quad x_{3} \neq a_{3}, \quad \ldots
$$

This means that

$$
x \neq \alpha_{1}, \quad x \neq \alpha_{2}, \quad x \neq \alpha_{3}, \quad \ldots
$$

Thus x is not in the list $\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots\right\}$. Since all real numbers of $[0,1]$ are already in the list, in particular, x must be in the list. This is a contradiction.

Example 7.3. For any set Σ, either finite or infinite, recall that $\Sigma^{(n)}$ is the set of words of length n over Σ, and Σ^{n} is the product of n copies of Σ. Then
the function $f: \Sigma^{(n)} \rightarrow \Sigma^{n}$, defined by

$$
f\left(a_{1} a_{2} \cdots a_{n}\right)=\left(a_{1}, a_{2}, \ldots, a_{n}\right), \quad a_{1}, a_{2}, \ldots, a_{n} \in \Sigma,
$$

is a bijection. Thus $\Sigma^{(n)} \sim \Sigma^{n}$.
Theorem 7.8 (Cantor-Bernstein-Schroeder Theorem). Given sets A and B. If there are injections $f: A \rightarrow B$ and $g: B \rightarrow A$, then there exists a bijection $h: A \rightarrow B$.

Proof. First Proof (non-constructive). Note that $f: A \rightarrow f(A)$ and $g: B \rightarrow g(B)$ are bijections. Our aim is to find a subset $S \subseteq A$ such that $g(\overline{f(S)})=\bar{S}$. If so, the bijections $f: S \rightarrow f(S)$ and $g: \overline{f(S)} \rightarrow \bar{S}$ give rise to a bijection between A and B.

For each subset $E \subseteq A$, clearly, $f(E) \subseteq B$ and $g(\overline{f(E)}) \subseteq A$; we have

$$
\hat{E}:=\overline{g(\overline{f(E)})} \subseteq A
$$

If there exists a subset $S \subseteq A$ such that $\hat{S}=S$, i.e., $S=\overline{g(\overline{f(S)})}$, then $\bar{S}=g(\overline{f(S)})$. We claim that such subset S with $\hat{S}=S$ does exist.

We say that a subset $E \subseteq A$ expandable if $E \subseteq \hat{E}$. Expandable subsets of A do exist, since the empty set \varnothing is expandable. Let S be the union of all expandable subsets of A. We claim that $\hat{S}=S$.

We first show that $E_{1} \subseteq E_{2}$ implies $\hat{E}_{1} \subseteq \hat{E}_{2}$ for subsets E_{1}, E_{2} of A. In fact, if $E_{1} \subseteq E_{2}$, then $f\left(E_{1}\right) \subseteq f\left(E_{2}\right)$; consequently, $\overline{f\left(E_{1}\right)} \supseteq \overline{f\left(E_{2}\right)}$ by taking complement; hence $g\left(\overline{f\left(\underline{\left.E_{1}\right)}\right) \supseteq g}\left(\overline{f\left(E_{2}\right)}\right)\right.$ by applying the injective map g; now we see that $\overline{g\left(\overline{f\left(E_{1}\right)}\right.} \subseteq \overline{g\left(\overline{f\left(E_{2}\right)}\right)}$ by taking complement again, i.e., $\hat{E}_{1} \subseteq \hat{E}_{2}$.

Let D be an expandable subset of A, i.e., $D \subseteq \hat{D}$. Clearly, $D \subseteq S$ by definition of S; then $\hat{D} \subseteq \hat{S}$ by the previous argument; thus $D \subseteq \hat{S}$ as $D \subseteq \hat{D}$. Since D is an arbitrary expandable subset, we see that $S \subseteq \hat{S}$. Again, the previous argument implies that $\hat{S} \subseteq \hat{\hat{S}}$; this means that \hat{S} is an expandable subset; hence $\hat{S} \subseteq S$ by definition of S. Therefore $\hat{S}=S$.

Second Proof (constructive). Since $A \sim f(A)$, it suffices to show that $B \sim f(A)$. To this end, we define sets

$$
A_{1}=g(f(A)), \quad B_{1}=f(g(B))
$$

Then $g f: A \rightarrow A_{1}$ and $f g: B \rightarrow B_{1}$ are bijections, and

$$
A_{1} \subseteq g(f(A)) \subseteq g(B), \quad B_{1}=f(g(B)) \subseteq f(A)
$$

Set $A_{0}:=A, B_{0}:=B$, and introduce subsets

$$
A_{i}:=g\left(B_{i-1}\right), \quad B_{i}:=f\left(A_{i-1}\right), \quad i \geq 2 .
$$

We claim the following chains of inclusion

$$
A=A_{0} \supseteq A_{1} \supseteq A_{2} \supseteq \cdots, \quad B=B_{0} \supseteq B_{1} \supseteq B_{2} \supseteq \cdots .
$$

In fact,

$$
\begin{aligned}
& A_{2}=g\left(B_{1}\right)=g(f(g(B))) \subseteq g f(A)=A_{1}, \\
& B_{2}=f\left(A_{1}\right)=f(g(f(A))) \subseteq f g(B)=B_{1} .
\end{aligned}
$$

By induction, for $i \geq 2$, we have

$$
\begin{aligned}
& A_{i+1}=g\left(B_{i}\right) \subseteq g\left(B_{i-1}\right)=A_{i} \quad\left(\because B_{i} \subseteq B_{i-1}\right) ; \\
& B_{i+1}=f\left(A_{i}\right) \subseteq f\left(A_{i-1}\right)=B_{i} \quad\left(\because A_{i} \subseteq A_{i-1}\right) .
\end{aligned}
$$

Now we set $D:=\bigcap_{i=1}^{\infty} B_{i}$. Recall $B_{1} \subseteq f(A) \subseteq B$. We have disjoint unions

$$
\begin{aligned}
B & =(B-f(A)) \cup\left(f(A)-B_{1}\right) \cup\left(B_{1}-D\right) \cup D \\
& =D \cup\left(f(A)-B_{1}\right) \cup(B-f(A)) \cup \bigcup_{i=1}^{\infty}\left(B_{i}-B_{i+1}\right) ; \\
f(A) & =D \cup\left(f(A)-B_{1}\right) \cup \bigcup_{i=1}^{\infty}\left(B_{i}-B_{i+1}\right) .
\end{aligned}
$$

Note that $f g: B \rightarrow B_{1}$ is a bijection. By definition of A_{i} and B_{i}, we have

$$
\begin{aligned}
& f g(B-f(A))=f g(B)-f g f(A)=B_{1}-B_{2}, \\
& \qquad \begin{aligned}
f g\left(B_{i}-B_{i+1}\right) & =f g\left(B_{i}\right)-f g\left(B_{i+1}\right) \\
& =f\left(A_{i+1}\right)-f\left(A_{i+2}\right) \\
& =B_{i+2}-B_{i+3}, \quad i \geq 1 .
\end{aligned}
\end{aligned}
$$

We see that $f g$ sends $(B-f(A)) \cup \bigcup_{i=0}^{\infty}\left(B_{2 i+1}-B_{2 i+2}\right)$ to $\bigcup_{i=0}^{\infty}\left(B_{2 i+1}-B_{2 i+2}\right)$ bijectively. Note that both B and $f(A)$ contain the subset

$$
D \cup\left(f(A)-B_{1}\right) \cup \bigcup_{i=1}^{\infty}\left(B_{2 i}-B_{2 i+1}\right),
$$

whose complement in the sets $B, f(A)$ are respectively the subsets

$$
(B-f(A)) \cup \bigcup_{i=0}^{\infty}\left(B_{2 i+1}-B_{2 i+2}\right), \quad \bigcup_{i=0}^{\infty}\left(B_{2 i+1}-B_{2 i+2}\right)
$$

It follows that the function $\phi: B \rightarrow f(A)$, defined by

$$
\phi(x)=\left\{\begin{array}{cl}
x & \text { if } x \in D \cup\left(f(A)-B_{1}\right) \cup \bigcup_{i=1}^{\infty}\left(B_{2 i}-B_{2 i+1}\right) \\
f g(x) & \text { if }
\end{array},\right.
$$

is a bijection.

