Math2343 Problem Set 7

1. For each of the following problems, determine whether the relation R on the set A is a tree. If it is a tree, find its leaves.
(a) $A=\{a, b, c, d, e, f\}, R=\{(a, b),(c, e),(f, a),(f, c),(f, d)\}$.
(b) $A=\{u, v, w, x, y, z\}, R=\{(u, x),(u, v),(w, v),(x, z),(x, y)\}$.
2. Consider the rooted tree $\left(T, v_{0}\right)$ shown below.

Figure 1: A labelled rooted tree
(a) List all level-3 vertices.
(b) List all leaves.
(c) List all children of the vertex v_{2}.
(d) List all descendants of the vertex v_{2}.
(e) Find the rooted subtree $T_{v_{8}}$.
(f) Find the height of $\left(T, v_{0}\right)$.
(g) Find the height of $T_{v_{8}}$.
3. Show that the maximum number of vertices in a binary tree of height n is $2^{n+1}-1$.
4. Let T be a complete m-ary tree.
(a) If T has exactly three levels. Prove that the number of vertices of T must be $1+k m$, where $2 \leq k \leq m+1$.
(b) If T has n vertices of which k are non-leaves and l are leaves. Prove that $n=m k+1$ and $l=(m-1) k+1$.
5. Use Polish notations to construct the trees for the following expressions.
(a) $(((2 \times 7)+x) \div y) \div(3-11)$
(b) $(3-(2-(11-(9-4)))) \div(2+3+(4+7)))$
6. Show the result of performing the preorder and postorder searches to the tree in Figure 1.
7. (a) Draw a rooted tree whose preorder search produces the string

$$
P R E O D A B .
$$

(b) Draw a rooted tree whose postorder search produces the string

POSTWDER.

(c) Draw a binary tree whose inorder search produces the string
8. Find a minimal spanning tree for the connected graph below by Kruskal's algorithm and Prim's algorithm respectively.

Figure 2: A connected graph
9. Modify Kruskal's and Prim's algorithms so that they will produce a maximal spanning a tree, that is, one with the largest possible sum of the weights.
10. Apply Depth-First Search and Breadth-First Search to find a rooted tree for the graph in Figure 2.
11. Find an Euler circuit or path for the following graph.

Figure 3: A connected graph
12. Prove that the complete graph K_{n} with $n \geq 3$ has $(n-1)$! Hamiltonian cycles.
13. Let G be a graph whose vertex set $V(G)=\{1,2, \ldots, 15\}$ and two vertices $i+j$ is a multiple of 3 . Let R be an equivalence relation on $V(G)$ defined by $i R j$ if and only if $i \equiv j(\bmod 7)$. Find the quotient graph G / R.
14. Let $G=(V, E)$ be a graph without loops and multiple edges. Show that

$$
2|E| \leq|V|^{2}-|V| .
$$

15. Let $G=(V, E)$ be a graph. Define a relation R on V by $u R v$ if $u=v$ or if there is a path in G from u to v. Show that R is an equivalence relation.
16. Let G be an undirected graph with n vertices. If G is isomorphic to its own complement \bar{G}, how many edges must G have? (such a graph is called self-complementary.) Find an example of a selfcomplementary graph on four vertices and one on five vertices.
17. Let $K_{m, n}$ denote the complete bipartite graph with $m, n \geq 2$.
(1) How many distinct cycles of length 4 are there in $K_{m, n}$?
(2) How many different paths of length 2 are there in $K_{m, n}$?
(3) How many different paths of length 3 are there in $K_{m, n}$?
18. Let Q_{n} be the graph obtained from the n-dimensional unit cube $[0,1]^{n}$ of which the vertex set and the edge set consist of the vertices of the cube and the edges of the cube. The graph Q_{n} can be also defined as follows: $V\left(Q_{n}\right)$ is the set of zero-one sequences and two sequences are adjacent if and only if they are differ at only one position.
(1) For which n the graph Q_{n} has an Euler circuit or an Euler path?
(2) For what n the graph Q_{n} is non-planar? Why?
(3) When will Q_{n} have a Hamilton cycle or path?
(4) Is Q_{n} bipartite?
19. Find two non-isomorphic spanning trees for the complete bipartite graph $K_{2,3}$. How many nonisomorphic spanning trees are there for $K_{2,3}$?
20. A saturated hydrocarbon is represented by a structural formula in which each C atom has degree 4 and each H has degree 1 . Show that the hydrocarbon is acyclic (has no carbon rings in it) if and only if its structural formula is of the form $C_{n} H_{2 n+2}$.
21. Show that peterson graph is not planar.
22. It is known that one a soccer ball every vertex is of degree 3 and every face is either a pentagon or a hexagon. Find the number of vertices, the number of edges, and the number of faces of a soccer ball respectively not by counting them.
