Week 1-2

1 Some Warm-up Questions

Abstraction: The process going from specific cases to general problem.

Proof: A sequence of arguments to show certain conclusion to be true.

"If ... then ...": The part after "if" is called the **hypothesis**, the part after "then" is called the **conclusion** of the sentence or statement.

Fact 1: If m, n are integers with $m \leq n$, then there are exactly n - m + 1 integers *i* between *m* and *n* inclusive, i.e., $m \leq i \leq n$.

Fact 2: Let k, n be positive integers. Then the number of multiples of k between 1 and n inclusive is $\lfloor n/k \rfloor$.

Proof. The integers we want to count are the integers

$$1k, 2k, 3k, \ldots, mk$$

such that $mk \leq n$. Then $m \leq n/k$. Since *m* is an integer, we have $m = \lfloor n/k \rfloor$, the largest integer less than or equal to n/k.

Theorem 1.1. Let m, n be integers with $m \le n$, and k a positive integer. Then the number of multiples of k between m and n inclusive is

$$\left\lfloor \frac{n}{k} \right\rfloor - \left\lfloor \frac{m-1}{k} \right\rfloor.$$

Proof. The number of multiples of k between m and n inclusive are the integers

$$ak, (a+1)k, (a+2)k, \ldots, (b-1)k, bk,$$

where $ak \ge m$ and $bk \le n$. It follows that $a \ge m/k$ and $b \le n/k$. We then have $a = \lceil m/k \rceil$ and $b = \lfloor n/k \rfloor$. Thus by Fact 1, the number of multiples between m and n inclusive is

$$b-a+1 = \left\lfloor \frac{n}{k} \right\rfloor - \left\lceil \frac{m}{k} \right\rceil + 1.$$

Now by definition of the ceiling function, m can be written as m = ak - r, where $0 \le r < k$. Then

$$m - 1 = (a - 1)k + (k - r - 1).$$

Let s = k - r - 1. Since k > r, i.e., $k - 1 \ge r$, then $s \ge 0$. Since $r \ge 0$, then $s \le k - 1$, i.e., s < k. So we have

$$m-1 = (a-1)k + s, \ 0 \le s < k.$$

By definition of the floor function, this means that

$$\left\lceil \frac{m}{k} \right\rceil - 1 = a - 1 = \left\lfloor \frac{m - 1}{k} \right\rfloor.$$

2 Factors and Multiples

A **prime** is an integer that is greater than 1 and is not a product of any two smaller positive integers.

Given two integers m and n. If there is an integer k such that n = km, we say that n is a **multiple** of m or say that m is a **factor** or **divisor** of n; we also say that m **divides** n or n is **divisible** by m, denoted

$m \mid n$.

If *m* does not divide *n*, we write $m \nmid n$.

Proposition 2.1. An integer $p \ge 2$ is a prime if and only if its only positive divisors are 1 and p.

Theorem 2.2 (Unique Prime Factorization). Every positive integer n can be written as a product of primes. Moreover, there is only one way to write n in this form except for rearranging the order of the terms.

Let m, n, q be positive integers. If $m \mid n$, then $m \leq n$. If $m \mid n$ and $n \mid q$, then $m \mid q$.

A common factor or common divisor of two positive integers m and n is any integer that divides both m and n. The integer 1 is always a common divisor of m and n. There are only finite number of common divisors for any two positive integers m and n. The very largest one among all common factors of m, n is called the **greatest common divisor** of m and n, denoted

gcd(m,n).

Two positive integers m, n are said to be **relatively prime** if 1 is the only common factor of m and n, i.e., gcd(m, n) = 1.

Proposition 2.3. Let m, n be positive integers. A positive integer d is the greatest common divisor of m, n, i.e., d = gcd(a, b), if and only if

(i) $d \mid m, d \mid n, and$

(ii) if c is a positive integer such that $c \mid m, c \mid n, then c \mid d$.

Theorem 2.4 (Division Algorithm). Let m be a positive integer. Then for each integer n there exist unique integers q, r such that

n = qm + r with $0 \le r < m$.

Proposition 2.5. Let m, n be positive integers. If n = qm+r with integers $q \ge 0$ and r > 0, then gcd(n, m) = gcd(m, r).

Theorem 2.6 (Euclidean Algorithm). For arbitrary integers m and n, there exist integers s, t such that

$$gcd(m,n) = sm + tn.$$

Example 2.1. For the greatest common divisor of integers 231 and 525 is 21, that is, gcd(231, 525) = 21. In fact,

$$525 = 2 \times 231 + 63; \quad 231 = 3 \times 63 + 42; \quad 63 = 1 \times 42 + 21.$$

Then

$$21 = 63 - 42 = 63 - (231 - 3 \times 63)$$

= 4 × 63 - 231 = 4 × (525 - 2 × 231) - 231
= 4 × 525 - 9 × 231.

A common multiple of two positive integers m and n is any integer that is a multiple of both m and n. The product mn is one such common multiple. There are infinite number of common multiples of m and n. The smallest among all positive common multiples of m and n is called the **least common multiple** of m and n, denoted

 $\operatorname{lcm}(m,n).$

Let a, b be integers. The minimum and maximum of a and b are denoted by $\min\{a, b\}$ and $\max\{a, b\}$ respectively. We have

$$\min\{a, b\} + \max\{a, b\} = a + b.$$

Theorem 2.7. For positive integers m and n, we have

gcd(m,n) lcm(m,n) = mn.

Proof. (Bases on the Unique Prime Factorization) Let us write

$$m = p_1^{e_1} p_2^{e_2} \cdots p_k^{e_k}, \quad n = q_1^{f_1} q_2^{f_2} \cdots q_l^{f_l},$$

where p_i, q_j are primes and e_i, f_j are nonnegative integers with $1 \leq i \leq k$, $1 \leq j \leq l$, and

$$p_1 < p_2 < \cdots < p_k, \quad q_1 < q_2 < \cdots < q_l.$$

We may put the primes p_i, q_j together and order them as $t_1 < t_2 < \cdots < t_r$. Then

$$m = t_1^{a_1} t_2^{a_2} \cdots t_r^{a_r}, \quad n = t_1^{b_1} t_2^{b_2} \cdots t_r^{b_r}$$

where a_i are nonnegative integers with $1 \leq i \leq r$. Thus

$$\gcd(m,n) = t_1^{\min\{a_1,b_1\}} t_2^{\min\{a_2,b_2\}} \cdots t_r^{\min\{a_r,b_r\}} = \prod_{i=1}^r t_i^{\min\{a_i,b_i\}},$$
$$\gcd(m,n) = t_1^{\max\{a_1,b_1\}} t_2^{\max\{a_2,b_2\}} \cdots t_r^{\max\{a_r,b_r\}} = \prod_{i=1}^r t_i^{\max\{a_i,b_i\}},$$
$$mn = t_1^{a_1+b_1} t_2^{a_2+b_2} \cdots t_r^{a_r+b_r} = \prod_{i=1}^r t_i^{a_i+b_i}.$$

Since $\min\{a_i, b_i\} + \max\{a_i, b_i\} = a_i + b_i$ for all $1 \le i \le r$, we have

$$gcd(m,n)lcm(m,n) = \prod_{i=1}^{r} t_i^{\min\{a_i,b_i\}+\max\{a_i,b_i\}}$$
$$= \prod_{i=1}^{r} t_i^{a_i+b_i}$$
$$= mn.$$

Theorem 2.8. Let *m* and *n* be positive integers.

(a) If a divides both m and n, then a divides gcd(m, n).

(b) If b is a multiple of both m and n, then b is a multiple of lcm(m, n).

Proof. (a) Let us write m = ka and n = la. By the Euclidean Algorithm, we have gcd(m, n) = sm + tn for some integers s, t. Then

$$gcd(m, n) = ska + tla = (sk + tl)a.$$

This means that a is a factor of gcd(m, n).

(b) Let b be a common multiple of m and n. By the Division Algorithm, $b = q \operatorname{lcm}(m, n) + r$ for some integer q and r with $0 \leq r < \operatorname{lcm}(m, n)$. Now both b and $\operatorname{lcm}(m, n)$ are common multiples of m and n. It follows that $r = b - q \operatorname{lcm}(m, n)$ is a common multiple of m and n. Since $0 \leq r < \operatorname{lcm}(m, n)$, we must have r = 0. This means that $\operatorname{lcm}(m, n)$ divides b.

3 Sets and Subsets

A set is a collection of distinct objects, called **elements** or **members**, satisfying certain properties. A set is considered to be a whole entity and is different from its elements. Sets are usually denoted by uppercase letters, while elements of a set are usually denoted by lowercase letters.

Given a set A. We write " $x \in A$ " to say that x is an element of A or x belongs to A. We write " $x \notin A$ " to say that x is not an element of A or x does not belong to A. The collection of all integers forms a set, called the **set of integers**, denoted

$$\mathbb{Z} := \{\ldots, -2, -1, 0, 1, 2, \ldots\}.$$

The collection of all nonnegative integers is a set, called the **set of natural numbers**, denoted

$$\mathbb{N} := \{0, 1, 2, \ldots\}.$$

The set of positive integers is denoted by

$$\mathbb{P} := \{1, 2, \ldots\}.$$

We have

- \mathbb{Q} : set of rational numbers;
- \mathbb{R} : set of real numbers;
- \mathbb{C} : set of complex numbers.

There are two ways to express a set. One is to list all elements of the set; the other one is to point out the attributes of the elements of the set. For instance, let A be the set of integers whose absolute values are less than or equal to 2. The set A can be described in two ways:

$$A = \{-2, -1, 0, 1, 2\} \text{ and}$$
$$A = \{a : a \in \mathbb{Z}, |a| \le 2\}$$
$$= \{a \in \mathbb{Z} : |a| \le 2\}$$
$$= \{a \in \mathbb{Z} \mid |a| \le 2\}.$$

Two sets A and B are said to be **equal**, written A = B, if every element of A is an element of B and every element of B is also an element of A. As usual, we write " $A \neq B$ " to say that the sets A and B are not equal. In other words, there is at least one element of A which is not an element of B, or, there is at least one element of B which is not an element of A.

A set A is called a **subset** of a set B, written $A \subseteq B$, if every element of A is an element of B; if so, we say that A is **contained** in B or B **contains** A. If A is not a subset of B, written $A \not\subseteq B$, it means that there exists an element $x \in A$ such that $x \notin B$. Given two sets A and B. If $A \subseteq B$, it is common to say that B is a **superset** of A, written $B \supseteq A$. If $A \subseteq B$ and $A \neq B$, we abbreviate it as $A \subsetneq B$. The equality A = B is equivalent to $A \subseteq B$ and $B \subseteq A$.

A set is called **finite** if it has only finite number of elements; otherwise, it is called **infinite**. For a finite set A, we denote by |A| the number of elements of A, called an **cardinality** of A. The sets $\mathbb{P}, \mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ are all infinite sets and

 $\mathbb{P} \subsetneq \mathbb{N} \subsetneq \mathbb{Z} \subsetneq \mathbb{Q} \subsetneq \mathbb{R} \subsetneq \mathbb{C}.$

Let a, b be real numbers with $a \leq b$. We define **intervals**:

$$\begin{split} & [a,b] = \{ x \in \mathbb{R} : a \le x \le b \}, \\ & (a,b) = \{ x \in \mathbb{R} : a < x < b \}, \\ & (a,b] = \{ x \in \mathbb{R} : a < x \le b \}, \\ & [a,b) = \{ x \in \mathbb{R} : a \le x < b \}. \end{split}$$

We define **infinite intervals**:

$$\begin{split} & [a,\infty) = \{x \in \mathbb{R} : a \leq x\}, \\ & (a,\infty) = \{x \in \mathbb{R} : a < x\}, \\ & (-\infty,a] = \{x \in \mathbb{R} : x \leq a\}, \\ & (-\infty,a) = \{x \in \mathbb{R} : x < a\}. \end{split}$$

Consider the set A of real numbers satisfying the equation $x^2 + 1 = 0$. We see that the set contains no elements at all; we call it empty. The set without elements is called the **empty set**. There is one and only one empty set, and is denoted by the symbol

Ø.

The empty set \emptyset is a subset of every set, and its cardinality $|\emptyset|$ is 0.

The collection of everything is *not* a set. Is $\{x : x \notin x\}$ a set?

Exercise 1. Let $A = \{1, 2, 3, 4, a, b, c, d\}$. Identify each of the following as true or false:

Exercise 2. List all subsets of a set A with

$$A = \emptyset; \quad A = \{1\}; \quad A = \{1, 2\}; \quad A = \{1, 2, 3\}.$$

A convenient way to visualize sets in a universal set U is the **Venn diagram**. We usually use a rectangle to represent the universal set U, and use circles or ovals to represent its subsets as follows:

Exercise 3. Draw the Venn diagram that represents the following relationships.

- 1. $A \subseteq B, A \subseteq C, B \not\subseteq C$, and $C \not\subseteq B$.
- 2. $x \in A, x \in B, x \notin C, y \in B, y \in C$, and $y \notin A$.
- 3. $A \subseteq B, x \notin A, x \in B, A \nsubseteq C, y \in B, y \in C.$

The **power set** of a set A, written $\mathcal{P}(A)$, is the set of all subsets of A. Note that the empty set \emptyset and the set A itself are two elements of $\mathcal{P}(A)$. For instance, the power set of the set $A = \{a, b, c\}$ is the set

$$\mathcal{P}(A) = \Big\{ \emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\} \Big\}.$$

Let Σ be finite nonempty set, called **alphabet**, whose elements are called **letters**. A **word** of length n over Σ is a string

$$a_1 a_2 \cdots a_n$$

with the letters a_1, a_2, \ldots, a_n from Σ . When n = 0, the word has no letters, called the **empty word** (or **null word**), denoted λ . We denote by $\Sigma^{(n)}$ the set of words of length n and by Σ^* the set of all words of finite length over Σ . Then

$$\Sigma^* = \bigcup_{n=0}^{\infty} \Sigma^{(n)}.$$

4 Set Operations

Let A and B be two sets. The **intersection** of A and B, written $A \cap B$, is the set of all elements common to the both sets A and B. In set notation,

$$A \cap B = \{ x \mid x \in A \text{ and } x \in B \}.$$

The **union** of A and B, written $A \cup B$, is the set consisting of the elements belonging to either the set A or the set B, i.e.,

$$A \cup B = \{ x \mid x \in A \text{ or } x \in B \}.$$

The **relative complement** of A in B is the set consisting of the elements of B that is not in A, i.e.,

$$B \smallsetminus A = \{ x \mid x \in B, x \notin A \}.$$

When we only consider subsets of a fixed set U, this fixed set U is sometimes called a **universal set**. Note that a universal set is *not universal*; it does not mean that it contains everything. For a universal set U and a subset $A \subseteq U$, the relative complement $U \smallsetminus A$ is just called the **complement** of A, written

$$\overline{A} = U \smallsetminus A.$$

Since we always consider the elements in U, so, when $x \in \overline{A}$, it is equivalent to saying $x \in U$ and $x \notin A$ (in practice no need to mention $x \in U$). Similarly, $x \in A$ is equivalent to $x \notin \overline{A}$. Another way to say about "equivalence" is the phrase "if and only if." For instance, $x \in \overline{A}$ if and only if $x \notin A$. To save space in writing or to make writing succinct, we sometimes use the symbol " \iff " instead of writing "is (are) equivalent to" and "if and only if." For example, we may write " $x \in \overline{A}$ if and only $x \notin A$ " as " $x \in \overline{A} \iff x \notin A$."

Let A_1, A_2, \ldots, A_n be a family of sets. The **intersection** of A_1, A_2, \ldots, A_n is the set consisting of elements common to all A_1, A_2, \ldots, A_n , i.e.,

$$\bigcap_{i=1}^{n} A_{i} = A_{1} \cap A_{2} \cap \dots \cap A_{n} = \left\{ x : x \in A_{1}, x \in A_{2}, \dots, x \in A_{n} \right\}$$

Similarly, the **union** of A_1, A_2, \ldots, A_n is the set, each of its element is contained in at least one A_i , i.e.,

$$\bigcup_{i=1}^{n} A_{i} = A_{1} \cup A_{2} \cup \dots \cup A_{n}$$
$$= \left\{ x : \text{there exists at least one } A_{i} \text{ such that } x \in A_{i} \right\}.$$

We define the **intersection** and **union** of infinitely many set A_1, A_2, \ldots as follows:

$$\bigcap_{i=1}^{\infty} A_i = A_1 \cap A_2 \cap \dots = \left\{ x : x \in A_i, i = 1, 2, \dots \right\};$$

$$\bigcup_{i=1}^{\infty} A_i = A_1 \cup A_2 \cup \dots = \left\{ x : \text{there exists one } i \text{ such that } x \in A_i \right\}.$$

In general, let A_i with $i \in I$ be a family of sets. We can also define the **intersection** and **union**

$$\bigcap_{i \in I} A_i = \left\{ x : x \in A_i \text{ for all } i \in I \right\}$$
$$\bigcup_{i \in I} A_i = \left\{ x : x \in A_i \text{ for at least one } i \in I \right\}$$

Theorem 4.1 (DeMorgan Law). Let A and B be subsets of a universal set U. Then

(1)
$$\overline{\overline{A}} = A$$
, (2) $\overline{A \cap B} = \overline{A} \cup \overline{B}$, (3) $\overline{A \cup B} = \overline{A} \cap \overline{B}$.

Proof. (1) By definition of complement, $x \in \overline{\overline{A}}$ is equivalent to $x \notin \overline{A}$. Again by definition of complement, $x \notin \overline{A}$ is equivalent to $x \in A$.

(2) By definition of complement, $x \in \overline{A \cap B}$ is equivalent to $x \notin A \cap B$. By definition of intersection, $x \notin A \cap B$ is equivalent to either $x \notin A$ or $x \notin B$. Again by definition of complement, $x \notin A$ or $x \notin B$ can be written as $x \in \overline{A}$ or $x \in \overline{B}$. Now by definition of union, this is equivalent to $x \in \overline{A} \cup \overline{B}$.

(3) To show that $\overline{A \cup B} = \overline{A} \cap \overline{B}$, it suffices to show that their complements are the same. In fact, applying parts (1) and (2) we have

$$\overline{\overline{A \cup B}} = A \cup B, \quad \overline{\overline{A} \cap \overline{B}} = \overline{\overline{A}} \cup \overline{\overline{B}} = A \cup B.$$

Their complements are indeed the same.

The **Cartesian product** (or **product**) of two sets A and B, written $A \times B$, is the set consisting of all ordered pairs (a, b), where $a \in A$ and $b \in B$, i.e.,

$$A \times B = \{(a, b) : a \in A \text{ and } b \in B\}.$$

The **product** of a finite family of sets A_1, A_2, \ldots, A_n is the set

$$\prod_{i=1}^{n} A_{i} = A_{1} \times A_{2} \times \dots \times A_{n}$$
$$= \left\{ (a_{1}, a_{2}, \dots, a_{n}) : a_{1} \in A_{1}, a_{2} \in A_{2}, \dots, a_{n} \in A_{n} \right\},\$$

the element (a_1, a_2, \ldots, a_n) is called an **ordered** *n*-tuple. The product of an infinite family A_1, A_2, \ldots of sets is the set

$$\prod_{i=1}^{\infty} A_i = A_1 \times A_2 \times \dots = \left\{ (a_1, a_2, \dots) : a_1 \in A_1, a_2 \in A_2, \dots \right\}.$$

Each element of $\prod_{i=1}^{\infty} A_i$ can be considered as an infinite sequence. If $A = A_1 = A_2 = \cdots$, we write

$$A^{n} = \underbrace{A \times \cdots \times A}_{n},$$
$$A^{\infty} = \underbrace{A \times A \times \cdots}_{\infty}.$$

Example 4.1. For sets $A = \{0, 1\}$, $B = \{a, b, c\}$, the product A and B is the set

$$A \times B = \{(0, a), (0, b), (0, c), (1, a), (1, b), (1, c)\};\$$

and the product $A^3 = A \times A \times A$ is the set

$$A^{3} = \{(0,0,0), (0,0,1), (0,1,1), (1,0,0), (1,0,1), (1,1,0), (1,1,1)\}.$$

For the set \mathbb{R} of real numbers, the product \mathbb{R}^2 is the 2-dimensional coordinate plane, and \mathbb{R}^3 is the 3-dimensional coordinate space.

A **sequence** of a nonempty set A is a list (elements can repeat) of finite or infinite number of objects of A in order:

$$a_1, a_2, \ldots, a_n$$
 (finite sequence)
 a_1, a_2, a_3, \ldots (infinite sequence)

where $a_i \in A$. The sequence is called **finite** in the former case and **infinite** in the latter case.

Exercise 4. Let A be a set, and let $A_i, i \in I$, be a family of sets. Show that

$$\bigcup_{i \in I} A_i = \bigcap_{i \in I} \overline{A_i};$$

$$\overline{\bigcap_{i \in I} A_i} = \bigcup_{i \in I} \overline{A_i};$$

$$A \cap \bigcup_{i \in I} A_i = \bigcup_{i \in I} (A \cap A_i);$$

$$A \cup \bigcap_{i \in I} A_i = \bigcap_{i \in I} (A \cup A_i).$$

Exercise 5. Let A, B, C be finite sets. Use Venn diagram to show that

$$\begin{split} |A\cup B\cup C| &= |A|+|B|+|C|\\ -|A\cap B|-|A\cap C|-|B\cap C|+|A\cap B\cap C|. \end{split}$$

5 Functions

The elements of any set are distinct. For instance, the collection

$$A = \{a, d, c, d, 1, 2, 3, 4, 5, 6\}$$

is a set. However, the collection

$$B = \{a, b, c, c, d, d, d, 1, 2, 2, 2\}$$

is not a set.

Definition 5.1. Let X and Y be nonempty sets. A **function** f of (from) X to Y is a rule such that every element x of X is assigned (or sent to) a *unique* element y in Y. The function f is denoted by

$$f: X \to Y.$$

If an element x of X is sent to an element y in Y, we write

$$y = f(x);$$

we call y the **image** (or **value**) of x under f, and x the **inverse image** of y. The set X is called the **domain** and Y the **codomain** of f. The **image** of f is the set

$$Im(f) = f(X) = \{ f(x) : x \in X \}.$$

Two functions $f: X \to Y$ and $g: X \to Y$ are said to be **equal**, written as f = g, if

$$f(x) = g(x)$$
 for all $x \in X$.

Example 5.1. Let $X = \{a, b, c, d\}, Y = \{1, 2, 3, 4, 5\}$. Let

$$f(a) = 3$$
, $f(b) = 2$, $f(c) = 5$, $f(d) = 3$.

Then the function $f: X \to Y$ can be demonstrated by the figure

However, the following assignments are not functions

In calculus, for a function y = f(x), the variable x is usually called an **independent variable** and y the **dependent variable** of f.

Example 5.2. Some ordinary functions.

1. The usual function $y = x^2$ is considered as the function

$$f: \mathbb{R} \to \mathbb{R}, \quad f(x) = x^2.$$

Its domain and codomain are \mathbb{R} . The function $y = x^2$ can be also considered as a function

$$g: \mathbb{R} \to \mathbb{R}_{\geq 0}, \quad g(x) = x^2.$$

2. The exponential function $y = e^x$ is considered as the function

 $f: \mathbb{R} \to \mathbb{R}_+, \quad f(x) = e^x.$

The domain of f is \mathbb{R} and the codomain of f is \mathbb{R}_+ . The function $y = e^x$ can be also considered as a function

 $g: \mathbb{R} \to \mathbb{R}, \quad g(x) = e^x.$

3. The logarithmic function $y = \log x$ is the function

$$\log : \mathbb{R}_+ \to \mathbb{R}, \quad \log(x) = \log x.$$

Its domain is \mathbb{R}_+ and codomain is \mathbb{R} .

4. The formal rule

 $f: \mathbb{R} \to \mathbb{R}, \quad f(x) = \sqrt{x},$

is *not* a function from \mathbb{R} to \mathbb{R} . However,

 $g: \mathbb{R}_{\geq 0} \to \mathbb{R}, \quad g(x) = \sqrt{x}$

is a function from $\mathbb{R}_{\geq 0}$ to \mathbb{R} .

5. The following rule

$$f: \mathbb{R} \to \mathbb{R}, \quad f(x) = \frac{1}{x-1},$$

is *not* a function from \mathbb{R} to \mathbb{R} . However,

$$g: \mathbb{R} \smallsetminus \{1\} \to \mathbb{R}, \quad g(x) = \frac{1}{x-1}$$

is a function from the set $\mathbb{R} \setminus \{1\} = \{x \in \mathbb{R} : x \neq 1\}$ to \mathbb{R} .

- 6. The absolute value function y = |x| is a function from \mathbb{R} to $\mathbb{R}_{\geq 0}$. It can be also considered as a function from \mathbb{R} to \mathbb{R} .
- 7. The sine function $y = \sin x$ is a function $\sin : \mathbb{R} \to [-1, 1]$. It can be also considered as a function from \mathbb{R} to \mathbb{R} .

Let $f: X \to Y$ be a function. For each subset $A \subseteq X$, the set

$$f(A) = \{f(a) \in Y : a \in A\},\$$

is called the **image** of A. For each subset $B \subseteq Y$, the set

$$f^{-1}(B) = \{ x \in X : f(x) \in B \}$$

is called the **inverse image** (or **pre-image**) of B under f. For each $y \in Y$, the set of all inverse images of y under f is the set

$$f^{-1}(y) := \{ x \in X : f(x) = y \}.$$

Clearly,

$$f^{-1}(B) = \bigcup_{y \in B} f^{-1}(y).$$

The **graph** of a function $f: X \to Y$ is the set

$$G(f) = \operatorname{Graph}(f) := \{(x, y) \in X \times Y \mid f(x) = y\}.$$

Example 5.3. Let $X = \{a, b, c, d\}$, $Y = \{1, 2, 3, 4, 5\}$. Let $f : X \to Y$ be a function given by the figure

Then

$$\begin{split} f(\{b,d\}) &= \{2,3\},\\ f(\{a,b,c\}) &= \{2,3,5\},\\ f(\{a,b,c,d\}) &= \{2,3,5\};\\ f^{-1}(\{1,2\}) &= \{b\},\\ f^{-1}(\{2,3,4\}) &= \{a,b,d\},\\ f^{-1}(\{1,4\}) &= \varnothing,\\ f^{-1}(\{2,3,5\}) &= \{a,b,c,d\}. \end{split}$$

The graph of the function f is the product set

$$G(f) = \{(a,3), (b,2), (c,5), (d,3)\}.$$

Example 5.4. Some functions to appear in the coming lectures.

1. A finite sequence

 s_1, s_2, \ldots, s_n

of a set A can be viewed as a function

$$s:\{1,2,\ldots,n\}\to A,$$

defined by

$$s(k) = s_k, \quad k = 1, 2, \dots, n.$$

2. An infinite sequence s_1, s_2, \ldots of A can be viewed as a function

$$s: \mathbb{P} \to A, \quad s(k) = s_k, \quad k \in \mathbb{P}.$$

3. The **factorial** is a function $f : \mathbb{N} \to \mathbb{P}$ defined by

$$f(0) = 0! = 1,$$

$$f(n) = n! = n(n-1)\cdots 3 \cdot 2 \cdot 1, \quad n \ge 1.$$

4. The **floor function** is the function $[] : \mathbb{R} \to \mathbb{Z}$, defined by

 $|x| = \text{greatest integer} \le x.$

5. The **ceiling function** is the function $[] : \mathbb{R} \to \mathbb{Z}$, defined by

 $\lceil x \rceil = \text{smallest integer} \ge x.$

6. Given a universal set X. The **characteristic function** of a subset $A \subseteq X$ is the function

$$1_A: X \to \{0, 1\}$$

defined by

$$1_A(x) = \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{if } x \notin A. \end{cases}$$

The function 1_A can be also viewed as a function from X to \mathbb{Z} , and from X to \mathbb{R} .

If $X = \{1, 2, ..., n\}$, then the subsets can be identified as sequences of 0 and 1 of length n. For instance, let

$$X = \{1, 2, 3, 4, 5, 6, 7, 8\}, \quad A = \{2, 4, 5, 7, 8\}.$$

The characteristic function of A corresponds to the sequence

0	1	0	1	1	0	1	1	
1	2	3	4	5	6	7	8	

7. Let a be a positive integer. Then for each integer b there exist unique integers q and r such that

$$b = qa + r, \quad 0 \le r < a.$$

We then have the function $\mathsf{Quo}_a: \mathbb{Z} \to \mathbb{Z}$, defined by

 $\mathsf{Quo}_a(b) = q, \quad b \in \mathbb{Z};$

and the function $\operatorname{\mathsf{Rem}}_a : \mathbb{Z} \to \{0, 1, 2, \dots, a-1\}$, defined by

 $\operatorname{\mathsf{Rem}}_a(b) = r, \quad b \in \mathbb{Z}.$

8. Let a be a positive real number. Then for each real number x there exist unique integers q and r such that

 $x = qa + r, \quad 0 \le r < a.$

We then have the function $\mathsf{Quo}_a : \mathbb{R} \to \mathbb{Z}$, defined by

$$\mathsf{Quo}_a(x) = q, \quad x \in \mathbb{R};$$

and the function $\operatorname{\mathsf{Rem}}_a : \mathbb{R} \to [0, a)$, defined by

$$\operatorname{\mathsf{Rem}}_a(x) = r, \quad x \in \mathbb{R}.$$

Let $f: X \to \mathbb{R}$ and $g: X \to \mathbb{R}$ be two functions. The **addition** of f and g is a function $f + g: X \to \mathbb{R}$ defined by

$$(f+g)(x) = f(x) + g(x), \quad x \in X.$$

The **subtraction** of f and g is a function $f - g : X \to \mathbb{R}$ defined by

$$(f-g)(x) = f(x) - g(x), \quad x \in X.$$

The scalar multiplication of f by a constant c is a function $cf: X \to \mathbb{R}$ defined by

$$(cf)(x) = cf(x), \quad x \in X.$$

The **multiplication** of f and g is a function $f \cdot g : X \to \mathbb{R}$ defined by

$$(f \cdot g)(x) = f(x)g(x), \quad x \in X.$$

Usually, we simply write $f \cdot g$ as fg.

Example 5.5. Given a universal set X and subsets $A \subseteq X$, $B \subseteq X$. Find the characteristic function $1_{\overline{A}}$ of \overline{A} in terms of 1_A and the characteristic function $1_{A\cup B}$ in terms of 1_A , 1_B , and $1_{A\cap B}$.

By definition of characteristic function, we have

$$1_{\overline{A}}(x) = \begin{cases} 1 & \text{if } x \in \overline{A} \\ 0 & \text{if } x \notin \overline{A} \end{cases} = \begin{cases} 1 & \text{if } x \notin A \\ 0 & \text{if } x \in A \end{cases}$$

Note that

$$(1_X - 1_A)(x) = 1_X(x) - 1_A(x)$$

=
$$\begin{cases} 1 - 0 & \text{if } x \notin A \\ 1 - 1 & \text{if } x \in A \end{cases}$$

=
$$\begin{cases} 1 & \text{if } x \notin A \\ 0 & \text{if } x \in A. \end{cases}$$

Then

$$(1_X - 1_A)(x) = 1_{\overline{A}}(x)$$
 for all $x \in X$.

This means that

$$1_{\overline{A}} = 1_X - 1_A.$$

$$(1_A \cdot 1_B)(x) = 1_A(x) \cdot 1_B(x)$$

=
$$\begin{cases} 1 \cdot 1 & \text{if } x \in A \cap B \\ 1 \cdot 0 & \text{if } x \in A \setminus B \\ 0 \cdot 1 & \text{if } x \in B \setminus A \end{cases}$$

=
$$\begin{cases} 1 & \text{if } x \in A \cap B \\ 0 & \text{if } x \notin A \cap B \end{cases}$$

=
$$1_{A \cap B}(x) \text{ for all } x \in X$$

Thus

$$1_A \cdot 1_B = 1_{A \cap B}.$$

6 Injection, Surjection, and Bijection

Definition 6.1. A function $f: X \to Y$ is said to be

1. **injective** (or **one-to-one**) if distinct elements of X are mapped to distinct elements in Y. That is, for $x_1, x_2 \in X$,

if
$$x_1 \neq x_2$$
, then $f(x_1) \neq f(x_2)$.

An injective function is also called an **injection** (or **one-to-one map-ping**).

- 2. **surjective** (or **onto**) if every element in Y is an image of some elements of X; that is, for each $y \in Y$, there exist $x \in X$ such that f(x) = y. In other words, f(X) = Y. A surjective function is also called a **surjection** (or **onto mapping**).
- 3. **bijective** if it is both injective and surjective. A bijective function is also called a **bijection** (or **one-to-one correspondence**).

Example 6.1. Let $X = \{a, b, c, d\}, Y = \{1, 2, 3, 4, 5\}$. The function given by the figure

is injective, but not surjective. The function given by the figure

is neither injective nor surjective.

Example 6.2. Let $X = \{a, b, c, d\}, Y = \{1, 2, 3\}$. The function given by the figure

is surjective, but not injective.

Example 6.3. Let $X = \{a, b, c, d\}, Y = \{1, 2, 3, 4\}$. The function given by the figure

is bijective.

- **Example 6.4.** 1. The function $f : \mathbb{R} \to \mathbb{R}$, $f(x) = e^x$, is injective, but not surjective.
 - 2. The function $f : \mathbb{R} \to \mathbb{R}_{\geq 0}$ defined by $f(x) = x^2$ is surjective, but not injective.
 - 3. The function $f : \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^3$ is bijective.
 - 4. The function $f : \mathbb{R}_+ \to \mathbb{R}$ defined by $f(x) = \log x$ is bijective.

Definition 6.2. The **composition** of functions

 $f: X \to Y \quad \text{and} \quad g: Y \to Z$

is a function $g \circ f : X \to Z$, defined by

$$(g \circ f)(x) = g(f(x)), \quad x \in X.$$

Example 6.5. Let $X = \{a, b, c, d\}, Y = \{1, 2, 3, 4, 5\}, Z = \{\alpha, \beta, \gamma\}$. Let $f : X \to Y$ and $g : Y \to Z$ be given by

The composition $g \circ f : X \to Z$ is given by

Theorem 6.3 (Associativity of Composition). Given functions $f: X \to Y, \quad g: Y \to Z, \quad h: Z \to W.$

Then

$$h\circ (g\circ f)=(h\circ g)\circ f,$$

as functions from X to W. We write

$$h \circ g \circ f = h \circ (g \circ f) = (h \circ g) \circ f.$$

Proof. For any $x \in X$, we have

$$\begin{aligned} \big(h \circ (g \circ f)\big)(x) &= h\big((g \circ f)(x)\big) \\ &= h\big(\big(g(f(x))\big)\big) \\ &= (h \circ g)\big(f(x)\big) \\ &= \big((h \circ g) \circ f\big)(x). \end{aligned}$$

Example 6.6. Let $f : \mathbb{R} \to \mathbb{R}$, f(x) = 2x + 1 and $g : \mathbb{R} \to \mathbb{R}$, $g(x) = \frac{x}{x^2+2}$. Then both $g \circ f$ and $f \circ g$ are functions from \mathbb{R} to \mathbb{R} , and for $x \in \mathbb{R}$,

$$(g \circ f)(x) = g(f(x)) = g(2x+1)$$

= $\frac{2x+1}{(2x+1)^2+2}$
= $\frac{2x+1}{4x^2+4x+3}$;
 $(f \circ g)(x) = f(g(x)) = f\left(\frac{x}{x^2+2}\right)$
= $\frac{2x}{x^2+2} + 1$
= $\frac{x^2+2x+2}{x^2+2}$.

Obviously,

$$f \circ g \neq g \circ f.$$

The **identity function** of a set X is the function

$$\operatorname{id}_X : X \to X, \quad \operatorname{id}_X(x) = x \text{ for all } x \in X.$$

Definition 6.4. A function $f : X \to Y$ is said to be **invertible** if there exists a function $g : Y \to X$ such that

$$g(f(x)) = x \text{ for } x \in X,$$

$$f(g(y)) = y \text{ for } y \in Y.$$

In other words,

$$g \circ f = \mathrm{id}_X, \quad f \circ g = \mathrm{id}_Y.$$

The function g is called the **inverse** of f, written as $g = f^{-1}$.

Remark. Given a function $f : X \to Y$. For each element $y \in Y$ and each subset $B \subseteq Y$, we define their inverse images

$$f^{-1}(y) = \{x \in X : f(x) = y\}$$

$$f^{-1}(B) = \{x \in X : f(x) \in B\}.$$

Here $f^{-1}(y)$ and $f^{-1}(B)$ are just notations for the above sets; it does not mean that f is invertible. So $f^{-1}(y)$ and $f^{-1}(B)$ are meaningful for every function f. However, f^{-1} alone is meaningful only if f is invertible.

If $f: X \to Y$ is invertible, then the inverse of f is **unique**. In fact, let g and h be inverse functions of f, i.e.,

$$\begin{array}{rcl} g(f(x)) &=& h(f(x)) = x & \text{for} & x \in X; \\ f(g(y)) &=& f(h(y)) = y & \text{for} & y \in Y. \end{array}$$

For each fixed $y \in Y$, write $x_1 = g(y)$, $x_2 = h(y)$. Apply f to x_1, x_2 , we have

$$f(x_1) = f(g(y)) = y = f(h(y)) = f(x_2).$$

Apply g to $f(x_1), f(x_2)$, we obtain

$$x_1 = g(f(x_1)) = g(f(x_2)) = x_2.$$

This means that g(y) = h(y) for all $y \in Y$. Hence, g = h.

The inverse function f^{-1} of any invertible function f is invertible, and the inverse of f^{-1} is the function f, i.e., $(f^{-1})^{-1} = f$.

Theorem 6.5. A function $f : X \to Y$ is invertible if and only if f is one-to-one and onto.

Proof. Necessity (" \Rightarrow "): Since f is invertible, there is a function $g:Y\to X$ such that

$$g \circ f = \mathrm{id}_X, \quad f \circ g = \mathrm{id}_Y.$$

For any $x_1, x_2 \in X$, if $f(x_1) = f(x_2)$, then

$$x_1 = g(f(x_1)) = g(f(x_2)) = x_2.$$

This means that f is one-to-one. On the other hand, for each $y \in Y$ we have $g(y) \in X$ and f(g(y)) = y. This means that f is onto.

Sufficiency (" \Leftarrow "): Since f is one-to-one and onto, then for each $y \in Y$ there is one and only one element $x \in X$ such that f(x) = y. We define a function

$$g: Y \to X, \quad g(y) = x,$$

where x is the unique element in X such that f(x) = y. Then

$$\begin{array}{rcl} (g\circ f)(x) \ = \ g(f(x)) \ = \ g(y) \ = \ x, & x\in X, \\ (f\circ g)(y) \ = \ f(g(y)) \ = \ f(x) \ = \ y, & y\in Y. \end{array}$$

By definition, f is invertible, and $g = f^{-1}$.

Example 6.7. Let $2\mathbb{Z}$ denote the set of even integers. The function

$$f: \mathbb{Z} \to 2\mathbb{Z}, \quad f(n) = 2n,$$

is invertible. Its inverse is the function

$$f^{-1}: 2\mathbb{Z} \to \mathbb{Z}, \quad f^{-1}(n) = \frac{n}{2}.$$

Check: For each $n \in \mathbb{Z}$,

$$(f^{-1} \circ f)(n) = f^{-1}(f(n)) = f^{-1}(2n) = \frac{2n}{2} = n.$$

For each $m = 2k \in 2\mathbb{Z}$,

$$(f \circ f^{-1})(m) = f\left(\frac{m}{2}\right) = 2 \cdot \frac{m}{2} = m.$$

However, the function

$$f_1: \mathbb{Z} \to \mathbb{Z}, \quad f_1(n) = 2n$$

is not invertible; and the function

$$f_2: \mathbb{Z} \to 2\mathbb{Z}, \quad f_2(n) = n(n-1)$$

is also not invertible.

Example 6.8. The function

$$f: \mathbb{R} \to \mathbb{R}, \quad f(x) = x^3$$

is invertible. Its inverse is the function

$$f^{-1}: \mathbb{R} \to \mathbb{R}, \quad f^{-1}(x) = \sqrt[3]{x}.$$

Check: For each $x \in \mathbb{R}$,

$$(f^{-1} \circ f)(x) = f^{-1}(f(x)) = f^{-1}(x^3) = \sqrt[3]{x^3} = x, (f \circ f^{-1})(x) = f(f^{-1}(x)) = f(\sqrt[3]{x}) = (\sqrt[3]{x})^3 = x.$$

Example 6.9. The function

$$f: \mathbb{R} \to \mathbb{R}_+, \quad g(x) = e^x$$

is invertible. Its inverse is the function

$$g: \mathbb{R}_+ \to \mathbb{R}, \quad g^{-1}(x) = \log x.$$

Check:

$$g \circ f(x) = g(e^x) = \log(e^x) = x, \quad x \in \mathbb{R};$$

$$f \circ g(y) = f(\log y) = e^{\log y} = y, \quad y \in \mathbb{R}_+.$$

Example 6.10.

The function

$$f: \mathbb{R} \to \mathbb{R}, \quad f(x) = x^2,$$

is *not* invertible. However, the function

$$f_1 : \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}, \quad f_1(x) = x^2,$$

is invertible; its inverse is the function

$$f_1^{-1} : \mathbb{R}_{\ge 0} \to \mathbb{R}_{\ge 0}, \quad f_1^{-1}(x) = \sqrt{x}.$$

Likewise the function

$$f_2 : \mathbb{R}_{\leq 0} \to \mathbb{R}_{\geq 0}, \quad f_2(x) = x^2,$$

is invertible; its inverse is the function

$$f_2^{-1} : \mathbb{R}_{\ge 0} \to \mathbb{R}_{\le 0}, \quad f_2^{-1}(x) = -\sqrt{x}.$$

The function $f : \mathbb{R} \to [-1, 1], f(x) = \sin x$, is not invertible. However, the function

$$f_1: \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \to [-1, 1], \quad f_1(x) = \sin x,$$

is invertible (which is the restriction of f to $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$) and has the inverse

$$f_1^{-1}: [-1,1] \to \left[-\frac{\pi}{2}, \frac{\pi}{2}\right], \quad f_1^{-1}(x) = \arcsin x.$$

Exercise 6. Let $f : X \to Y$ be a function.

1. For subsets $A_1, A_2 \subseteq X$, show that

$$f(A_1 \cap A_2) \subseteq f(A_1) \cap f(A_2),$$

 $f(A_1 \cup A_2) = f(A_1) \cup f(A_2);$

2. For subsets $B_1, B_2 \subseteq Y$, show that

$$f^{-1}(B_1 \cap B_2) = f^{-1}(B_1) \cap f^{-1}(B_2),$$

$$f^{-1}(B_1 \cup B_2) = f^{-1}(B_1) \cup f^{-1}(B_2).$$

Example 6.11. Let $f : X \to X$ be a function. If X is a finite set, then the following statements are equivalent.

- (1) f is bijective.
- (2) f is one-to-one.
- (3) f is onto.

Exercise 7. Let $f: X \to X$ be a function. Let

$$f^0 = \operatorname{id}_X,$$

 $f^n = \underbrace{f \circ \cdots \circ f}_n = f^{n-1} \circ f, \quad n \in \mathbb{Z}_+.$

It is easy to see that for nonnegative integers $m, n \in \mathbb{N}$,

$$f^m \circ f^n = f^{m+n}.$$

Exercise 8. Let $f: X \to X$ be an invertible function. Let $f^{-n} = (f^{-1})^n$ for $n \in \mathbb{Z}_+$. Then

 $f^m \circ f^n = f^{m+n}$ for all $m, n \in \mathbb{Z}$.

Proof. Note that f^0 is the identity function id_X . We see that for each function $g: X \to X$,

$$f^0 \circ g = g \circ f^0 = g.$$

For each positive integer k,

$$f^{k} \circ f^{-k} = \underbrace{f \circ \cdots \circ f}_{k} \circ \underbrace{f^{-1} \circ \cdots \circ f^{-1}}_{k}$$
$$= \underbrace{f \circ \cdots \circ f}_{k-1} \circ (f \circ f^{-1}) \circ \underbrace{f^{-1} \circ \cdots \circ f^{-1}}_{k-1}$$
$$= \underbrace{f \circ \cdots \circ f}_{k-1} \circ f^{0} \circ \underbrace{f^{-1} \circ \cdots \circ f^{-1}}_{k-1}$$
$$= \underbrace{f \circ \cdots \circ f}_{k-1} \circ \underbrace{f^{-1} \circ \cdots \circ f^{-1}}_{k-1}$$
$$= \cdots = f \circ f^{-1} = f^{0}.$$

Likewise, $f^{-k} \circ f^k = \underbrace{f^{-1} \circ \cdots \circ f^{-1}}_k \circ \underbrace{f \circ \cdots \circ f}_k = f^0$. Thus for all $k \in \mathbb{Z}$, $f^k \circ f^{-k} = f^0 = \operatorname{id}_X$, i.e., $(f^k)^{-1} = (f^{-1})^k$.

Now we divide the situation into four cases: (i) $m \ge 0, n \ge 0$; (ii) $m \le 0, n \le 0$; (iii) m > 0, n < 0; and (iv) m < 0, n > 0. The cases (i) and (ii) are trivial.

Case (iii). We have two subcases: (a) $m \ge -n$, and (b) $m \le -n$. For the subcase (a), we write k = -n and m = k + a, where a is a nonnegative integer. Then a = m + n, and

$$f^m \circ f^n = f^a \circ f^k \circ f^{-k} = f^a \circ f^0 = f^a = f^{m+n}.$$

For the subcase (b), we write n = -m - a, where a is a nonnegative integer. Then -a = m + n, and

$$f^m \circ f^n = f^m \circ f^{-m} \circ f^{-a} = f^0 \circ f^{-a} = f^{-a} = f^{m+n}.$$

Case (iv). There are also two subcases: (a) $-m \ge n$, and (b) $-m \le n$. For the subcase (a), let m = -n - a. Then

$$f^m \circ f^n = f^{-a} \circ f^{-n} \circ f^n = f^{-a} \circ f^0 = f^{-a} = f^{m+n}$$

For the subcase (b), let k = -m and write n = k + a. Then

$$f^m \circ f^n = f^{-k} \circ f^k \circ f^a = f^0 \circ f^a = f^a = f^{m+n}$$

Example 6.12. Let $f : X \to X$ be an invertible function. For each $x \in X$, the **orbit** of x under f is the set

$$Orb(f, x) = \{ f^n(x) : n \in \mathbb{Z} \}.$$

Show that if $\operatorname{Orb}(f, x_1) \cap \operatorname{Orb}(f, x_2) \neq \emptyset$ then $\operatorname{Orb}(f, x_1) = \operatorname{Orb}(f, x_2)$.

Proof. Let $x_0 \in \operatorname{Orb}(f, x_1) \cap \operatorname{Orb}(f, x_2)$. There exist integers m and n such that $x_0 = f^m(x_1)$ and $x_0 = f^n(x_2)$, that is, $f^m(x_1) = f^n(x_2)$. Applying the function f^{-m} to both sides, we have

$$x_1 = f^0(x_1) = (f^{-m} \circ f^m)(x_1) = f^{-m}(f^m(x_1))$$

= $f^{-m}(f^n(x_2)) = (f^{-m} \circ f^n)(x_2) = f^{n-m}(x_2).$

Thus for each $f^k(x_1) \in \operatorname{Orb}(f, x_1)$ with $k \in \mathbb{Z}$, we have

$$f^{k}(x_{1}) = f^{k}(f^{n-m}(x_{2})) = f^{k+n-m}(x_{2}) \in \operatorname{Orb}(f, x_{2}).$$

This means that $\operatorname{Orb}(f, x_1) \subset \operatorname{Orb}(f, x_2)$. Likewise, $\operatorname{Orb}(f, x_2) \subset \operatorname{Orb}(f, x_1)$. Hence $\operatorname{Orb}(f, x_1) = \operatorname{Orb}(f, x_2)$.

Example 6.13. Let X be a finite set. A bijection $f : X \to X$ is called a **permutation** of X. A permutation f of $X = \{1, 2, ..., 8\}$ can be stated as follows:

$$\left(\begin{array}{rrrr}1 & 2 & \cdots & 8\\f(1) & f(2) & \cdots & f(8)\end{array}\right) = \left(\begin{array}{rrrr}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8\\6 & 7 & 5 & 4 & 3 & 8 & 2 & 1\end{array}\right).$$

Then

$$\operatorname{Orb}(f, 1) = \operatorname{Orb}(f, 6) = \operatorname{Orb}(f, 8) = \{1, 6, 8\};$$

$$Orb(f, 2) = Orb(f, 7) = \{2, 7\};$$

$$Orb(f, 3) = Orb(f, 5) = \{3, 5\};$$

$$Orb(f, 4) = \{4\}.$$

Exercise 9. Let $f : \mathbb{R} \smallsetminus \mathbb{Q} \to \mathbb{R} \smallsetminus \mathbb{Q}$ be defined by

$$f(x) = \frac{1}{x-1}, \quad x \in \mathbb{R} \smallsetminus \mathbb{Q}.$$

(a) Show that f is invertible.

(b) List all elements of the set $\{f^k : k \in \mathbb{Z}\}$.

7 Infinite Sets

Let A be a finite set of m elements. When we count the elements of A, we have the 1st element a_1 , the 2nd element a_2 , the 3rd element a_3 , and so on. The result is to have listed the elements of A as follows

$$a_1, a_2, \ldots, a_m$$

Then a bijection $f : \{1, 2, \dots, m\} \to A$ is automatically given by

$$f(i) = a_i, \quad i = 1, 2, \dots, m.$$

To compare the number of elements of A with another finite B of n elements. We do the same thing by listing the elements of B as follows

$$b_1, b_2, \ldots, b_n$$
.

If m = n, we automatically have a bijection $g : A \to B$, given by

$$g(a_i) = b_i, \quad i = 1, 2, \dots, m.$$

If $m \neq n$, there is no bijection from A to B.

Theorem 7.1. Two finite sets A and B have the same number of elements if and only if there is a bijection $f : A \to B$, i.e., they are in one-to-one correspondent.

Definition 7.2. A set A is said to be **equivalent** to a set B, written as $A \sim B$, if there is a bijection $f : A \to B$.

If $A \sim B$, i.e., there is a bijection $f : A \to B$, then f has the inverse function $f^{-1} : B \to A$. Of course, f^{-1} is a bijection. Thus B is equivalent to A, i.e., $B \sim A$.

If $A \sim B$ and $B \sim C$, there are bijections $f : A \to B$ and $g : B \to C$. Obviously, the composition $g \circ f : A \to C$ is a bijection. Thus $A \sim C$.

For infinite sets, to compare the "number" of elements of one set with another, the right method is to use one-to-one correspondence. We say that two sets A and B have the same **cardinality** if $A \sim B$, written as

$$|A| = |B|.$$

The symbol |A| is called the **cardinality** of A, meaning the size of A. If A is finite, we have

|A| = number of elements of A.

Example 7.1. The set \mathbb{Z} of integers is equivalent to the set \mathbb{N} of nonnegative integers, i.e., $\mathbb{Z} \sim \mathbb{N}$.

The function $f : \mathbb{Z} \to \mathbb{N}$, defined by

$$f(n) = \begin{cases} 2n & \text{if } n \ge 0\\ -2n-1 & \text{if } n < 0, \end{cases}$$

is a bijection. Its inverse function $f^{-1}: \mathbb{N} \to \mathbb{Z}$ is given by

$$f^{-1}(n) = \begin{cases} n/2 & \text{if } n = \text{even} \\ -(n+1)/2 & \text{if } n = \text{odd.} \end{cases}$$

We can say that \mathbb{Z} and \mathbb{N} have the same cardinality, i.e.,

$$|\mathbb{Z}| = |\mathbb{N}|.$$

Example 7.2. For any real numbers a < b, the closed interval [a, b] is the set

$$[a,b] = \{x \in \mathbb{R} : a \le x \le b\}.$$

Then [a, b] is equivalent to [0, 1], i.e., $[a, b] \sim [0, 1]$.

The function $f:[a,b] \to [0,1]$, defined by

$$f(x) = \frac{x-a}{b-a},$$

is a bijection. Its inverse $f^{-1}: [0,1] \to [a,b]$ is given by

$$f^{-1}(x) = (b-a)x + a, \quad x \in [0,1].$$

Definition 7.3. A set A is called **countable** if,

- A is either finite, or
- there is bijection from A to the set \mathbb{P} of positive integers.

In other words, the elements of A can be listed as either a finite sequence

$$a_1, a_2, \ldots, a_n;$$

or an infinite sequence

 a_1, a_2, a_3, \ldots .

Sets that are not countable are said to be **uncountable**.

Proposition 7.4. Every infinite set contains an infinite countable subset.

Proof. Let A be an infinite set. Select an element a_1 from A. Since A is infinite, the set $A_1 = A \setminus \{a_1\}$ is still infinite. One can select an element a_2 from A_1 . Similarly, the set

$$A_2 = A_1 \smallsetminus \{a_2\} = A \smallsetminus \{a_1, a_2\}$$

is infinite, one can select an element a_3 from A_2 , and the set

$$A_3 = A_2 \smallsetminus \{a_3\} = A \smallsetminus \{a_1, a_2, a_3\}$$

is infinite. Continue this procedure, we obtain an infinite sequence

$$a_1, a_2, a_3, \ldots$$

of distinct elements from A. The set $\{a_1, a_2, a_3, \ldots\}$ is an infinite countable subset of A.

Theorem 7.5. If A and B are countable subsets, then $A \cup B$ is countable.

Proof. It is obviously true if one of A and B is finite. Let

$$A = \{a_1, a_2, \ldots\}, \quad B = \{b_1, b_2, \ldots\}$$

be countably infinite. If $A \cap B = \emptyset$, then

 $A \cup B = \{a_1, b_1, a_2, b_2, \ldots\}$

is countable as demonstrated. If $A \cap B \neq \emptyset$, we just need to delete the elements that appeared more than once in the sequence $a_1, b_1, a_2, b_2, \ldots$. Then the leftover is the set $A \cup B$.

Theorem 7.6. Let A_i , $i = 1, 2, \dots$, be countable sets. If $A_i \cap A_j = \emptyset$ for any $i \neq j$, then $\bigcup_{i=1}^{\infty} A_i$ is countable.

Proof. We assume that each A_i is countably infinite. Write

$$A_i = \{a_{i1}, a_{i2}, a_{i3}, \cdots \}, \quad i = 1, 2, \dots$$

The countability of $\bigcup_{i=1}^{\infty} A_i$ can be demonstrated as

The condition of disjointness in Theorem 7.6 can be omitted.

Theorem 7.7. The closed interval [0,1] of real numbers is uncountable.

Proof. Suppose the set [0, 1] is countable. Then the numbers in [0, 1] can be listed as an infinite sequence $\{\alpha_i\}_{i=1}^{\infty}$. Write all real numbers α_i in infinite decimal forms, say in base 10, as follows:

$$\alpha_1 = 0.a_1a_2a_3a_4\cdots$$
$$\alpha_2 = 0.b_1b_2b_3b_4\cdots$$
$$\alpha_3 = 0.c_1c_2c_3c_4\cdots$$
$$\ldots$$

We construct a number $x = 0.x_1x_2x_3x_4\cdots$, where x_i are given as follows:

$$x_{1} = \begin{cases} 1 & \text{if } a_{1} = 2 \\ 2 & \text{if } a_{1} \neq 2, \end{cases}$$

$$x_{2} = \begin{cases} 1 & \text{if } b_{2} = 2 \\ 2 & \text{if } b_{2} \neq 2, \end{cases}$$

$$x_{3} = \begin{cases} 1 & \text{if } c_{3} = 2 \\ 2 & \text{if } c_{3} \neq 2, \end{cases}$$
...

Obviously, x is an infinite decimal number between 0 and 1, i.e., $x \in [0, 1]$. Note that

$$x_1 \neq a_1, \quad x_2 \neq a_2, \quad x_3 \neq a_3, \quad \dots$$

This means that

$$x \neq \alpha_1, \quad x \neq \alpha_2, \quad x \neq \alpha_3, \quad \dots$$

Thus x is not in the list $\{\alpha_1, \alpha_2, \alpha_3, \ldots\}$. Since all real numbers of [0, 1] are already in the list, in particular, x must be in the list. This is a contradiction.

Example 7.3. For any set Σ , either finite or infinite, recall that $\Sigma^{(n)}$ is the set of words of length n over Σ , and Σ^n is the product of n copies of Σ . Then

the function $f: \Sigma^{(n)} \to \Sigma^n$, defined by

$$f(a_1a_2\cdots a_n)=(a_1,a_2,\ldots,a_n), \quad a_1,a_2,\ldots,a_n\in\Sigma,$$

is a bijection. Thus $\Sigma^{(n)} \sim \Sigma^n$.

Theorem 7.8 (Cantor-Bernstein-Schroeder Theorem). Given sets A and B. If there are injections $f : A \to B$ and $g : B \to A$, then there exists a bijection $h : A \to B$.

Proof. FIRST PROOF (non-constructive). Note that $f : A \to f(A)$ and $g : B \to g(B)$ are bijections. Our aim is to find a subset $S \subseteq A$ such that $g(\overline{f(S)}) = \overline{S}$. If so, the bijections $f : S \to f(S)$ and $g : \overline{f(S)} \to \overline{S}$ give rise to a bijection between A and B.

For each subset $E \subseteq A$, clearly, $f(E) \subseteq B$ and $g(\overline{f(E)}) \subseteq A$; we have

$$\hat{E} := \overline{g(\overline{f(E)})} \subseteq A.$$

If there exists a subset $S \subseteq A$ such that $\hat{S} = S$, i.e., $S = g(\overline{f(S)})$, then $\overline{S} = g(\overline{f(S)})$. We claim that such subset S with $\hat{S} = S$ does exist.

We say that a subset $E \subseteq A$ expandable if $E \subseteq \hat{E}$. Expandable subsets of A do exist, since the empty set \emptyset is expandable. Let S be the union of all expandable subsets of A. We claim that $\hat{S} = S$.

We first show that $E_1 \subseteq E_2$ implies $\hat{E}_1 \subseteq \hat{E}_2$ for subsets E_1, E_2 of A. In fact, if $E_1 \subseteq E_2$, then $f(E_1) \subseteq f(E_2)$; consequently, $\overline{f(E_1)} \supseteq \overline{f(E_2)}$ by taking complement; hence $g(\overline{f(E_1)}) \supseteq g(\overline{f(E_2)})$ by applying the injective map g; now we see that $\overline{g(\overline{f(E_1)})} \subseteq \overline{g(\overline{f(E_2)})}$ by taking complement again, i.e., $\hat{E}_1 \subseteq \hat{E}_2$.

Let D be an expandable subset of A, i.e., $D \subseteq \hat{D}$. Clearly, $D \subseteq S$ by definition of S; then $\hat{D} \subseteq \hat{S}$ by the previous argument; thus $D \subseteq \hat{S}$ as $D \subseteq \hat{D}$. Since D is an arbitrary expandable subset, we see that $S \subseteq \hat{S}$. Again, the previous argument implies that $\hat{S} \subseteq \hat{S}$; this means that \hat{S} is an expandable subset; hence $\hat{S} \subseteq S$ by definition of S. Therefore $\hat{S} = S$.

SECOND PROOF (constructive). Since $A \sim f(A)$, it suffices to show that $B \sim f(A)$. To this end, we define sets

$$A_1 = g(f(A)), \quad B_1 = f(g(B)).$$

Then $gf: A \to A_1$ and $fg: B \to B_1$ are bijections, and

$$A_1 \subseteq g(f(A)) \subseteq g(B), \quad B_1 = f(g(B)) \subseteq f(A).$$

Set $A_0 := A$, $B_0 := B$, and introduce subsets

$$A_i := g(B_{i-1}), \quad B_i := f(A_{i-1}), \quad i \ge 2.$$

We claim the following chains of inclusion

$$A = A_0 \supseteq A_1 \supseteq A_2 \supseteq \cdots, \quad B = B_0 \supseteq B_1 \supseteq B_2 \supseteq \cdots.$$

In fact,

$$A_2 = g(B_1) = g(f(g(B))) \subseteq gf(A) = A_1,$$

 $B_2 = f(A_1) = f(g(f(A))) \subseteq fg(B) = B_1.$

By induction, for $i \geq 2$, we have

$$A_{i+1} = g(B_i) \subseteq g(B_{i-1}) = A_i \quad (\because B_i \subseteq B_{i-1});$$
$$B_{i+1} = f(A_i) \subseteq f(A_{i-1}) = B_i \quad (\because A_i \subseteq A_{i-1}).$$

Now we set $D := \bigcap_{i=1}^{\infty} B_i$. Recall $B_1 \subseteq f(A) \subseteq B$. We have disjoint unions

$$B = (B - f(A)) \cup (f(A) - B_1) \cup (B_1 - D) \cup D$$

= $D \cup (f(A) - B_1) \cup (B - f(A)) \cup \bigcup_{i=1}^{\infty} (B_i - B_{i+1});$
 $f(A) = D \cup (f(A) - B_1) \cup \bigcup_{i=1}^{\infty} (B_i - B_{i+1}).$

Note that $fg: B \to B_1$ is a bijection. By definition of A_i and B_i , we have

$$fg(B - f(A)) = fg(B) - fgf(A) = B_1 - B_2,$$

$$fg(B_i - B_{i+1}) = fg(B_i) - fg(B_{i+1})$$

= $f(A_{i+1}) - f(A_{i+2})$
= $B_{i+2} - B_{i+3}, \quad i \ge 1.$

We see that fg sends $(B - f(A)) \cup \bigcup_{i=0}^{\infty} (B_{2i+1} - B_{2i+2})$ to $\bigcup_{i=0}^{\infty} (B_{2i+1} - B_{2i+2})$ bijectively. Note that both B and f(A) contain the subset

$$D \cup (f(A) - B_1) \cup \bigcup_{i=1}^{\infty} (B_{2i} - B_{2i+1}),$$

whose complement in the sets B, f(A) are respectively the subsets

$$(B - f(A)) \cup \bigcup_{i=0}^{\infty} (B_{2i+1} - B_{2i+2}), \quad \bigcup_{i=0}^{\infty} (B_{2i+1} - B_{2i+2}).$$

It follows that the function $\phi: B \to f(A)$, defined by

$$\phi(x) = \begin{cases} x & \text{if } x \in D \cup (f(A) - B_1) \cup \bigcup_{i=1}^{\infty} (B_{2i} - B_{2i+1}) \\ fg(x) & \text{if } x \in (B - f(A)) \cup \bigcup_{i=0}^{\infty} (B_{2i+1} - B_{2i+2}) \end{cases},$$

is a bijection.

