Week 1-2: Graphs and Subgraphs

February 7, 2010

1 Graphs

Definition of Graphs:

- A graph G is an ordered pair (V, E) consisting of a set V of vertices and a set E (disjoint from V) of edges, together with an incidence function $\text{End} : E \to M_2(V)$, where $M_2(V)$ is the set of all 2-element sub-multisets of V; we usually write $V = V(G)$, $E = E(G)$, and $\text{End} = \text{End}_G$.

- If x is an edge and u, v are vertices such that $\text{End}(x) = \{u, v\}$, we say that x joins u, v (or u, v are incident with x or u, v are adjacent by x), and u, v are called end-vertices of x; we say that x is a link if $u \neq v$ and a loop if $u = v$.

- Two edges are said to be parallel if their ends are the same.

Simples Graphs, Multigraphs, Complete Graphs, Bipartite Graphs:

- A graph is said to be simple if it has no loops and parallel edges. A graph with possible loops and parallel edges is also called a multigraph.

- A graph is said to be finite if its both vertex set and edge set are finite and assume all graphs are finite.

- The graph with empty vertex set (and hence empty edge set) is called the null graph.

- A graph is said to be trivial if it has only one vertex. All other graphs are said to be nontrivial.

- A graph is called an empty graph if it does not contain any edge.

- A complete graph is a simple that every pair of vertices are adjacent. A complete graph with n vertices is denoted by K_n.

- A graph G is said to be bipartite if its vertex set $V(G)$ can be partitioned into two disjoint parts X and Y such that every edge has one end-vertex in X and one in Y; such a partition $\{X, Y\}$ is called a bipartition of G, and such bipartite graph is denoted by $G[X, Y]$.

- A bipartite graph $G[X, Y]$ is called a complete bipartite graph if every vertex in X is joined to every vertex in Y; we denote $G[X, Y]$ by $K_{m,n}$ if $|X| = m$ and $|Y| = n$.

Neighbors, Degree:

- Two adjacent vertices are also called neighbors. The set of neighbors of a vertex v in a graph G is the set of all neighbors of v, denoted $N_G(v)$.

- The degree of a vertex v in a graph G, denoted by $d_G(v)$, is the number of edges incident with the vertex, where loops are counted twice. A vertex is said to be isolated if its degree is 0. For a simple graph, $d_G(v) = |N_G(v)|$.

1
• For any graph $G = (V, E)$,
 \[2|E| = \sum_{v \in V} d_G(v). \]

• In any graph, the number of vertices of odd degree is even.

Proposition 1.1. Let $G[X, Y]$ be a bipartite graph without isolated vertices and $d(x) \geq d(y)$ for all edges xy with $x \in X$ and $y \in Y$. Then $|X| \leq |Y|$, and the equality holds if and only if $d(x) = d(y)$ for all edges xy with $x \in X$ and $y \in Y$.

Proof. Since $d(x) \geq d(y)$ for all edges xy with $x \in X$ and $y \in Y$, we have
\[
|X| = \sum_{x \in X} \sum_{y \in Y} \frac{1}{d(x)} \leq \sum_{x \in X} \sum_{y \in Y} \frac{1}{d(y)} = |Y|.
\]
It is clear that if $d(x) = d(y)$ for all $xy \in E$ with $x \in X$ and $y \in Y$ then $|X| = |Y|$. Conversely, if $|X| = |Y|$, the above middle inequality must be equality. It forces that $d(x) = d(y)$ for all $xy \in E$ with $x \in X$ and $y \in Y$. \qed

Incidence Matrix, Adjacency Matrix:

• The **incidence matrix** of a graph G is a matrix $M = M_G$, whose rows are indexed by vertices and whose columns are indexed by edges of G, such that (i) the entry $m_{ve} = 0$ at (v, e) if the vertex v is not incident with the edge e, (ii) $m_{ve} = 1$ if v is incident with e once (i.e., e is a link), and (iii) $m_{ve} = 2$ if v is incident with e twice (i.e., e is a loop).

• The **adjacency matrix** of a graph G is a square matrix $A = A_G$, whose rows and columns are indexed by vertices of G, such that (i) the entry $a_{uv} = 0$ at (u, v) if the vertices u and v are not adjacent, (ii) $a_{uv} = 1$ if u and v are adjacent by a link, and (iii) $a_{uv} = 2$ if u and v are adjacent by a loop (u and v must be identical).

Walks, Trails, Paths, Cycles, Connectedness:

• A **walk** from a vertex u to a vertex v in a graph G is a sequence $W := v_0e_1v_1 \ldots v_{\ell-1}e_\ell v_\ell$ with $v_0 = u$ and $v_\ell = v$, whose terms alternate between vertices and edges of G, such that the edge e_i is incident with the vertices v_{i-1} and v_i, $1 \leq i \leq \ell$. The vertex v_0 is called the **initial vertex**, v_ℓ the **terminal vertex**, and the number ℓ the **length** of W. A walk is said to be **closed** if its initial and terminal vertices are identical.

• A walk is called a **trail** if its edge terms are distinct.

• A walk is called a **path** if its vertex and edge terms are distinct, except possible identical initial and terminal vertices. If $P = v_0e_1v_1 \ldots v_{\ell-1}e_\ell v_\ell$ is a path, then $v_0, v_1, \ldots , v_\ell$ are distinct or $v_0 = v_\ell$, $v_1, \ldots , v_{\ell-1}$ are distinct, and $v_1, \ldots , v_{\ell-1}$ are called **internal vertices** of P. A closed path is usually called a **cycle**.

• A graph is said to be **connected** if there is a path between any two vertices of the graph.

• An **Euler trail** of a graph G is a trail that uses every edge of G. A closed Euler trail is called an **Euler tour**.

• A **Hamilton path** of a graph G is a path that uses every vertex of G. A closed Hamilton path is called a **Hamilton cycle**.

Union, Intersection, Cartesian Product:

• Two graphs are said to be **disjoint** if they have no vertex in common, and **edge-disjoint** if they have no edge in common.

• The **union** of two graphs G and H is the graph $G \cup H$ with the vertex set $V(G) \cup V(H)$ and the edge set $E(G) \cup E(H)$. If G and H are disjoint, we write their union as $G + H$.

• The **intersection** of two graphs G and H is the graph $G \cap H$ with the vertex set $V(G) \cap V(H)$ and the edge set $E(G) \cap E(H)$. note that if G and H are disjoint, then $G \cap H$ is the null graph.
• The **cartesian product** of simple graphs G and H is the graph $G \square H$ whose vertex set is $V(G) \times V(H)$ and whose edge set is

$$\{(u, x)(v, x) \mid uv \in E(G)\} \cup \{(u, x)(u, y) \mid xy \in E(H)\}.$$

Digraphs, Out-Degree, In-Degree, Orientations:

• A **directed graph** (or **digraph**) is an ordered pair $D = (V, A)$ consisting of a set V of **vertices** and a set A of **arcs**, together with an **incidence function** $\text{End} : A \to V \times V$. If a is an arc and $\text{End}(a) = (u, v)$, we call the arc a a **directed edge** from u to v, the vertex u a **tail**, and v a **head** of a. We usually write $V = V(D)$, $A = A(D)$, and $\text{End} = \text{End}_D$.

• Let v be a vertex in a digraph D. The **out-degree** of v is the number of arcs of which v is a tail, denoted $d_D^-(v)$. The **in-degree** of v is the number of arcs of which v is a head, denoted $d_D^+(v)$.

• Let a be an arc in a digraph D such that $\text{End}_D(a) = (u, v)$. We call u an **in-neighbor** of v, and v an **out-neighbor** of u. We denote by $N_D^-(v)$ the set of all out-neighbors of a vertex v, and by $N_D^+(v)$ the set of all in-neighbors of v.

• An **orientation** of an edge e incident with two vertices u, v in a graph G is an assignment of signs to the pairs (u, e) and (v, e) such that their product is negative. A link edge has exactly two orientations. A loop has only one orientation.

• An **orientation** on a graph G is an assignment that each edge is given an orientation. An orientation of G can be considered as a function $\varepsilon : V \times E \to \{-1, 0, 1\}$ such that (i) $\varepsilon(v, e) = 0$ if the vertex v is not incident with the edge e, (ii) $\varepsilon(u, e)\varepsilon(v, e) = -1$ if the edge e joins the vertices u and v. A graph G together with an orientation ε is called an **oriented graph**, denoted (G, ε).

• An oriented graph (G, ε) can be considered as a digraph D with the vertex set $V(G)$, where each edge $e \in E$ incident with vertices u, v is a directed edge from u to v if $\varepsilon(u, e) = +1$ and $\varepsilon(v, e) = -1$. Conversely, a digraph D can be considered as an oriented graph (G, ε) with the vertex set $V(D)$, where each directed edge e from a vertex u to a vertex v is oriented by $\varepsilon(u, e) = +1$ and $\varepsilon(v, e) = -1$.

• A directed complete graph is called a **tournament**.

Theorem 1.2. Every tournament has a directed Hamilton path.

Proof. Let D be a tournament with n vertices. We proceed by induction on n. For $n = 2, 3$, it is easy to check directly. Now remove one vertex v from D to obtain a tournament $D - v$ with $n - 1$ vertices. By induction hypothesis, $D - v$ has a directed Hamilton path $P = v_1v_2 \cdots v_{n-1}$ from v_1 to v_{n-1}. The situation can be divided into the following cases.

Case 1. (v, v_1) is a directed edge in D. Then $P_1 := vv_1v_2 \cdots v_{n-1}$ is a directed Hamilton path of D.

Case 2. (v_1, v) and (v, v_2) are directed edges in D. Then $P_2 := v_1v_2v_3 \cdots v_{n-1}$ is a directed Hamilton path of D.

Case 3. $(v_1, v), (v_2, v)$, and (v, v_3) are directed edges in D. Then $P_3 := v_1v_2v_3 \cdots v_{n-1}$ is a directed Hamilton path of D. In general,

Case k. $(v_1, v), (v_2, v), \ldots, (v_{k-1}, v), (v, v_k)$ are directed edges in D, where $1 \leq k \leq n - 1$. Then

$$P_k := v_1v_2 \cdots v_{k-1}vv_k \cdots v_{n-1}$$

is a directed Hamilton path of D.

Case n. $(v_1, v), (v_2, v), \ldots, (v_{n-1}, v)$ are directed edges in D. Then $P_n := v_1v_2 \cdots v_{n-1}$ is a directed Hamilton path of D. \(\square\)

Isomorphism, Automorphism:

• Two graphs G and H are said to be **identical** if $V(G) = V(H)$ and $E(G) = E(H)$.

• A graph G is said to be **isomorphic** to a graph H if there are bijections $f : V(G) \to V(H)$ and $g : E(G) \to E(H)$ such that $\text{End}_G(e) = uv$ if and only if $\text{End}_H(g(e)) = f(u)f(v)$; such a pair (f, g) of mappings is called an **isomorphism** from G to H.

3
An isomorphism from a graph G to itself is called an **automorphism** of G. The set of all automorphisms of G forms a group under the composition of mappings, called the **automorphism group** of G, denoted $\text{Aut}(G)$.

Labelled Graphs

- Let V be a finite set. A simple graph $G = (V, E)$ on V can be considered as a subset of $\binom{V}{2}$, the set of all 2-element subsets of V. A simple graph whose vertices are labeled, but whose edges are not labeled, is referred as a **labeled simple graph**.

- For a set V of n elements, there are $2^\binom{n}{2}$ labeled simple graphs with vertex set V. We denote by $G(V)$ the set of all labeled simple graphs with vertex set V.

- Let G be an unlabeled graph with n vertices. Then the number of labelings of G is $\frac{n!}{|\text{Aut}(G)|}$, where $\text{Aut}(G)$ is understood as the automorphism group of G with any labeling. Thus

$$\sum_{\text{G unlabeled graph with n vertices}} \frac{n!}{|\text{Aut}(G)|} = 2\binom{n}{2}.$$

- The number of unlabeled graphs with n vertices is at least $\lceil \frac{2\binom{n}{2}}{n!} \rceil$.

Intersection Graphs, Interval Graphs:

- Let \mathcal{F} be a family of subsets of a set V. The **intersection graph** of \mathcal{F} is a graph whose vertex set is \mathcal{F}, and two subsets of \mathcal{F} are adjacent if their intersection is nonempty.

- Let $V = \mathbb{R}$ and \mathcal{F} be a set of closed intervals of \mathbb{R}. The intersection graph of \mathcal{F} is called an **interval graph**.

Cayley Graphs

- Let Γ be a group. Given a subset S of Γ such that S does not contain the identity element and is closed under inverse operation. The **Cayley graph** of Γ with respect to S is a graph $G(\Gamma, S)$ with the vertex set Γ in which two vertices x, y are adjacent if $xy^{-1} \in S$.

Polyhedral Graphs:

Infinite Graphs:

2 Subgraphs

Definition of Subgraphs:

- A graph H is called a **subgraph** of a graph G if $V(H) \subseteq V(G)$, $E(H) \subseteq E(G)$, and $\text{End}_H : E(H) \to M_2(V(H))$ is the restriction of $\text{End}_G : E(G) \to M_2(V(G))$ to $E(H)$. We then say that G **contains** H or H is **contained in** G, and we write $H \subseteq G$ or $G \supseteq H$.

- A **copy** of a graph H in a graph G is a subgraph of G which is isomorphic to H. Such a subgraph is also referred to as an **H-subgraph** of G.

- An **embedding** of a graph H in a graph G is an isomorphism from H to a subgraph of G. For each copy of H in G, there are $|\text{Aut}(H)|$ embeddings in G.

- A maximal connected subgraph of a graph G is called a **connected component** of G. The number of connected components of G is denoted by $c(G)$.

Deletion, Contraction:

- Let v be a vertex in a graph G. We denote by $G - v$ the graph obtained from G by deleting the vertex v and all the edges incident with v. Such an operation is referred to as a **vertex deletion**, and $G - v$ as a **vertex-deleted subgraph**.
Theorem 2.1. A graph G whose every vertex has degree at least 2 contains a cycle.

Proof. Let $P := v_0v_1 \cdots v_{\ell-1}v_\ell$ be a longest path in G; such a path do exists since G is finite. If $v_0 = v_\ell$, then P is already a cycle. Otherwise, the degree of v_0 in P is 1. Since the degree of v_0 in G is at least 2, there is an edge e_0 (not in P) joining v_0 to a vertex v. If $v = v_i$ for some $0 \leq i \leq \ell - 1$, then $P_i = v_0v_1 \cdots v_i$ is a cycle. Otherwise $Q := v_0P$ is a path longer than P, a contradiction. \qed

Corollary 2.2. A graph without cycles has at least one vertex of degree 0 or 1.

Acyclic Graphs:

- A graph is said to be **acyclic** if it does not contain any cycle. Acyclic graphs are usually called **forests**. A connected acyclic graph is usually called a **tree**.
- A vertex of degree 1 in a tree is called a **leaf** of the tree.
- A tree with at least one edge has at least two leaves.

Spanning Subgraphs, Induced Subgraphs:

- A **spanning subgraph** H of a graph G is a subgraph such that $V(H) = V(G)$.
- The **symmetric difference** of spanning subgraphs G_1 and G_2 of a graph $G = (V, E)$ is a spanning subgraph of G whose edge set is $E(G_1) \Delta E(G_2)$.
- Let X be a vertex subset of a graph G. An **induced subgraph** by X is a graph $G[X]$ whose vertex set is X and whose edge set consists of all edges of G which have end-vertices in X.
- Let S be an edge subset of a graph G. An **induced subgraph** by S is a graph $G[S]$ whose edge set is S and whose vertex set consists of all end-vertices of edge in S.

Decompositions, Coverings:

- A **decomposition** of a graph G is a family of edge-disjoint subgraphs of G such that
 \[E(G) = \bigcup_{H \in \mathcal{F}} E(H). \]
 A decomposition \mathcal{F} is referred to a **path (cycle) decomposition** if the family \mathcal{F} consists entirely of path (cycles) of G.
- A graph is said to be **even** if every vertex has even degree.
- A **covering** or **cover** of a graph G is a family \mathcal{F} of not necessarily edge-disjoint subgraphs of G such that
 \[E(G) = \bigcup_{H \in \mathcal{F}} E(H). \]
 A covering \mathcal{F} is referred to a **path (cycle) covering** if the family \mathcal{F} consists entirely of path (cycles) of G.
- A covering of a graph G is said to be **uniform** if every edge of G is covered the same number of times by \mathcal{F}. When this number is k, the covering is called a **k-cover**. A 2-cover is usually called a **double cover**.
Theorem 2.3. A graph admits a cycle decomposition if and only it is even.

Proof. The necessity is trivial, for the degree of every vertex of a cycle is 2 and the degree of a vertex in the graph is a summation of 2’s.

Let G be an even graph. If G contains some edges, then G contains a cycle C1 by Theorem 2.1. Remove the edges of C1 from G to obtain a graph G1, which is still even. Then by Theorem 2.1 again there is a cycle C2 in G1. Remove the edges of C2 from G1 to obtain a graph G2, which is even. Continue this procedure; we obtain a cycle decomposition of G.

Theorem 2.4. Let \(\mathcal{F} = \{ F_1, F_1, \ldots, F_k \} \) be a decomposition of \(K_n \) of bipartite graphs. Then \(k \geq n - 1 \).

Cuts, Bonds

- Let X and Y be vertex subsets of a graph G or digraph D. We denote by \([X,Y]\) the set of edges with one end-vertex in X and the other end-vertex in Y, and by \((X,Y)\) to the set of directed edges with the tail in X and the head in Y. An edge set of the form \([X,X^c]\) is called an edge cut or cut, where \(X^c\) is the complement of X in \(V(G)\).
- For any vertex subset of a graph G,
 \[||X,X^c|| + 2||X,X|| = \sum_{v \in X} d_G(v). \]
- A bond of a graph G is a minimal nonempty cut, i.e., a nonempty edge cut none of whose nonempty proper subset is an edge cut.
- Deleting the edges of a cut increases the number of connected components.

Theorem 2.5. A graph G is even if and only if every cut of G has even number of edges.

Proof. If G is even, then for any subset \(X \subseteq V(G) \), \(||X,X^c|| = -2||X,X|| + \sum_{v \in X} d_G(v) \) is clearly even. Conversely, we have a cut \([\{v\}, \{v\}^c]\) for each vertex \(v \in V(G) \). The degree \(d_G(v) = ||\{v\}, \{v\}^c|| + 2||\{v\}, \{v\}|| \) is clearly even.

Proposition 2.6. Let X and Y be vertex subsets of a graph G. Then

\[[X,X^c] \Delta [Y,Y^c] = [X \Delta Y, (X \Delta Y)^c]. \]

Proof. Note that \(\{X \cap Y, X \cap Y^c, X^c \cap Y, X^c \cap Y^c\} \) is a partition of \(V \).

<table>
<thead>
<tr>
<th></th>
<th>X \cap Y</th>
<th>X \cap Y^c</th>
<th>X^c \cap Y</th>
<th>X^c \cap Y^c</th>
</tr>
</thead>
<tbody>
<tr>
<td>X \cap Y</td>
<td>y</td>
<td>x</td>
<td>xy</td>
<td></td>
</tr>
<tr>
<td>X \cap Y^c</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X^c \cap Y</td>
<td>x</td>
<td>xy</td>
<td></td>
<td>y</td>
</tr>
<tr>
<td>X^c \cap Y^c</td>
<td>xy</td>
<td>x</td>
<td></td>
<td>y</td>
</tr>
</tbody>
</table>

Since \([X,X^c] \cap [Y,Y^c] = [X \cap Y, X^c \cap Y^c]\), we have

\[[X,X^c] \Delta [Y,Y^c] = [X,X^c] \cup [Y,Y^c] - [X \cap Y, X^c \cap Y^c] = [X \cap Y, X \cap Y^c] \cup [X \cap Y, X^c \cap Y] \cup [X \cap Y^c, X^c \cap Y^c] \cup [X^c \cap Y, X^c \cap Y^c]. \]

Since \(X \Delta Y = (X \cap Y^c) \cup (X^c \cap Y) \) and \((X \Delta Y)^c = (X \cap Y) \cup (X^c \cap Y^c) \), we have

\[[X \Delta Y, (X \Delta Y)^c] = [(X \cap Y^c) \cup (X^c \cap Y), (X \cap Y) \cup (X^c \cap Y^c)] = [X \cap Y^c, X \cap Y] \cup [X \cap Y^c, X^c \cap Y] \cup [X \cap Y^c, X^c \cap Y^c] \cup [X \cap Y^c, X^c \cap Y^c]. \]

Note that \([X \cap Y, X \cap Y^c] = [X \cap Y^c, X \cap Y] \) and \([X \cap Y, X^c \cap Y] = [X^c \cap Y, X \cap Y]\).
Proposition 2.7. Let \(B \) be an edge subset of a connected graph \(G \). Then \(B \) is a bond if and only if there is a vertex subset \(X \) such that both \(G[X] \) and \(G[X^c] \) are connected and \(B = [X, X^c] \).

Proof. “\(\Rightarrow \)” Since \(B \) is a cut, i.e., there is a vertex subset \(X \) such that \(B = [X, X^c] \). We claim that both \(G[X] \) and \(G[X^c] \) are connected. Suppose \(G[X] \) is disconnected, say \(X = X_1 \cup X_2, X_i \neq \emptyset, i = 1, 2 \), and there are no edges between \(X_1 \) and \(X_2 \). Then both \([X_1, X^c]\) and \([X_2, X^c]\) are nonempty cuts, and are contained in \([X, X^c]\); this contradicts to that \(B \) is a minimal cut. So \(G[X] \) is connected; and similarly for \(G[X^c] \).

“\(\Leftarrow \)” Clearly, \(B = [X, X^c] \) is a cut. Suppose \(B \) is not minimal, i.e., there is a proper subset \(B_1 \subseteq B \) such that \(B_1 \) is also a cut. Then \(G - B_1 \) is disconnected. However, there exists an edge \(e \in B - B_1 \), \(G[X] \) and \(G[X^c] \) are connected. Then \(G - B_1 \) is connected, a contradiction. \(\square \)

Proposition 2.8. An edge subset of a graph \(G \) is a cut if and only if it is a disjoint union of bonds.

Proof. The sufficiency is trivial. For necessity, consider an edge cut \([X, X^c]\) of \(G \). Let \(G[X] \) be decomposed into connected components and let \(G_1, \ldots, G_k \) be those components having a vertex adjacent to a vertex in \(X \). Set \(X_i := V(G_i), 1 \leq i \leq k \). Then \([X, X^c]\) is a disjoint union of the edge cuts \([X_i, X_i^c]\). Fix an index \(i \), let \(G[X_i] \) be decomposed into connected components and let \(H_1, \ldots, H_l \) be those components having a vertex adjacent to a vertex in \(X_i \). Set \(Y_j := V(H_j) \). Then \([X_i, X_i^c]\) is a disjoint union of the edge cuts \([Y_j, Y_j^c]\). We claim that each \([Y_j, Y_j^c]\) is a bond. In fact, \([Y_j, Y_j^c]\) consists of all the edges between the connected subgraphs \(G_i \) and \(H_j \). Suppose there is a proper subset \(S \) of \([X_i, X_i^c]\) such that \(S = [Z, Z^c]\) is an edge cut. Since there are edges (other than the edges of \(S \)) joining \(G_i \) and \(H_j \), then both \(G_i \) and \(H_j \) must be subgraphs of either \(G[Z] \) or \(G[Z^c] \). However, \(S \) is a set of some edges between \(G_i \) and \(H_j \), so \(S \) is an edge subset of either \(G[Z] \) or \(G[Z^c] \). This is a contradiction. \(\square \)

Vector Spaces Associated with Graphs:

- Let \(S \) be a set and \(\mathbb{F} \) a field. Let \(\mathbb{F}^S \) be the set of all functions from \(S \) to \(\mathbb{F} \). The \(\mathbb{F}^S \) becomes a vector space over \(\mathbb{F} \) under the following addition and scalar multiplication: For \(f, g \in \mathbb{F}^S \) and \(c \in \mathbb{F} \),

 \[(f + g)(s) = f(s) + g(s), \quad (cf)(s) = cf(s), \quad s \in S.\]

- Let \(S \) be a set and \(\mathbb{F}_2 = \{0, 1\} \) a field of two elements. There is a one-to-one correspondence between the power set \(\mathcal{P}(S) \) and the vector space \(\mathbb{F}_2^S \). In fact, a subset \(A \subseteq S \) corresponds to its characteristic function \(1_A : S \rightarrow \mathbb{F}_2 \), written \(A \leftrightarrow 1_A \), where

 \[1_A(s) = \begin{cases} 1 & \text{if } s \in A, \\ 0 & \text{if } s \notin A. \end{cases} \]

 Moreover, for subsets \(A, B \subseteq S \), we have

 \[A \Delta B := A \cup B - A \cap B \leftrightarrow 1_A + 1_B.\]

 So \(\mathcal{P}(S) \) can be considered as a vector space of dimension \(|S| \), where the zero vector is the empty set.

- For a graph \(G = (V, E) \), The vector space \(\mathbb{F}_2^V \) is called the vertex space and \(\mathbb{F}_2^E \) the edge space of \(G \).

- The set of even graphs of a graph \(G \) forms a subspace of the edge space of \(G \), called the cycle space of \(G \).

- The set of all cuts of a graph \(G \) forms a subspace of the edge space of \(G \), called the bond space of \(G \).

Proposition 2.9. Let \(G_i = (V, E_i) \) be spanning subgraphs of a graph \(G = (V, E) \). Then for any \(X \subseteq V(G) \),

\[\partial_{G_1 \Delta G_2}(X) = \partial_{G_1}(X) \Delta \partial_{G_2}(X).\]

Proof.

\[
\begin{align*}
\partial_{G_1 \Delta G_2}(X) &= [X, X^c] \cap (E_1 \Delta E_2) \\
&= [X, X^c] \cap (E_1 \cup E_2 - E_1 \cap E_2) \\
&= (([X, X^c] \cap E_1) \cup ([X, X^c] \cap E_2)) - [X, X^c] \cap E_1 \cap E_2 \\
&= ([X, X^c] \cap E_1) \Delta ([X, X^c] \cap E_2) \\
&= \partial_{G_1}(X) \Delta \partial_{G_2}(X).
\end{align*}
\]

\(\square \)
Proof. Suppose it is not true, i.e., the maximal degree \(\Delta(G) < n - 1 \). We first show that \(G \) is regular. Consider two non-adjacent vertices \(x \) and \(y \). We define a function \(f : N(x) \to N(y) \), where for each \(v \in N(x) \), \(f(v) \) is defined as the unique common neighbor of \(v \) and \(y \). Then \(f \) is injective. In fact, if \(f(u) = f(v) \) for distinct \(u, v \in N(x) \), then \(u \) and \(v \) have two common neighbors \(x \) and \(f(u) \), a contradiction. Thus \(d(x) = |N(x)| \leq |N(y)| = d(y) \). Similarly, \(d(y) \leq d(x) \). So \(d(x) = d(y) \). This is equivalent to say that any two adjacent vertices of \(\bar{G} \) (the complement simple graph of \(G \)) have the same degree. We claim that \(G \) is regular.

To this end, it suffices to show that \(\bar{G} \) is connected. Note that \(G \) has no single vertices, since the minimal degree \(\delta(G) = n - 1 - \Delta(G) > 0 \). Suppose \(\bar{G} \) has two or more connected components. Take two edges \(e_i = u_iv_i \) from distinct components of \(\bar{G} \), \(i = 1, 2 \). Then \(u_1u_2v_1v_2u_1 \) is a cycle of \(G \). Thus \(u_1 \) and \(v_1 \) have at least two common neighbors \(u_2 \) and \(v_2 \), a contradiction. Let \(G \) be \(k \)-regular. Consider the number of paths of length 2 in \(G \). Since any two vertices have a unique common neighbor, there \(\binom{n}{2} \) paths of length 2. For each vertex \(v \), there are \(\binom{k}{2} \) paths with the middle vertex \(v \). Hence \(\binom{n}{2} = n \binom{k}{2} \), i.e., \(n = k^2 - k + 1 \).

Let \(A \) be the adjacency matrix of \(G \). The \((u, v) \)-entry of \(A^2 \) is the number of \((u, v) \)-walks of length 2. Then \(A^2 \) has its diagonal entries \(k \) and other entries 1. So \(A^2 = (k - 1)I + J \), where \(I \) is the identity matrix and \(J \) is a matrix whose entries are 1. Note that \(J \) has the eigenvalue 0 with multiplicity \(n - 1 \) and the eigenvalue \(n \). Then \(A^2 \) has the eigenvalue \(k - 1 \) with multiplicity \(n - 1 \) and the eigenvalue \(k^2 (= n + k - 1) \) with the multiplicity 1. It follows that \(A \) has the eigenvalue \(\pm \sqrt{k - 1} \) with multiplicity \(n - 1 \) and the eigenvalue \(k \) with the multiplicity 1.

Since the graph \(G \) is simple, the trace of \(A \) (the sum of diagonal entries) is zero. Note that the trace of \(A \) is also the sum of its eigenvalues (counted with multiplicities). Then \(\pm (n - 1) \sqrt{k - 1} + k = 0 \); it forces that \((n - 1) \sqrt{k - 1} + k = 0 \). The only possible choice is that \(k = 2 \) and \(n = 3 \), i.e., \(G \) is a triangle, where \(\Delta(G) = 2 \). This is contradict to that \(\Delta(G) < n - 1 \). \(\square \)