
Week 5-6: The Binomial Coefficients

March 6, 2018

1 Pascal Formula

Theorem 1.1 (Pascal’s Formula). For integers n and k such that n ≥ k ≥ 1,
(

n

k

)
=

(
n− 1

k

)
+

(
n− 1

k − 1

)
.

The numbers
(

n
2

)
= n(n−1)

2 (n ≥ 2) are triangle numbers, that is,

•
•

• •

•
• •

• • •

•
• •

• • •
• • • •

The pentagon numbers are 1, 5, 12, 22, . . ., defined as the numbers of points of dilated
pentagons. Then an = an−1 + 3n + 1 for n ≥ 1 with a0 = 1. Then an = 3

2n
2 + 5

2n + 1,
n ≥ 1. The k-gon numbers are 1, k, 3k − 3, 6k − 8, . . ..

The numbers
(

n
3

)
= n(n−1)(n−2)

6 (n ≥ 3) are tetrahedral numbers, i.e.,
(

n
3

)
is the

number of lattice points of the tetrahedron ∆3(n) defined by

∆3(n) = {(x, y, z) : x ≥ 0, y ≥ 0, z ≥ 0, x + y + z ≤ n− 3}.
Theorem 1.2. The number of nondecreasing coordinate paths from (0, 0) to (m,n) with
m,n ≥ 0 equals (

m + n

m

)
.

2 Binomial Theorem

Theorem 2.1 (Binomial Expansion). For integer n ≥ 1 and variables x and y,

(x + y)n =
n∑

k=0

(n

k

)
xkyn−k,

(1 + x)n =
n∑

k=0

(n

k

)
xk.
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3 Binomial Identities

Definition 3.1. For any real number α and integer k, define the binomial coefficients

(
α

k

)
=





0 if k < 0
1 if k = 0

α(α− 1) · · · (α− k + 1)/k! if k > 0

Proposition 3.2. (1) For real number α and integer k,
(

α

k

)
=

(
α− 1

k

)
+

(
α− 1

k − 1

)
.

(2) For real number α and integer k,

k

(
α

k

)
= α

(
α− 1

k − 1

)
.

(3) For nonnegative integers m, n, and k such that m + n ≥ k,

(
m + n

k

)
=

k∑
i=0

(
m

i

)(
n

k − i

)
.

Proposition 3.3. For integers n, k ≥ 0,
(

n + 1

k + 1

)
=

n∑
m=0

(
m

k

)

Proof. Applying the Pascal formula again and again, we have
(

n + 1

k + 1

)
=

(
n

k + 1

)
+

(
n

k

)

=

(
n− 1

k + 1

)
+

(
n− 1

k

)
+

(
n

k

)

= · · ·
=

(
0

k + 1

)
+

(
0

k

)
+

(
1

k

)
+ · · ·+

(
n

k

)
.

Note that
(

0
k+1

)
= 0.

4 Multinomial Theorem

Theorem 4.1 (Multinomial Expansion). For any positive integer n,

(x1 + x2 + · · ·+ xk)
n =

∑
n1+n2+···+nk=n

n1,n2,...,nk≥0

(
n

n1, n2, . . . , nk

)
xn1

1 xn2
2 · · ·xnk

k ,
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where the coefficients (
n

n1, n2, . . . , nk

)
=

n!

n1!n2! · · ·nk!

are called multinomial coefficients.

Proof.

(x1 + x2 + · · ·+ xk)
n = (x1 + x2 + · · ·+ xk) · · · (x1 + x2 + · · ·+ xk)︸ ︷︷ ︸

n

=
∑

u1u2 · · ·un (ui = x1, x2 . . . , xk, 1 ≤ i ≤ n)

=
∑

n1+n2+···+nk=n
n1,n2,...,nk≥0

{
number of permutations of the

multiset {n1x1, n2x2, . . . , nkxk}
}

=
∑

n1+n2+···+nk=n
n1,n2,...,nk≥0

(
n

n1, n2, . . . , nk

)
xn1

1 xn2
2 · · ·xnk

k .

5 Newton Binomial Theorem

Theorem 5.1 (Newton’s Binomial Expansion). Let α be a real number. If 0 ≤ |x| < |y|,
then

(x + y)α =
∞∑

k=0

(
α

k

)
xkyα−k,

where (
α

k

)
=

α(α− 1) · · · (α− k + 1)

k!
.

Proof. Apply the Taylor expansion formula for the function (x+y)α of two variables.

Corollary 5.2. If |z| < 1, then

(1 + z)α =
∞∑

k=0

(
α

k

)
zk,

1

(1− z)α
=

∞∑

k=0

(−α

k

)
(−z)k =

∞∑

k=0

(
α + k − 1

k

)
zk.

The identity (−α

k

)
= (−1)k

(
α + k − 1

k

)
.

is called the reciprocity law of binomial coefficients.
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Proof. Apply the Taylor expansion formula.

In particular, since 1
1−z =

∑∞
i=0 zi, we have

1

(1− z)n
=

( ∞∑
i1=0

zi1

)
· · ·

( ∞∑
in=0

zin

)

=
∞∑

k=0

zk
∑

i1+···+in=k

1

=
∞∑

k=0

(
n + k − 1

k

)
zk.

This shows again that the number of nonnegative integer solutions of the equation

x1 + x2 + · · ·+ xn = k

equals the binomial coefficient
〈

n

k

〉
=

(
n + k − 1

k

)
.

6 Unimodality of Binomial Coefficients

Definition 6.1. A sequence s0, s1, s2, . . . , sn is said to be unimodal if there is an integer
k (0 ≤ k ≤ n) such that

s0 ≤ s1 ≤ · · · ≤ sk ≥ sk+1 ≥ · · · ≥ sn.

Theorem 6.2. Let n be a positive integer. The sequence of binomial coefficients
(n

0

)
,

(n

1

)
,

(n

2

)
, . . . ,

(n

n

)

is an unimodal sequence. More precisely, if n is even,
(

n

0

)
<

(
n

1

)
< · · · <

(
n

n/2

)
> · · · >

(
n

n− 1

)
>

(
n

n

)
;

and if n is odd,
(

n

0

)
<

(
n

1

)
< · · · <

(
n

(n− 1)/2

)
=

(
n

(n + 1)/2

)
> · · · >

(
n

n− 1

)
>

(
n

n

)
.

Proof. Note that the quotient
(

n

k

)/(
n

k − 1

)
=

n− k + 1

k
=

{
≥ 1 if k ≤ (n + 1)/2

≤ 1 if k ≥ (n + 1)/2

The unimodality follows immediately.
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A sequence s0, s1, . . . , sn of positive numbers is said to be log-concave if

s2
i ≥ si−1si+1, i = 1, . . . , n− 1.

The condition implies that the sequence log s1, log s2, . . . , log sn are concave, i.e.,

log si ≥ (log si−1 + log si+1)/2.

Proposition 6.3. If a sequence (si) is log-concace, then it is unimodal.

Proof. Assume the sequence is nonzero. The condition s2
i ≥ si−1si+1 is equivalent to

si−1

si
≤ si

si+1
.

If there exists an i0 such that si0 ≤ si0+1, i.e.,
si0

si0+1
≤ 1, then si−1

si
≤ 1 for all i ≤ i0, i.e.,

s0 ≤ s1 ≤ · · · ≤ si0 ≤ si0+1.

If there exists an i0 such that si0−1 ≥ si0, i.e.,
si0−1

si0
≥ 1, then then si−1

si
≥ 1 for all i ≥ i0,

i.e.,
si0−1 ≥ si0 ≥ · · · ≥ sn−1 ≥ sn.

Now for the nondecreasing numbers si

si+1
, there exists an index i0 such that

si0−1

si0

≤ 1 ≤ si0

si0+1
.

It follows that
s0 ≤ s1 ≤ · · · ≤ si0 ≥ si0+1 ≥ · · · ≥ sn.

The sequence si =
(

n
i

)
of binomial coefficients is log-concave. In fact,

s2
i

si−1si+1
=

(n− i + 1)(i + 1)

i(n− i)
> 1, i = 1, . . . , n− 1.

Given a graph G with n vertices. A coloring of G with t colors is said to be proper if no
two adjacent vertices receive the same color. The number of proper colorings turns out
to be a polynomial function of t, called the chromatic polynomial of G, denoted χ(G, t),
and it can be written as the form

χ(G, t) =
n∑

k=0

(−1)n−kakt
k.

Conjecture 6.4 (Log-Concavity Conjecture). The coefficients of the above chromatic
polynomial satisfies the log-concave equality:

a2
k ≥ ak−1ak+1.

When the inequalities are strict inequalities, it is called the Strict Log-Concavity Conjec-
ture.
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A cluster of a set S is a collection A of subsets of S such that no one is contained
in another. A chain is a collection C of subsets of S such that for any two subsets,
one subset is always contained in another subset. For example, for S = {a, b, c, d}, the
collection

A =
{
{a, b}, {b, c, d}, {a, c}, {a, d}

}

is a cluster; while the collection

C =
{
∅, {b, d}, {a, b, d}, {a, b, c, d}

}

is a chain. In more general context, a cluster is an antichain of a partially ordered set.

Theorem 6.5 (Sperner). Every cluster of an n-set S contains at most
(

n
bn/2c

)
subsets

of S.

Proof. Let S = {1, 2, . . . , n}. We actually prove the following stronger result by induction
on n:

The power set P (S) can be partitioned into disjoint chains C1, C2, . . ., Cm with

m =

(
n

bn/2c
)

.

If so, then for each cluster A of S,

|A ∩ Ci| ≤ 1 for all 1 ≤ i ≤ m.

Consequently,

|A | =
∣∣∣A ∩

m⋃
i=1

Ci

∣∣∣ =
m∑

i=1

|A ∩ Ci| ≤ m =

(
n

bn/2c
)

.

For n = 1,
(

n
bn/2c

)
=

(1
0

)
= 1,

∅ ⊂ {1}.
For n = 2,

(
n

bn/2c
)

=
(2

1

)
= 2,

∅ ⊂ {1} ⊂ {1, 2},
{2}.

For n = 3,
(

n
bn/2c

)
=

(3
1

)
= 3,

∅ ⊂ {1} ⊂ {1, 2} ⊂ {1, 2, 3},
{2} ⊂ {2, 3},
{3} ⊂ {1, 3}.
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For n = 4,
(

n
bn/2c

)
=

(4
2

)
= 6. The 6 chains can be obtained in two ways: (i) Attach

a new subset at the end to each chain of the chain partition for n = 3 (this new subset
is obtained by appending 4 to the last subset of the chain); (ii) delete the last subsets in
all chains of the partition for n = 3 and append 4 to all the remaining subsets.

∅ ⊂ {1} ⊂ {1, 2} ⊂ {1, 2, 3} ⊂ {1, 2, 3, 4},
{2} ⊂ {2, 3} ⊂ {2, 3, 4},
{3} ⊂ {1, 3} ⊂ {1, 3, 4},
{4} ⊂ {1, 4} ⊂ {1, 2, 4},

{2, 4},
{3, 4}.

Note that the chain partition satisfies the properties: (i) Each chain is saturated in the
sense that no subset can be added in between any two consecutive subsets; (ii) in each
chain the size of the beginning subset plus the size of the ending subset equals n. A
chain partition satisfying the two properties is called a symmetric chain partition.
The above chain partitions for n = 1, 2, 3, 4 are symmetric chain partitions.

Given a symmetric chain partition for the case n− 1; we construct a symmetric chain
partition for the case n: For each chain A1 ⊂ A2 ⊂ · · · ⊂ Ak in the chain partition for
the case n− 1,

if k ≥ 2, do A1 ⊂ A2 ⊂ · · · ⊂ Ak ⊂ Ak ∪ {n}, and

A1 ∪ {n} ⊂ A2 ∪ {n} ⊂ · · · ⊂ Ak−1 ∪ {n};
if k = 1, do A1 ⊂ A1 ∪ {n}.

It is clear that the chains constructed form a symmetric chain partition. In fact, the chains
constructed are obviously saturated. Since |A1|+ |Ak| = n− 1, then |A1|+ |Ak ∪ {n}| =
|A1|+ |Ak|+ 1 = n, and when k ≥ 2,

|A1 ∪ {n}|+ |Ak−1 ∪ {n}| = |A1|+ |Ak−1|+ 2 = |A1|+ |Ak|+ 1 = n.

Now for each chain B1 ⊂ B2 ⊂ · · · ⊂ Bl of the symmetric chain partition for the case
n, since |B1| ≤ |Bl|, we must have |B1| ≤ n/2 ≤ |Bl| (otherwise, if |Bl| < n/2 then
|B1|+ |B2| < n, or if |B1| > n/2 then |B1|+ |Bl| > n). By definition of bn/2c and dn/2e,
we have

|B1| ≤ bn/2c ≤ dn/2e ≤ |Bl|.
This means that B1 ⊂ B2 ⊂ · · · ⊂ Bl contains exactly one bn/2c-subset and exactly one

dn/2e-subset. Note that the number of bn/2c-subsets of S is
(

n
bn/2c

)
and the number of

dn/2e-subsets of S is
(

n
dn/2e

)
. It follows that the number of chains in the constructed
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symmetric chain partition is
(

n

bn/2c
)

=

(
n

dn/2e
)

.

Thus every cluster of the power set P (S) has size less than or equal to
(

n
bn/2c

)
. The

cluster Pbn/2c(S) is of size
(

n
bn/2c

)
.

The proof of the Spencer theorem actually gives the construction of clusters of maximal
size. When n = even, there is only one such cluster,

Pn
2
(S) : the collection of all n

2 -subsets of S;

and when n = odd, there are exactly two such clusters,

Pn−1
2

(S) : the collection of all n−1
2 -subsets of S, and

Pn+1
2

(S) : the collection of all n+1
2 -subsets of S.

Example 6.1. (a) Let S = {1}. Then n = 1 and
(1

0

)
=

(1
1

)
= 1. There are two clusters:

∅ and {1}.
(b) Let S = {1, 2}. Then n = 2 and

(2
1

)
= 2. There is only one cluster of maximal

size:
{{1}, {2}}.

(c) Let S = {1, 2, 3}. Then n = 3 and
(3

1

)
=

(3
2

)
= 3. There are two clusters of

maximal size: {{1}, {2}, {3}} and
{{1, 2}, {1, 3}, {2, 3}}

(d) Let S = {1, 2, 3, 4}. Then n = 4 and
(4

2

)
= 6. There is only one cluster of maximal

size: {{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}}

(e) Let S = {1, 2, 3, 4, 5}. Then n = 5 and
(5

2

)
=

(5
3

)
= 10. There are two clusters of

maximal size:
{
{1, 2}, {1, 3}, {1, 4}, {1, 5}, {2, 3}, {2, 4}, {2, 5}, {3, 4}, {3, 5}, {4, 5}

}
,

{
{1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {1, 3, 4}, {1, 3, 5}, {1, 4, 5}, {2, 3, 4}, {2, 3, 5}, {2, 4, 5}, {3, 4, 5}

}
.

7 Dilworth Theorem

Let (X,≤) be a finite partially ordered set. A subset A of X is called an antichain if
any two elements of A are incomparable. In contrast, a chain is a subset C of X whose
any two elements are comparable. Thus a chain is a linearly ordered subset of X. It is
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clear that any subset of a chain is also a chain, and any subset of an antichain is also an
antichain. The important connection between chains and antichains is:

|A ∩ C| ≤ 1 for any antichain A and chain C.

Example 7.1. Let X = {1, 2, . . . , 10}. The divisibility |makes X into a partially ordered
set. The subsets

{2, 3, 5, 7}, {2, 5, 7, 9}, {3, 4, 5, 7}, {3, 4, 7, 10}, {3, 5, 7, 8}, {3, 7, 8, 10},
{4, 5, 6, 7, 9}, {4, 6, 7, 9, 10}, {5, 6, 7, 8, 9}, {6, 7, 8, 9, 10}

are antichains, they are actually maximal antichains; while the subsets

{1, 2, 4, 8}, {1, 3, 6}, {1, 3, 9}, {1, 5, 10}, {1, 7}
are chains and they are actually maximal chains.

Let (X,≤) be a finite poset. We are interested in partitioning X into disjoint union
of antichains and partitioning X into disjoint union of chains. Let A be an antichain
partition of X and let C be a chain of X. Since no two elements of C can be contained
in any antichain in A, then

|A| ≥ |C|.
Similarly, for any chain partition C and an antichain A of X, there are no two elements
of A belonging to a chain of C, we then have

|C| ≥ |A|.
Theorem 7.1. Let (X,≤) be a finite poset, and let r be the largest size of a chain. Then
X can be partitioned into r but no fewer antichains. In other words,

min
{|A| : A is an antichain partition

}
= max

{|C| : C is a chain
}
.

Proof. It is enough to show that X can be partitioned into r antichains. Let X1 = X

and let A1 be the set of all minimal elements of X1. Let X2 = X1 − A1 and let A2 be
the set of all minimal elements of X2. Let X3 = X2 − A2 and let A3 be the set of all
minimal elements of X3. Continuing this procedure we obtain a decomposition of X into
antichains A1, A2, . . . , Ap. By the previous argument we always have p ≥ r. On the other
hand, for any ap ∈ Ap, there is an element ap−1 ∈ Ap−1 such that ap−1 < ap. Similarly,
there is an element ap−2 ∈ Ap−2 such that ap−2 < ap−1. Continuing this process we obtain
a chain a1 < a2 < · · · < ap. Since r is the largest size of a chain, we then have r ≥ p.
Thus p = r.

The following dual version of the theorem is known as the Dilworth Theorem.
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Theorem 7.2 (Dilworth). Let (X,≤) be a finite poset. Let s be the largest size of an
antichain. Then X can be partitioned into s, but not less than s, chains. In other words,

min
{|C| : C is a chain partition

}
= max

{|A| : A is an antichain
}
.

Proof. It suffices to show that X can be partitioned into s chains. We proceed by induc-
tion on |X|. Let |X| = n. For n = 1, it is trivially true. Assume that n ≥ 2. Let Amin

be the set of all minimal elements of X, and Amax the set of all maximal elements of X.
Both Amin and Amax are maximal antichains. We divide the situation into two cases.

Case 1. Amin and Aman are the only maximal antichains of X. Take an element
x ∈ Amin and an element y ∈ Aman such that x ≤ y (possibly x = y). Let X ′ = X−{x, y}.
If X ′ = ∅, then X = {x, y} and x < y, thus s = 1 and x < y is the required chain
partition. Assume X ′ 6= ∅, then X ′ has only the maximal antichains Amin − {x} and
Amax−{y}. The largest size of antichains of X ′ is s−1. Since |X ′| ≤ n−1, by induction
the set X ′ can be partitioned into s − 1 chains C1, . . . , Cs−1. Set Cs = {x ≤ y}. The
collection {C1, . . . , Cs} is a chain partition of X.

Case 2. The set X has a maximal antichain A = {a1, a2, . . . , as} of size s such that
A 6= Amin and A 6= Aman. Let

A− = {x ∈ X : x ≤ ai for some ai ∈ A},
A+ = {x ∈ X : x ≥ ai for some ai ∈ A}.

The sets A+ and A− satisfy the following properties:

1. A+ ( X. (Since Amin 6⊆ A, i.e., there is a minimal element not in A; this minimal
element cannot be in A+, otherwise, it is larger than one element of A by definition.)

2. A− ( X. (Since Amax 6⊆ A, i.e., there is a maximal element not in A; this maximal
element cannot be in A−, otherwise, it is smaller than one element of A by definition.)

3. A− ∩ A+ = A. (It is always true that A ⊆ A+ ∩ A−. For each x ∈ A+ ∩ A−, there
exist ai, aj ∈ A such that ai ≤ x ≤ aj by definition, then ai ≤ aj, which implies
ai = aj so that i = j, thus x = ai = aj ∈ A.)

4. A− ∪ A+ = X. (Suppose there is an element x 6∈ A− ∪ A+, then x is neither ahead
nor behind any member of A, thus A ∪ {x} is an antichain of larger size than A.)

Since A− and A+ are smaller posets having the maximal antichain A of size s, then by
induction, by induction A− can be partitioned into s chains C−

1 , C−
2 , . . . , C−

s with the
maximal elements a1, a2, . . . , as respectively, and A+ can be partitioned into s chains
C+

1 , C+
2 , . . . , C+

s with the minimal elements a1, a2, . . . , as respectively. Thus we obtain a
partition of X into s chains

C−
1 ∪ C+

1 , C−
2 ∪ C+

2 , . . . , C−
s ∪ C+

s .
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Example 7.2. Let X = {1, 2, . . . , 20} be the poset with the partial order of divisibility.
Then the subset {1, 2, 4, 8, 16} is a chain of maximal size. The set X can be partitioned
into five antichains

{1}, {2, 3, 5, 7, 11, 13, 17, 19}, {4, 6, 9, 10, 14, 15}, {8, 12, 18, 20}, {16}.
However, the size of the antichain {2, 3, 5, 7, 11, 13, 17, 19} of size 8 is not maximal. In
fact,

{4, 6, 7, 9, 10, 11, 13, 15, 17, 19}
is an antichain of size 10. The set X can be partitioned into ten chains

{1, 2, 4, 8, 16}, {3, 6, 12}, {5, 10, 20}, {7, 14}, {9, 18},
{11}, {13}, {15} {17}, {19}.

This means that {4, 6, 7, 9, 10, 11, 13, 15, 17, 19} is an antichain of maximal size.

Example 7.3. Let X = {(i, j) ∈ Z2 : 0 ≤ i, j ≤ 3, } be a poset whose partial order ≤ is
defined by (i, j) ≤ (k, l) if and only if i ≤ k and j ≤ l. The size of the longest chain is 7.
For instance,

(0, 0) < (1, 0) < (1, 1) < (1, 2) < (2, 2) < (2, 3) < (3, 3)

is a chain of length 7. The the following collection of subsets

{(0, 0)}, {(1, 0), (0, 1)}, {(2, 0), (1, 1), (0, 2)}, {(3, 0), (2, 1), (1, 2), (0, 3)},
{(3, 1), (2, 2), (1, 3)}, {(3, 2), (2, 3)}, {(3, 3)}

is an antichain partition of X. The maximal size of antichain is 4 and the poset X can
be partitioned into 4 disjoint chains:

(0, 0) < (0, 1) < (0, 2) < (0, 3) < (1, 3) < (2, 3) < (3, 3),

(1, 0) < (1, 1) < (1, 2) < (2, 2) < (3, 2),

(2, 0) < (2, 1) < (3, 1),

(3, 0).

{(0, 0), (0, 1), (0, 2), (0, 3), (1, 3), (2, 3), (3, 3)},
{(1, 0), (1, 1), (1, 2), (2, 2), (3, 2)},

{(2, 0), (2, 1), (3, 1)},
{(3, 0)}.
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The Hasse diagram of the poset X is

(3, 3)
↙ ↘

(3, 2) (2, 3)
↙ ↘ ↙ ↘

(3, 1) (2, 2) (1, 3)
↙ ↘ ↙ ↘ ↙ ↘

(3, 0) (2, 1) (1, 2) (0, 3)
↘ ↙ ↘ ↙ ↘ ↙

(2, 0) (1, 1) (0, 2)
↘ ↙ ↘ ↙

(1, 0) (0, 1)
↘ ↙

(0, 0)

Finding an antichain of maximal size for a poset is a difficult problem. So far there is
no canonical way to do this job.
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