Week 5-6: The Binomial Coefficients

March 6, 2018

1 Pascal Formula

Theorem 1.1 (Pascal's Formula). For integers n and k such that $n \geq k \geq 1$,

$$
\binom{n}{k}=\binom{n-1}{k}+\binom{n-1}{k-1} .
$$

The numbers $\binom{n}{2}=\frac{n(n-1)}{2}(n \geq 2)$ are triangle numbers, that is,

The pentagon numbers are $1,5,12,22, \ldots$, defined as the numbers of points of dilated pentagons. Then $a_{n}=a_{n-1}+3 n+1$ for $n \geq 1$ with $a_{0}=1$. Then $a_{n}=\frac{3}{2} n^{2}+\frac{5}{2} n+1$, $n \geq 1$. The k-gon numbers are $1, k, 3 k-3,6 k-8, \ldots$.

The numbers $\binom{n}{3}=\frac{n(n-1)(n-2)}{6}(n \geq 3)$ are tetrahedral numbers, i.e., $\binom{n}{3}$ is the number of lattice points of the tetrahedron $\Delta^{3}(n)$ defined by

$$
\Delta^{3}(n)=\{(x, y, z): x \geq 0, y \geq 0, z \geq 0, x+y+z \leq n-3\} .
$$

Theorem 1.2. The number of nondecreasing coordinate paths from $(0,0)$ to (m, n) with $m, n \geq 0$ equals

$$
\binom{m+n}{m} .
$$

2 Binomial Theorem

Theorem 2.1 (Binomial Expansion). For integer $n \geq 1$ and variables x and y,

$$
\begin{gathered}
(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k}, \\
(1+x)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} .
\end{gathered}
$$

3 Binomial Identities

Definition 3.1. For any real number α and integer k, define the binomial coefficients

$$
\binom{\alpha}{k}=\left\{\begin{array}{cc}
0 & \text { if } k<0 \\
1 & \text { if } k=0 \\
\alpha(\alpha-1) \cdots(\alpha-k+1) / k! & \text { if } k>0
\end{array}\right.
$$

Proposition 3.2. (1) For real number α and integer k,

$$
\binom{\alpha}{k}=\binom{\alpha-1}{k}+\binom{\alpha-1}{k-1} .
$$

(2) For real number α and integer k,

$$
k\binom{\alpha}{k}=\alpha\binom{\alpha-1}{k-1} .
$$

(3) For nonnegative integers m, n, and k such that $m+n \geq k$,

$$
\binom{m+n}{k}=\sum_{i=0}^{k}\binom{m}{i}\binom{n}{k-i} .
$$

Proposition 3.3. For integers $n, k \geq 0$,

$$
\binom{n+1}{k+1}=\sum_{m=0}^{n}\binom{m}{k}
$$

Proof. Applying the Pascal formula again and again, we have

$$
\begin{aligned}
\binom{n+1}{k+1} & =\binom{n}{k+1}+\binom{n}{k} \\
& =\binom{n-1}{k+1}+\binom{n-1}{k}+\binom{n}{k} \\
& =\cdots \\
& =\binom{0}{k+1}+\binom{0}{k}+\binom{1}{k}+\cdots+\binom{n}{k} .
\end{aligned}
$$

Note that $\binom{0}{k+1}=0$.

4 Multinomial Theorem

Theorem 4.1 (Multinomial Expansion). For any positive integer n,

$$
\left(x_{1}+x_{2}+\cdots+x_{k}\right)^{n}=\sum_{\substack{n_{1}+n_{2}+\cdots+n_{k}=n \\ n_{1}, n_{2}, \ldots, n_{k} \leqslant 0}}\binom{n}{n_{1}, n_{2}, \ldots, n_{k}} x_{1}^{n_{1}} x_{2}^{n_{2}} \cdots x_{k}^{n_{k}},
$$

where the coefficients

$$
\binom{n}{n_{1}, n_{2}, \ldots, n_{k}}=\frac{n!}{n_{1}!n_{2}!\cdots n_{k}!}
$$

are called multinomial coefficients.
Proof.

$$
\begin{aligned}
\left(x_{1}+x_{2}+\cdots+x_{k}\right)^{n} & =\underbrace{\left(x_{1}+x_{2}+\cdots+x_{k}\right) \cdots\left(x_{1}+x_{2}+\cdots+x_{k}\right)}_{n} \\
& =\sum_{\substack{ \\
n_{1} \\
u_{2} \cdots \\
\\
\\
\\
=u_{n} \quad\left(u_{i}=x_{1}, x_{2} \ldots, x_{k}, 1 \leq i \leq n\right) \\
\\
\\
\\
=\sum_{\begin{subarray}{c}{n_{1}+n_{2}+\cdots+n_{k}=n \\
n_{1}, n_{2}, \ldots, n_{k} \geq 0} }}\left\{\begin{array}{c}
\text { number of permutations of the } \\
\text { multiset }\left\{n_{1} x_{1}, n_{2} x_{2}, \ldots, n_{k} x_{k}\right\}
\end{array}\right\}} \\
{\sum_{1}+n_{2}+\cdots+n_{k}=n} \\
{n_{1}, n_{2}, \ldots, n_{k} \geq 0}\end{subarray}}\binom{n}{n_{1}, n_{2}, \ldots, n_{k}} x_{1}^{n_{1}} x_{2}^{n_{2}} \cdots x_{k}^{n_{k}} .
\end{aligned}
$$

5 Newton Binomial Theorem

Theorem 5.1 (Newton's Binomial Expansion). Let α be a real number. If $0 \leq|x|<|y|$, then

$$
(x+y)^{\alpha}=\sum_{k=0}^{\infty}\binom{\alpha}{k} x^{k} y^{\alpha-k}
$$

where

$$
\binom{\alpha}{k}=\frac{\alpha(\alpha-1) \cdots(\alpha-k+1)}{k!} .
$$

Proof. Apply the Taylor expansion formula for the function $(x+y)^{\alpha}$ of two variables.
Corollary 5.2. If $|z|<1$, then

$$
\begin{aligned}
& (1+z)^{\alpha}=\sum_{k=0}^{\infty}\binom{\alpha}{k} z^{k} \\
& \frac{1}{(1-z)^{\alpha}}=\sum_{k=0}^{\infty}\binom{-\alpha}{k}(-z)^{k}=\sum_{k=0}^{\infty}\binom{\alpha+k-1}{k} z^{k}
\end{aligned}
$$

The identity

$$
\binom{-\alpha}{k}=(-1)^{k}\binom{\alpha+k-1}{k}
$$

is called the reciprocity law of binomial coefficients.

Proof. Apply the Taylor expansion formula.
In particular, since $\frac{1}{1-z}=\sum_{i=0}^{\infty} z^{i}$, we have

$$
\begin{aligned}
\frac{1}{(1-z)^{n}} & =\left(\sum_{i_{1}=0}^{\infty} z^{i_{1}}\right) \cdots\left(\sum_{i_{n}=0}^{\infty} z^{i_{n}}\right) \\
& =\sum_{k=0}^{\infty} z^{k} \sum_{i_{1}+\cdots+i_{n}=k} 1 \\
& =\sum_{k=0}^{\infty}\binom{n+k-1}{k} z^{k} .
\end{aligned}
$$

This shows again that the number of nonnegative integer solutions of the equation

$$
x_{1}+x_{2}+\cdots+x_{n}=k
$$

equals the binomial coefficient

$$
\left\langle\begin{array}{c}
n \\
k
\end{array}\right\rangle=\binom{n+k-1}{k} .
$$

6 Unimodality of Binomial Coefficients

Definition 6.1. A sequence $s_{0}, s_{1}, s_{2}, \ldots, s_{n}$ is said to be unimodal if there is an integer $k(0 \leq k \leq n)$ such that

$$
s_{0} \leq s_{1} \leq \cdots \leq s_{k} \geq s_{k+1} \geq \cdots \geq s_{n} .
$$

Theorem 6.2. Let n be a positive integer. The sequence of binomial coefficients

$$
\binom{n}{0},\binom{n}{1},\binom{n}{2}, \ldots,\binom{n}{n}
$$

is an unimodal sequence. More precisely, if n is even,

$$
\binom{n}{0}<\binom{n}{1}<\cdots<\binom{n}{n / 2}>\cdots>\binom{n}{n-1}>\binom{n}{n} ;
$$

and if n is odd,

$$
\binom{n}{0}<\binom{n}{1}<\cdots<\binom{n}{(n-1) / 2}=\binom{n}{(n+1) / 2}>\cdots>\binom{n}{n-1}>\binom{n}{n} .
$$

Proof. Note that the quotient

The unimodality follows immediately.

A sequence $s_{0}, s_{1}, \ldots, s_{n}$ of positive numbers is said to be log-concave if

$$
s_{i}^{2} \geq s_{i-1} s_{i+1}, \quad i=1, \ldots, n-1
$$

The condition implies that the sequence $\log s_{1}, \log s_{2}, \ldots, \log s_{n}$ are concave, i.e.,

$$
\log s_{i} \geq\left(\log s_{i-1}+\log s_{i+1}\right) / 2 .
$$

Proposition 6.3. If a sequence (s_{i}) is log-concace, then it is unimodal. Proof. Assume the sequence is nonzero. The condition $s_{i}^{2} \geq s_{i-1} s_{i+1}$ is equivalent to

$$
\frac{s_{i-1}}{s_{i}} \leq \frac{s_{i}}{s_{i+1}} .
$$

If there exists an i_{0} such that $s_{i_{0}} \leq s_{i_{0}+1}$, i.e., $\frac{s_{i_{0}}}{s_{i_{0}+1}} \leq 1$, then $\frac{s_{i-1}}{s_{i}} \leq 1$ for all $i \leq i_{0}$, i.e.,

$$
s_{0} \leq s_{1} \leq \cdots \leq s_{i_{0}} \leq s_{i_{0}+1} .
$$

If there exists an i_{0} such that $s_{i_{0}-1} \geq s_{i_{0}}$, i.e., $\frac{s_{i_{0}-1}}{s_{i_{0}}} \geq 1$, then then $\frac{s_{i-1}}{s_{i}} \geq 1$ for all $i \geq i_{0}$, i.e.,

$$
s_{i_{0}-1} \geq s_{i_{0}} \geq \cdots \geq s_{n-1} \geq s_{n} .
$$

Now for the nondecreasing numbers $\frac{s_{i}}{s_{i+1}}$, there exists an index i_{0} such that

$$
\frac{s_{i_{0}-1}}{s_{i_{0}}} \leq 1 \leq \frac{s_{i_{0}}}{s_{i_{0}+1}} .
$$

It follows that

$$
s_{0} \leq s_{1} \leq \cdots \leq s_{i_{0}} \geq s_{i_{0}+1} \geq \cdots \geq s_{n} .
$$

The sequence $s_{i}=\binom{n}{i}$ of binomial coefficients is log-concave. In fact,

$$
\frac{s_{i}^{2}}{s_{i-1} s_{i+1}}=\frac{(n-i+1)(i+1)}{i(n-i)}>1, \quad i=1, \ldots, n-1 .
$$

Given a graph G with n vertices. A coloring of G with t colors is said to be proper if no two adjacent vertices receive the same color. The number of proper colorings turns out to be a polynomial function of t, called the chromatic polynomial of G, denoted $\chi(G, t)$, and it can be written as the form

$$
\chi(G, t)=\sum_{k=0}^{n}(-1)^{n-k} a_{k} t^{k} .
$$

Conjecture 6.4 (Log-Concavity Conjecture). The coefficients of the above chromatic polynomial satisfies the log-concave equality:

$$
a_{k}^{2} \geq a_{k-1} a_{k+1} .
$$

When the inequalities are strict inequalities, it is called the Strict Log-Concavity Conjecture.

A cluster of a set S is a collection \mathcal{A} of subsets of S such that no one is contained in another. A chain is a collection \mathcal{C} of subsets of S such that for any two subsets, one subset is always contained in another subset. For example, for $S=\{a, b, c, d\}$, the collection

$$
\mathscr{A}=\{\{a, b\},\{b, c, d\},\{a, c\},\{a, d\}\}
$$

is a cluster; while the collection

$$
\mathscr{C}=\{\varnothing,\{b, d\},\{a, b, d\},\{a, b, c, d\}\}
$$

is a chain. In more general context, a cluster is an antichain of a partially ordered set.
Theorem 6.5 (Sperner). Every cluster of an n-set S contains at most $\binom{n}{\lfloor n / 2\rfloor}$ subsets of S.

Proof. Let $S=\{1,2, \ldots, n\}$. We actually prove the following stronger result by induction on n :

The power set $P(S)$ can be partitioned into disjoint chains $\mathscr{C}_{1}, \mathscr{C}_{2}, \ldots, \mathscr{C}_{m}$ with

$$
m=\binom{n}{\lfloor n / 2\rfloor} .
$$

If so, then for each cluster \mathscr{A} of S,

$$
\left|\mathscr{A} \cap \mathscr{C}_{i}\right| \leq 1 \quad \text { for all } \quad 1 \leq i \leq m
$$

Consequently,

$$
|\mathscr{A}|=\left|\mathscr{A} \cap \bigcup_{i=1}^{m} \mathscr{C}_{i}\right|=\sum_{i=1}^{m}\left|\mathscr{A} \cap \mathscr{C}_{i}\right| \leq m=\binom{n}{\lfloor n / 2\rfloor} .
$$

For $n=1,\binom{n}{\lfloor n / 2\rfloor}=\binom{1}{0}=1$,

$$
\varnothing \subset\{1\} .
$$

For $n=2,\binom{n}{\lfloor n / 2\rfloor}=\binom{2}{1}=2$,

$$
\varnothing \subset\{1\} \subset\{1,2\},
$$

For $n=3,\binom{n}{\lfloor n / 2\rfloor}=\binom{3}{1}=3$,

$$
\begin{gathered}
\varnothing \subset\{1\} \subset\{1,2\} \subset\{1,2,3\}, \\
\{2\} \subset\{2,3\}, \\
\{3\} \subset\{1,3\} .
\end{gathered}
$$

For $n=4,\binom{n}{\lfloor n / 2\rfloor}=\binom{4}{2}=6$. The 6 chains can be obtained in two ways: (i) Attach a new subset at the end to each chain of the chain partition for $n=3$ (this new subset is obtained by appending 4 to the last subset of the chain); (ii) delete the last subsets in all chains of the partition for $n=3$ and append 4 to all the remaining subsets.

$$
\begin{gathered}
\varnothing \subset\{1\} \subset\{1,2\} \subset\{1,2,3\} \subset\{1,2,3,4\}, \\
\{2\} \subset\{2,3\} \subset\{2,3,4\}, \\
\{3\} \subset\{1,3\} \subset\{1,3,4\}, \\
\{4\} \subset\{1,4\} \subset\{1,2,4\}, \\
\{2,4\},
\end{gathered}
$$

$$
\{3,4\} .
$$

Note that the chain partition satisfies the properties: (i) Each chain is saturated in the sense that no subset can be added in between any two consecutive subsets; (ii) in each chain the size of the beginning subset plus the size of the ending subset equals n. A chain partition satisfying the two properties is called a symmetric chain partition. The above chain partitions for $n=1,2,3,4$ are symmetric chain partitions.

Given a symmetric chain partition for the case $n-1$; we construct a symmetric chain partition for the case n : For each chain $A_{1} \subset A_{2} \subset \cdots \subset A_{k}$ in the chain partition for the case $n-1$,

$$
\begin{array}{ll}
\text { if } k \geq 2, \text { do } & A_{1} \subset A_{2} \subset \cdots \subset A_{k} \subset A_{k} \cup\{n\}, \quad \text { and } \\
& A_{1} \cup\{n\} \subset A_{2} \cup\{n\} \subset \cdots \subset A_{k-1} \cup\{n\} ; \\
\text { if } k=1, \text { do } & A_{1} \subset A_{1} \cup\{n\} .
\end{array}
$$

It is clear that the chains constructed form a symmetric chain partition. In fact, the chains constructed are obviously saturated. Since $\left|A_{1}\right|+\left|A_{k}\right|=n-1$, then $\left|A_{1}\right|+\left|A_{k} \cup\{n\}\right|=$ $\left|A_{1}\right|+\left|A_{k}\right|+1=n$, and when $k \geq 2$,

$$
\left|A_{1} \cup\{n\}\right|+\left|A_{k-1} \cup\{n\}\right|=\left|A_{1}\right|+\left|A_{k-1}\right|+2=\left|A_{1}\right|+\left|A_{k}\right|+1=n
$$

Now for each chain $B_{1} \subset B_{2} \subset \cdots \subset B_{l}$ of the symmetric chain partition for the case n, since $\left|B_{1}\right| \leq\left|B_{l}\right|$, we must have $\left|B_{1}\right| \leq n / 2 \leq\left|B_{l}\right|$ (otherwise, if $\left|B_{l}\right|<n / 2$ then $\left|B_{1}\right|+\left|B_{2}\right|<n$, or if $\left|B_{1}\right|>n / 2$ then $\left.\left|B_{1}\right|+\left|B_{l}\right|>n\right)$. By definition of $\lfloor n / 2\rfloor$ and $\lceil n / 2\rceil$, we have

$$
\left|B_{1}\right| \leq\lfloor n / 2\rfloor \leq\lceil n / 2\rceil \leq\left|B_{l}\right| .
$$

This means that $B_{1} \subset B_{2} \subset \cdots \subset B_{l}$ contains exactly one $\lfloor n / 2\rfloor$-subset and exactly one $\lceil n / 2\rceil$-subset. Note that the number of $\lfloor n / 2\rfloor$-subsets of S is $\binom{n}{\lfloor n / 2\rfloor}$ and the number of $\lceil n / 2\rceil$-subsets of S is $\binom{n}{\lceil n / 2\rceil}$. It follows that the number of chains in the constructed
symmetric chain partition is

$$
\binom{n}{\lfloor n / 2\rfloor}=\binom{n}{\lceil n / 2\rceil} .
$$

Thus every cluster of the power set $P(S)$ has size less than or equal to $\binom{n}{\lfloor n / 2\rfloor}$. The cluster $P_{\lfloor n / 2\rfloor}(S)$ is of size $\binom{n}{\lfloor n / 2\rfloor}$.

The proof of the Spencer theorem actually gives the construction of clusters of maximal size. When $n=$ even, there is only one such cluster,

$$
P_{\frac{n}{2}}(S): \quad \text { the collection of all } \frac{n}{2} \text {-subsets of } S \text {; }
$$

and when $n=o d d$, there are exactly two such clusters,

$$
\begin{aligned}
& P_{\frac{n-1}{2}}(S): \text { the collection of all } \frac{n-1}{2} \text {-subsets of } S \text {, and } \\
& P_{\frac{n+1}{2}}(S): \text { the collection of all } \frac{n+1}{2} \text {-subsets of } S .
\end{aligned}
$$

Example 6.1. (a) Let $S=\{1\}$. Then $n=1$ and $\binom{1}{0}=\binom{1}{1}=1$. There are two clusters: \varnothing and $\{1\}$.
(b) Let $S=\{1,2\}$. Then $n=2$ and $\binom{2}{1}=2$. There is only one cluster of maximal size: $\{\{1\},\{2\}\}$.
(c) Let $S=\{1,2,3\}$. Then $n=3$ and $\binom{3}{1}=\binom{3}{2}=3$. There are two clusters of maximal size:

$$
\{\{1\},\{2\},\{3\}\} \text { and }\{\{1,2\},\{1,3\},\{2,3\}\}
$$

(d) Let $S=\{1,2,3,4\}$. Then $n=4$ and $\binom{4}{2}=6$. There is only one cluster of maximal size:

$$
\{\{1,2\},\{1,3\},\{1,4\},\{2,3\},\{2,4\},\{3,4\}\}
$$

(e) Let $S=\{1,2,3,4,5\}$. Then $n=5$ and $\binom{5}{2}=\binom{5}{3}=10$. There are two clusters of maximal size:

$$
\begin{gathered}
\{\{1,2\},\{1,3\},\{1,4\},\{1,5\},\{2,3\},\{2,4\},\{2,5\},\{3,4\},\{3,5\},\{4,5\}\} \\
\{\{1,2,3\},\{1,2,4\},\{1,2,5\},\{1,3,4\},\{1,3,5\},\{1,4,5\},\{2,3,4\},\{2,3,5\},\{2,4,5\},\{3,4,5
\end{gathered}
$$

7 Dilworth Theorem

Let (X, \leq) be a finite partially ordered set. A subset A of X is called an antichain if any two elements of A are incomparable. In contrast, a chain is a subset C of X whose any two elements are comparable. Thus a chain is a linearly ordered subset of X. It is
clear that any subset of a chain is also a chain, and any subset of an antichain is also an antichain. The important connection between chains and antichains is:

$$
|A \cap C| \leq 1 \quad \text { for any antichain } A \text { and chain } C .
$$

Example 7.1. Let $X=\{1,2, \ldots, 10\}$. The divisibility \mid makes X into a partially ordered set. The subsets

$$
\begin{gathered}
\{2,3,5,7\},\{2,5,7,9\},\{3,4,5,7\},\{3,4,7,10\},\{3,5,7,8\},\{3,7,8,10\}, \\
\{4,5,6,7,9\},\{4,6,7,9,10\},\{5,6,7,8,9\},\{6,7,8,9,10\}
\end{gathered}
$$

are antichains, they are actually maximal antichains; while the subsets

$$
\{1,2,4,8\}, \quad\{1,3,6\}, \quad\{1,3,9\}, \quad\{1,5,10\}, \quad\{1,7\}
$$

are chains and they are actually maximal chains.
Let (X, \leq) be a finite poset. We are interested in partitioning X into disjoint union of antichains and partitioning X into disjoint union of chains. Let \mathcal{A} be an antichain partition of X and let C be a chain of X. Since no two elements of C can be contained in any antichain in \mathcal{A}, then

$$
|\mathcal{A}| \geq|C| .
$$

Similarly, for any chain partition \mathcal{C} and an antichain A of X, there are no two elements of A belonging to a chain of \mathcal{C}, we then have

$$
|\mathcal{C}| \geq|A| .
$$

Theorem 7.1. Let (X, \leq) be a finite poset, and let r be the largest size of a chain. Then X can be partitioned into r but no fewer antichains. In other words,

$$
\min \{|\mathcal{A}|: \mathcal{A} \text { is an antichain partition }\}=\max \{|C|: C \text { is a chain }\} .
$$

Proof. It is enough to show that X can be partitioned into r antichains. Let $X_{1}=X$ and let A_{1} be the set of all minimal elements of X_{1}. Let $X_{2}=X_{1}-A_{1}$ and let A_{2} be the set of all minimal elements of X_{2}. Let $X_{3}=X_{2}-A_{2}$ and let A_{3} be the set of all minimal elements of X_{3}. Continuing this procedure we obtain a decomposition of X into antichains $A_{1}, A_{2}, \ldots, A_{p}$. By the previous argument we always have $p \geq r$. On the other hand, for any $a_{p} \in A_{p}$, there is an element $a_{p-1} \in A_{p-1}$ such that $a_{p-1}<a_{p}$. Similarly, there is an element $a_{p-2} \in A_{p-2}$ such that $a_{p-2}<a_{p-1}$. Continuing this process we obtain a chain $a_{1}<a_{2}<\cdots<a_{p}$. Since r is the largest size of a chain, we then have $r \geq p$. Thus $p=r$.

The following dual version of the theorem is known as the Dilworth Theorem.

Theorem 7.2 (Dilworth). Let (X, \leq) be a finite poset. Let s be the largest size of an antichain. Then X can be partitioned into s, but not less than s, chains. In other words, $\min \{|\mathcal{C}|: \mathcal{C}$ is a chain partition $\}=\max \{|A|: A$ is an antichain $\}$.

Proof. It suffices to show that X can be partitioned into s chains. We proceed by induction on $|X|$. Let $|X|=n$. For $n=1$, it is trivially true. Assume that $n \geq 2$. Let $A_{\text {min }}$ be the set of all minimal elements of X, and $A_{\text {max }}$ the set of all maximal elements of X. Both $A_{\min }$ and $A_{\max }$ are maximal antichains. We divide the situation into two cases.

Case 1. $A_{\text {min }}$ and $A_{\text {man }}$ are the only maximal antichains of X. Take an element $x \in A_{\text {min }}$ and an element $y \in A_{\text {man }}$ such that $x \leq y$ (possibly $x=y$). Let $X^{\prime}=X-\{x, y\}$. If $X^{\prime}=\varnothing$, then $X=\{x, y\}$ and $x<y$, thus $s=1$ and $x<y$ is the required chain partition. Assume $X^{\prime} \neq \varnothing$, then X^{\prime} has only the maximal antichains $A_{\min }-\{x\}$ and $A_{\max }-\{y\}$. The largest size of antichains of X^{\prime} is $s-1$. Since $\left|X^{\prime}\right| \leq n-1$, by induction the set X^{\prime} can be partitioned into $s-1$ chains C_{1}, \ldots, C_{s-1}. Set $C_{s}=\{x \leq y\}$. The collection $\left\{C_{1}, \ldots, C_{s}\right\}$ is a chain partition of X.

Case 2. The set X has a maximal antichain $A=\left\{a_{1}, a_{2}, \ldots, a_{s}\right\}$ of size s such that $A \neq A_{\text {min }}$ and $A \neq A_{\text {man }}$. Let

$$
\begin{aligned}
& A^{-}=\left\{x \in X: x \leq a_{i} \text { for some } a_{i} \in A\right\}, \\
& A^{+}=\left\{x \in X: x \geq a_{i} \text { for some } a_{i} \in A\right\} .
\end{aligned}
$$

The sets A^{+}and A^{-}satisfy the following properties:

1. $A^{+} \subsetneq X$. (Since $A_{\min } \nsubseteq A$, i.e., there is a minimal element not in A; this minimal element cannot be in A^{+}, otherwise, it is larger than one element of A by definition.)
2. $A^{-} \subsetneq X$. (Since $A_{\max } \nsubseteq A$, i.e., there is a maximal element not in A; this maximal element cannot be in A^{-}, otherwise, it is smaller than one element of A by definition.)
3. $A^{-} \cap A^{+}=A$. (It is always true that $A \subseteq A^{+} \cap A^{-}$. For each $x \in A^{+} \cap A^{-}$, there exist $a_{i}, a_{j} \in A$ such that $a_{i} \leq x \leq a_{j}$ by definition, then $a_{i} \leq a_{j}$, which implies $a_{i}=a_{j}$ so that $i=j$, thus $x=a_{i}=a_{j} \in A$.)
4. $A^{-} \cup A^{+}=X$. (Suppose there is an element $x \notin A^{-} \cup A^{+}$, then x is neither ahead nor behind any member of A, thus $A \cup\{x\}$ is an antichain of larger size than A.)

Since A^{-}and A^{+}are smaller posets having the maximal antichain A of size s, then by induction, by induction A^{-}can be partitioned into s chains $C_{1}^{-}, C_{2}^{-}, \ldots, C_{s}^{-}$with the maximal elements $a_{1}, a_{2}, \ldots, a_{s}$ respectively, and A^{+}can be partitioned into s chains $C_{1}^{+}, C_{2}^{+}, \ldots, C_{s}^{+}$with the minimal elements $a_{1}, a_{2}, \ldots, a_{s}$ respectively. Thus we obtain a partition of X into s chains

$$
C_{1}^{-} \cup C_{1}^{+}, \quad C_{2}^{-} \cup C_{2}^{+}, \quad \ldots, \quad C_{s}^{-} \cup C_{s}^{+} .
$$

Example 7.2. Let $X=\{1,2, \ldots, 20\}$ be the poset with the partial order of divisibility. Then the subset $\{1,2,4,8,16\}$ is a chain of maximal size. The set X can be partitioned into five antichains
$\{1\}, \quad\{2,3,5,7,11,13,17,19\}, \quad\{4,6,9,10,14,15\}, \quad\{8,12,18,20\}, \quad\{16\}$.
However, the size of the antichain $\{2,3,5,7,11,13,17,19\}$ of size 8 is not maximal. In fact,

$$
\{4,6,7,9,10,11,13,15,17,19\}
$$

is an antichain of size 10 . The set X can be partitioned into ten chains

$$
\begin{array}{ccccc}
\{1,2,4,8,16\}, & \{3,6,12\}, & \{5,10,20\}, & \{7,14\}, & \{9,18\}, \\
\{11\}, & \{13\}, & \{15\} \quad\{17\}, & \{19\} . &
\end{array}
$$

This means that $\{4,6,7,9,10,11,13,15,17,19\}$ is an antichain of maximal size.
Example 7.3. Let $X=\left\{(i, j) \in \mathbb{Z}^{2}: 0 \leq i, j \leq 3,\right\}$ be a poset whose partial order \leq is defined by $(i, j) \leq(k, l)$ if and only if $i \leq k$ and $j \leq l$. The size of the longest chain is 7 . For instance,

$$
(0,0)<(1,0)<(1,1)<(1,2)<(2,2)<(2,3)<(3,3)
$$

is a chain of length 7 . The the following collection of subsets

$$
\begin{gathered}
\{(0,0)\}, \quad\{(1,0),(0,1)\}, \quad\{(2,0),(1,1),(0,2)\}, \quad\{(3,0),(2,1),(1,2),(0,3)\}, \\
\{(3,1),(2,2),(1,3)\}, \quad\{(3,2),(2,3)\}, \quad\{(3,3)\}
\end{gathered}
$$

is an antichain partition of X. The maximal size of antichain is 4 and the poset X can be partitioned into 4 disjoint chains:

$$
\begin{gathered}
(0,0)<(0,1)<(0,2)<(0,3)<(1,3)<(2,3)<(3,3), \\
(1,0)<(1,1)<(1,2)<(2,2)<(3,2), \\
(2,0)<(2,1)<(3,1), \\
(3,0) \\
\{(0,0),(0,1),(0,2),(0,3),(1,3),(2,3),(3,3)\}, \\
\{(1,0),(1,1),(1,2),(2,2),(3,2)\}, \\
\{(2,0),(2,1),(3,1)\} \\
\{(3,0)\} .
\end{gathered}
$$

The Hasse diagram of the poset X is

Finding an antichain of maximal size for a poset is a difficult problem. So far there is no canonical way to do this job.

