Week 4-5: Generating Permutations and Combinations

March 1, 2018

1 Generating Permutations

We have learned that there are n ! permutations of $\{1,2, \ldots, n\}$. It is important in many instances to generate a list of such permutations. For example, for the permutation 3142 of $\{1,2,3,4\}$, we may insert 5 in 3142 to generate five permutations of $\{1,2,3,4,5\}$ as follows:

$$
53142, \quad 35142, \quad 31542, \quad 31452, \quad 31425 .
$$

If we have a complete list of permutations for $\{1,2, \ldots, n-1\}$, then we can obtain a complete list of permutations for $\{1,2, \ldots, n\}$ by inserting the number n in n ways to each permutation of the list for $\{1,2, \ldots, n-1\}$.

For $n=1$, the list is just

$$
1
$$

For $n=2$, the list is

$$
\begin{array}{lll}
& 1 & \mathbf{2} \\
\mathbf{2} & 1
\end{array} \quad \Rightarrow \quad \begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}
$$

For $n=3$, the list is

	1	2	3			2	3
	13	2				3	2
3	1	2		\Rightarrow		1	2
3	2	1				2	1
	23	1				3	1
	2	1	3			1	

To generate a complete list of permutations for the set $\{1,2, \ldots, n\}$, we assign a direction to each integer $k \in\{1,2, \ldots, n\}$ by writing an arrow above it pointing to the left or to the right:

$$
\overleftarrow{k} \text { or } \vec{k} .
$$

We consider permutations of $\{1,2, \ldots, n\}$ in which each integer is given a direction; such permutations are called directed permutations. An integer k in a directed permutation is called mobile if its arrow points to a smaller integer adjacent to it. For example, for $\overrightarrow{3} 254 \overrightarrow{1} \overrightarrow{1}$, the integers 3,5 , and 6 are mobile. It follows that 1 can never be mobile since there is no integer in $\{1,2, \ldots, n\}$ smaller than 1 . The integer n is mobile, except two cases:
(i) n is the first integer and its arrow points to the left, i.e., $n \cdots$;
(ii) n is the last integer and its arrow points to the right, i.e., $\cdots \vec{n}$.

For $n=4$, we have the list

Algorithm 1.1. Algorithm for Generating Permutations of $\{1,2, \ldots, n\}$:
Step 0. Begin with $\overleftarrow{1} \overleftarrow{2} \cdots \overleftarrow{n}$.
Step 1. Find the largest mobile integer m.
Step 2. Switch m and the adjacent integer its arrow points to.
Step 3. Switch the directions for all integers $p>m$.
Step 4. Write down the resulting permutation with directions and return to Step 1.
Step 5. Stop if there is no mobile integer.

For example, for $n=2$, we have $\overleftarrow{12}$ and 21 . For $n=3$, we have

$$
\overleftarrow{1} \overleftarrow{2} \overleftarrow{\mathbf{3}}, \overleftarrow{1} \overleftarrow{\mathbf{3}} \overleftarrow{2}, \quad \overleftarrow{3} \overleftarrow{1} \overleftarrow{\mathbf{2}}, \quad \overrightarrow{\mathbf{3}} \overleftarrow{2} \overleftarrow{1}, \quad \overleftarrow{2} \overrightarrow{\mathbf{3}} \overleftarrow{1}, \quad \overleftarrow{2} \overleftarrow{1} \overrightarrow{3}
$$

For $n=4$, the algorithm produces the list

Proof. Observe that when n is not the largest mobile the direction of n must be either like

$$
\overleftarrow{n} \cdots \quad \text { or } \quad \cdots \vec{n}
$$

in the permutation. When the largest mobile m (with $m<n$) is switched with its target integer to produce a new permutation, the direction of n will be changed simultaneously, and the permutation with direction becomes

$$
\vec{n} \cdots \text { or } \ldots \overleftarrow{n}
$$

Now n is the largest mobile. Switching n with its target integer for $n-1$ times to produce $n-1$ more permutations, we obtain exactly n new permutations (including the one before switching n). Each member $k(2 \leq k \leq n)$ moves $k-1$ times from right to left, then $k-1$ times from left to right, and goes in this way from one side to the other for $(k-1)$! times (which is an even number when $k \geq 3)$; the total number of moves of k is $(k-1)!(k-1)$. Thus the total number of moves is

$$
\sum_{k=1}^{n}(k-1)!(k-1),
$$

which is $n!-1$ by induction on n. The algorithm stops at the permutation

$$
\overleftarrow{2} \overleftarrow{1} \stackrel{\rightharpoonup}{3} \overrightarrow{4} \ldots \vec{n} .
$$

2 Inversions of Permutations

Let $u_{1} u_{2} \ldots u_{n}$ be a permutation of $S=\{1,2, \ldots, n\}$. We can view $u_{1} u_{2} \ldots u_{n}$ as a bijection $\pi: S \rightarrow S$ defined by

$$
\pi(1)=u_{1}, \pi(2)=u_{2}, \quad \ldots, \quad \pi(n)=u_{n} .
$$

If $u_{i}>u_{j}$ for some $i<j$, the ordered pair $\left(u_{i}, u_{j}\right)$ is called an inversion of π. The number of inversions of π is denoted by $\operatorname{inv}(\pi)$. For example, the permutation 3241765 of $\{1,2, \ldots, 7\}$ has the inversions:

$$
(2,1),(3,1),(4,1),(3,2),(6,5),(7,5),(7,6) .
$$

For $k \in\{1,2, \ldots, n\}$ and $u_{j}=k$, let a_{k} be the number of integers that precede k in the permutation $u_{1} u_{2} \ldots u_{n}$ but greater than k, i.e.,

$$
\begin{aligned}
a_{k} & =\#\left\{u_{i}: i<j, u_{i}>u_{j}=k\right\} \\
& =\#\{\pi(i): i<j, \pi(i)>\pi(j)=k\} .
\end{aligned}
$$

It measures how much k is out of order by counting the number of integers larger than k but located before k. The tuple $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is called the inversion sequence (or inversion table) of the permutation $\pi=u_{1} u_{2} \ldots u_{n}$. The sum

$$
\operatorname{inv}(\pi):=a_{1}+a_{2}+\cdots+a_{n}
$$

measures the total disorder of a permutation.
Example 2.1. The inversion sequence of the permutation 3241765 of $\{1,2, \ldots, 7\}$ is $(3,1,0,0,2,1,0)$.

It is clear that for any permutation π of $\{1,2, \ldots, n\}$, the inversion sequence $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ of π satisfies

$$
\begin{equation*}
0 \leq a_{1} \leq n-1, \quad 0 \leq a_{2} \leq n-2, \quad \ldots, \quad 0 \leq a_{n-1} \leq 1, \quad a_{n}=0 . \tag{1}
\end{equation*}
$$

It is easy to see that the number of sequences $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ satisfying (1) equals

$$
n \cdot(n-1) \cdots 2 \cdot 1=n!.
$$

This suggests that the inversion sequences may be characterized by (1).

Theorem 2.1. Let $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ be an integer sequence satisfying

$$
0 \leq a_{1} \leq n-1, \quad 0 \leq a_{2} \leq n-2, \quad \ldots, \quad 0 \leq a_{n-1} \leq 1, \quad a_{n}=0
$$

Then there is a unique permutation π of $\{1,2, \ldots, n\}$ whose inversion sequence is $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$.

Proof. We give two algorithms to uniquely construct the permutation whose inversion sequence is $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$.

Algorithm I. Construction of a Permutation from Its Inversion Sequence:
Step 0. Write down n.
Step 1. If $a_{n-1}=0$, place $n-1$ before n; if $a_{n-1}=1$, place $n-1$ after
Step 2. $\quad \stackrel{n}{\text { If }} a_{n-2}=0$, place $n-2$ before the two members n and $n-1$; if $a_{n-2}=1$, place $n-2$ between n and $n-1$; if $a_{n-2}=2$, place $n-2$ after both n and $n-1$.

Step k. If $a_{n-k}=0$, place $n-k$ to the left of the first position; if $a_{n-k}=1$, place $n-k$ to the right of the 1st existing number; if $a_{n-k}=2$, place $n-k$ to the right of the 2nd existing number; \ldots; if $a_{n-k}=k$, place $n-k$ to the right of the last existing number. In general, insert $n-k$ to the right of the a_{n-k}-th existing number.
:
Step $n-1$. If $a_{1}=0$, place 1 before all existing numbers; otherwise, place 1 to the right of the a_{1} th existing number.

For example, for the inversion sequence $\left(a_{1}, a_{2}, \ldots, a_{8}\right)=(4,6,1,0,3,1,1,0)$,
its permutation can be constructed by Algorithm I as follows:
$8 \quad$ Write down 8.
87
867
8675 Since $a_{5}=3$, insert 5 to the right of the third number 7 .
48675 Since $a_{4}=0$, insert 4 to the left of the first number 8 .
438675 Since $a_{3}=1$, insert 3 to the right of the first number 4.
4386752 Since $a_{2}=6$, insert 2 to the right of the sixth number 5 .
43861752 Since $a_{1}=4$, insert 1 to the right of the fifth number 6 .
Algorithm II. Construction of a Permutation from Its Inversion Sequence:
Step 0. Mark down n empty spaces $\square \square \square \cdots \square \square \square$.
Step 1. Put 1 into the $\left(a_{1}+1\right)$-th empty space from left.
Step 2. Put 2 into the $\left(a_{2}+1\right)$-th empty space from left.
Step k. Put k into the $\left(a_{k}+1\right)$-th empty space from left.
Step n. Put n into the ($a_{n}+1$)-th empty space (the last empty box) from left.

For example, the permutation for the inversion sequence

$$
\left(a_{1}, a_{2}, \ldots, a_{8}\right)=(4,6,1,0,3,1,1,0)
$$

can be constructed by Algorithm II as follows:

$\square \square \square \square 1 \square \square \square$ Since $a_{1}=4$, put 1 into the 5th empty space.
$\square \square \square \square 1 \square \square 2$ Since $a_{2}=6$, put 2 into the 7th empty space.
$\square 3 \square \square 1 \square \square 2$ Since $a_{3}=1$, put 3 into the 2nd empty space.
$43 \square \square 1 \square \square 2 \quad$ Since $a_{4}=0$, put 4 into the 1st empty space.
$43 \square \square 1 \square 52$ Since $a_{5}=3$, put 5 into the 4th empty space.
$43 \square 61 \square 52 \quad$ Since $a_{6}=1$, put 6 into the 2nd empty space.
$43 \square 61752 \quad$ Since $a_{7}=1$, put 7 into the 2nd empty space.
43861752 Since $a_{8}=0$, put 8 into the 1st empty space.

3 Generating Combinations

Let S be an n-set. For convenience of generating combinations of S, we take S to be the set

$$
S=\left\{x_{n-1}, x_{n-2}, \ldots, x_{2}, x_{1}, x_{0}\right\}
$$

Each subset A of S can be identified as a function $\chi_{A}: S \rightarrow\{0,1\}$, called the characteristic function of A, defined by

$$
\chi_{A}(x)=\left\{\begin{array}{lll}
1 & \text { if } & x \in A \\
0 & \text { if } & x \notin A .
\end{array}\right.
$$

In practice, χ_{A} is represented by a $0-1$ sequence or a base 2 numeral. For example, for $S=\left\{x_{7}, x_{6}, x_{5}, x_{4}, x_{3}, x_{2}, x_{1}, x_{0}\right\}$,

$$
\begin{array}{cc}
\varnothing & 00000000 \\
\left\{x_{7}, x_{5}, x_{2}, x_{1}\right\} & 10100110 \\
\left\{x_{6}, x_{5}, x_{3}, x_{1}, x_{0}\right\} & 01101011 \\
\left\{x_{7}, x_{6}, x_{5}, x_{4}, x_{3}, x_{2}, x_{1}, x_{0}\right\} & 11111111
\end{array}
$$

Algorithm 3.1. The algorithm for Generating Combinations of $\left\{x_{n-1}, \ldots, x_{1}, x_{0}\right\}$:

Step 0. Begin with $a_{n-1} \cdots a_{1} a_{0}=0 \cdots 00$.
Step 1. If $a_{n-1} \cdots a_{1} a_{0}=1 \cdots 11$, stop.
Step 2. If $a_{n-1} \cdots a_{1} a_{0} \neq 1 \cdots 11$, find the smallest integer j such that $a_{j}=0$.
Step 3. Change $a_{j}, a_{j-1}, \ldots, a_{0}$ (either from 0 to 1 or from 1 to 0), write down $a_{n-1} \cdots a_{1} a_{0}$, and return to Sept 1 .
For $n=4$, the algorithm produces the list

0000	0100	1000	1100
0001	0101	1001	1101
0010	0110	1010	1110
0011	0111	1011	1111

The unit n-cube Q_{n} is a graph whose vertex set is the set of all $0-1$ sequences of length n, and two sequences are adjacent if they differ in only one place. A Gray code of order n is a path of Q_{n} that visits every vertex of

Figure 1: 4-dimensional cube.
Q_{n} exactly once, i.e., a Hamilton path of Q_{n}. For example,

$$
000 \rightarrow 001 \rightarrow 101 \rightarrow 100 \rightarrow 110 \rightarrow 010 \rightarrow 011 \rightarrow 111
$$

is a Gray code of order 3. It is obvious that this Gray code can not be a part of any Hamilton cycle since 000 and 111 are not adjacent. A cyclic Gray code of order n is a Hamilton cycle of Q_{n}. For example, the closed path

$$
000 \rightarrow 001 \rightarrow 011 \rightarrow 010 \rightarrow 110 \rightarrow 111 \rightarrow 101 \rightarrow 100 \rightarrow 000
$$

is a cyclic Gray code of order 3 .
For $n=1$, we have the Gray code $0 \rightarrow 1$.
For $n=2$, we use $0 \rightarrow 1$ to produce the path $00 \rightarrow 01$ by adding a 0 in the front, and use $1 \rightarrow 0$ to produce $11 \rightarrow 10$ by adding a 1 in the front, then combine the two paths to produce the Gray code

$$
00 \rightarrow 01 \rightarrow 11 \rightarrow 10 .
$$

For $n=3$, we use the Gray code $00 \rightarrow 01 \rightarrow 11 \rightarrow 10$ (of order 2) to produce the path $000 \rightarrow 001 \rightarrow 011 \rightarrow 010$ by adding 0 in the front, and use the Gray code $10 \rightarrow 11 \rightarrow 01 \rightarrow 00$ (the reverse of $00 \rightarrow 01 \rightarrow 11 \rightarrow 10$) to produce the path $110 \rightarrow 111 \rightarrow 101 \rightarrow 100$ by adding 1 in the front. Combine
the two paths to produce the Gray code of order 3

$$
000 \rightarrow 001 \rightarrow 011 \rightarrow 010 \rightarrow 110 \rightarrow 111 \rightarrow 101 \rightarrow 100
$$

The Gray codes obtained in this way are called reflected Gray codes.
Algorithm 3.2. Algorithm of generating a Reflected Gray Code of order n :
Step 0. Begin with $a_{n} a_{n-1} \cdots a_{2} a_{1}=00 \cdots 0$.
Step 1. If $a_{n} a_{n-1} \cdots a_{2} a_{1}=10 \cdots 00$, stop.
Step 2. If $a_{n}+a_{n-1}+\cdots+a_{2}+a_{1}=$ even, then change a_{1} (either from 0 to 1 or from 1 to 0), i.e., set $a_{1}:=1-a_{1}$.
Step 3. If $a_{n}+a_{n-1} \cdots+a_{2}+a_{1}=o d d$, find the smallest index j such that $a_{j}=1$ and change a_{j+1} (either from 0 to 1 or from 1 to 0), i.e., set $a_{j+1}:=1-a_{j+1}$.
Step 4. Write down $a_{n} a_{n-1} \cdots a_{2} a_{1}$ and return to Step 1.
We note that if $a_{n} a_{n-1} \cdots a_{1} \neq 10 \cdots 0$ and $a_{n}+a_{n-1}+\cdots+a_{1}=o d d$, then $j \leq n-1$ so that $j+1 \leq n$ and a_{j+1} is defined.

Proof. We proceed by induction on n. For $n=1$, it is obviously true. For $n=2$, we have $00 \rightarrow 01 \rightarrow 11 \rightarrow 10$. Let $n \geq 3$ and assume that it is true for $1,2, \ldots, n-1$.
(1) When the algorithm is applied, by the induction hypothesis the first resulted 2^{n-1} words form the reflected Gray code of order $n-1$ with a 0 attached to the head of each word; the 2^{n-1}-th word is $010 \cdots 0$.
(2) Continuing the algorithm, we have

$$
010 \cdots 0 \rightarrow 110 \cdots 0
$$

Now for each word of the form $11 b_{n-2} \cdots b_{1}$, the parity of $11 b_{n-2} \cdots b_{1}$ is the same as the parity of $b_{n-2} \cdots b_{1}$. Continuing the algorithm, the next 2^{n-2} words (including $110 \cdots 0$) form a reflected Gray code (of order $n-2$) with a 11 attached at the beginning; the last word is $1110 \cdots 0$.
(3) Continuing the algorithm, we have

$$
1110 \cdots 0 \rightarrow 1010 \cdots 0 \rightarrow \cdots
$$

The next 2^{n-3} words (including $1010 \cdots 0$) form a reflected Gray code (of order $n-3)$ with a 101 attached at the beginning; the last word is $10110 \cdots 0$.
(4) $10110 \cdots 0 \rightarrow 10010 \cdots 0 \rightarrow$; there are 2^{n-4} words with 1001 attached at the beginning.
$(n-2)$ Continuing the algorithm, we have

$$
10 \cdots 01100 \rightarrow 10 \cdots 00100 \rightarrow .
$$

The next 2^{2} words (including $10 \cdots 0100$) form a reflected Gray code (of order 2) with $10 \cdots 01$ attached at the beginning; the last word is $10 \cdots 0110$.
$(n-1) \quad 10 \cdots 0110 \rightarrow 10 \cdots 0010 \rightarrow 10 \cdots 0011$; there are 2^{1} words (of order 1), $10 \cdots 0010 \rightarrow 10 \cdots 0011$, with $10 \cdots 001$ attached at the beginning.
(n) $10 \cdots 0011 \rightarrow 10 \cdots 0001$. The algorithm produces 1 word $10 \cdots 0001$.
$(n+1)$ Finally, the algorithm ends at $10 \cdots 0001 \rightarrow 10 \cdots 0000$.
Notice that all words produced from Step (k) to Step $(n+1)$ inclusive are distinct from the words produced in Step $(k-1)$, where $2 \leq k \leq n+1$. Thus the words produced by the algorithm are distinct and the total number of words is

$$
2^{n-1}+2^{n-2}+\cdots+2^{2}+2^{1}+2^{0}+1=2^{n} .
$$

This implies that the sequence of the words produced forms a Gray code of order n.

Next we show that the words resulted in the second half of the algorithm are the words obtained from the reversing of the Gray codes of order $n-1$ with 1 attached in the front. Consider two consecutive words of length n in the second half of the algorithm, say,

$$
1 a_{n-1} a_{n-2} \cdots a_{2} a_{1} \rightarrow 1 b_{n-1} b_{n-2} \cdots b_{2} b_{1} .
$$

We need to show that

$$
b_{n-1} b_{n-2} \cdots b_{2} b_{1} \rightarrow a_{n-1} a_{n-2} \cdots a_{2} a_{1}
$$

by the same algorithm for $n-1$.
Note that $1 a_{n-1} a_{n-2} \cdots a_{2} a_{1}$ and $1 b_{n-1} b_{n-2} \cdots b_{2} b_{1}$ have opposite parity. It follows that $a_{n-1} a_{n-2} \cdots a_{2} a_{1}$ and $b_{n-1} b_{n-2} \cdots b_{2} b_{1}$ have opposite parity. We have two cases.
(1) $b_{n-1} b_{n-2} \cdots b_{2} b_{1}$ is even. Then $a_{n-1} a_{n-2} \cdots a_{2} a_{1}$ is odd. It follows that $1 a_{n-1} a_{n-2} \cdots a_{2} a_{1}$ is even. By definition of the algorithm, we have $b_{n-1}=a_{n-1}$, $b_{n-2}=a_{n-2}, \ldots, b_{2}=a_{2}$, and $b_{1}=1-a_{1}$; i.e., $a_{n-1}=b_{n-1}, \ldots, a_{2}=b_{2}$, and $a_{1}=1-b_{1}$. This means that $b_{n-1} b_{n-2} \cdots b_{2} b_{1} \rightarrow a_{n-1} a_{n-2} \cdots a_{2} a_{1}$.
(2) $b_{n-1} b_{n-2} \cdots b_{2} b_{1}$ is odd. Then $a_{n-1} a_{n-2} \cdots a_{2} a_{1}$ is even. It follows that $1 a_{n-1} a_{n-2} \cdots a_{2} a_{1}$ is odd. Note that not all of a_{1}, \ldots, a_{n-1} are zero, since it is not stopped yet. Since $1 a_{n-1} a_{n-2} \cdots a_{2} a_{1} \rightarrow 1 b_{n-1} b_{n-2} \cdots b_{2} b_{1}$, then by definition of the algorithm, there exists an index $j(1 \leq j \leq n-2)$ such that $a_{1}=\cdots=a_{j-1}=b_{1}=\cdots=b_{j-1}=0, a_{j}=b_{j}=1$, and $b_{j+1}=1-a_{j+1}$, $b_{j+2}=a_{j+2}, \ldots, b_{n-1}=a_{n-1}$. Note that $a_{j+1}=1-b_{j+1}$. We see that $b_{n-1} b_{n-2} \cdots b_{2} b_{1} \rightarrow a_{n-1} a_{n-2} \cdots a_{2} a_{1}$ by definition of the algorithm.

4 Generating r-Combinations

Let $S=\{1,2, \ldots, n\}$. When an r-combination or an r-subset $A=\left\{a_{1}, a_{2}, \ldots, a_{r}\right\}$ of S is given, we always assume that $a_{1}<a_{2}<\cdots<a_{r}$. For two r combinations $A=\left\{a_{1}, a_{2}, \ldots, a_{r}\right\}$ and $B=\left\{b_{1}, b_{2}, \ldots, b_{r}\right\}$ of S, if there is an integer $k(1 \leq k \leq r)$ such that

$$
a_{1}=b_{1}, \quad a_{2}=b_{2}, \quad \ldots, \quad a_{k-1}=b_{k-1}, \quad a_{k}<b_{k},
$$

we say that A precedes B in the lexicographic order, written $A<B$. Then the set $P_{r}(S)$ of all r-subsets of S is linearly ordered by the lexicographic order. For simplicity, we write an r-combination $\left\{a_{1}, a_{2}, \ldots, a_{r}\right\}$ as an r-permutation

$$
a_{1} a_{2} \cdots a_{r} \text { with } a_{1}<a_{2}<\cdots<a_{r} \text {. }
$$

Theorem 4.1. Let $a_{1} a_{2} \cdots a_{r}$ be an r-combination of $\{1,2, \ldots, n\}$. The first r-combination in lexicographic order is $12 \cdots r$, and the last r-combination in lexicographic order is

$$
(n-r+1) \cdots(n-1) n .
$$

If $a_{1} a_{2} \cdots a_{k} \cdots a_{r} \neq(n-r+1) \cdots(n-1) n$ and k is the largest index such that $a_{k} \neq n-r+k$, then the successor of $a_{1} a_{2} \cdots a_{r}$ is

$$
a_{1} a_{2} \cdots a_{k-1}\left(a_{k}+1\right)\left(a_{k}+2\right) \cdots\left(a_{k}+r-k+1\right) .
$$

Proof. Since $a_{i} \leq(n-r+i)$ for all $1 \leq i \leq r$, then $a_{k} \neq n-r+k$ implies $a_{k}<n-r+k$. Hence $a_{k}+r-k+1<n+1$.
Algorithm 4.2. Algorithm for Generating r-Combinations of $\{1,2, \ldots, n\}$ in Lexicographic Order:

Step 0. Begin with the r-combination $a_{1} a_{2} \cdots a_{r}=12 \cdots r$.
Step 1. If $a_{1} a_{2} \cdots a_{r}=(n-r+1) \cdots(n-1) n$, stop.
Step 2. If $a_{1} a_{2} \cdots a_{r} \neq(n-r+1) \cdots(n-1) n$, find the largest k such that $a_{k}<n-r+k$.
Step 3. Change $a_{1} a_{2} \cdots a_{r}$ to

$$
a_{1} \cdots a_{k-1}\left(a_{k}+1\right)\left(a_{k}+2\right) \cdots\left(a_{k}+r-k+1\right)
$$

write down $a_{1} a_{2} \cdots a_{r}$, and return back to Step 1.
Example 4.1. The collection of all 4 -combinations of $\{1,2,3,4,5,6\}$ are listed by the algorithm:

$$
\begin{array}{lllll}
1234 & 1245 & 1345 & 1456 & 2356 \\
1235 & 1246 & 1346 & 2345 & 2456 \\
1236 & 1256 & 1356 & 2346 & 3456
\end{array}
$$

Theorem 4.3. Let $a_{1} a_{2} \cdots a_{r}$ be an r-combination of $\{1,2, \ldots, n\}$. Then the number of r-combinations up to the place $a_{1} a_{2} \cdots a_{r}$ in lexicographic order equals

$$
\binom{n}{r}-\binom{n-a_{1}}{r}-\binom{n-a_{2}}{r-1}-\cdots-\binom{n-a_{r-1}}{2}-\binom{n-a_{r}}{1}
$$

Proof. The r-combinations $b_{1} b_{2} \cdots b_{r}$ after $a_{1} a_{2} \cdots a_{r}$ can be classified into r kinds:
(1) $b_{1}>a_{1}$; there are $\binom{n-a_{1}}{r}$ such r-combinations.
(2) $b_{1}=a_{1}, b_{2}>a_{2}$; there are $\binom{n-a_{2}}{r-1}$ such r-combinations.
(3) $b_{1}=a_{1}, b_{2}=a_{2}, b_{3}>a_{3}$; there are $\binom{n-a_{3}}{r-2}$ such r-combinations.
$(r-1) \quad b_{1}=a_{1}, \ldots, b_{r-2}=a_{r-2}, b_{r-1}>a_{r-1}$; there are $\binom{n-a_{r-1}}{2}$ such r-combinations.
(r) $\quad b_{1}=a_{1}, \ldots, b_{r-1}=a_{r-1}, b_{r}>a_{r}$; there are $\binom{n-a_{r}}{1}$ such r-combinations. Since the number of r-combinations of $\{1,2, \ldots, n\}$ is $\binom{n}{r}$, the conclusion follows immediately.

Example 4.2. The 3-combinations of $\{1,2,3,4,5\}$ are as follows:

$$
123,124,125,134,135,145,234,235,245,345
$$

The 3-permutations of $\{1,2,3,4,5\}$ can be obtained by making 3 ! permutations for each 3-combination:

123	124	125	134	135	145	234	235	245	345
132	142	152	143	153	154	243	253	254	354
213	214	215	314	315	415	324	325	425	435
231	241	251	341	351	451	342	352	452	453
312	412	512	413	513	514	423	523	524	534
321	421	521	431	531	541	432	532	542	543

5 Partially Ordered Sets

Definition 5.1. A (binary) relation on a set X is a subset $R \subseteq X \times X$. Two members x and y of X are said to satisfy the relation R, written $x R y$, if $(x, y) \in R$. A relation R on X is said to be
(1) reflexive if $x R x$ for all $x \in X$;
(2) irreflexive if $x \bar{R} x$ (also write $x R x$) for all $x \in X$,
where $\bar{R}=(X \times X) \backslash R$.
(3) symmetric provided that if $x R y$ then $y R x$;
(4) antisymmetric provided that if $x \neq y$ and $x R y$ then $y \bar{R} x$ (equivalently, if $x R y$ and $y R x$ then $x=y$);
(5) transitive provided that if $x R y$ and $y R z$ then $x R z$;
(6) complete provided that if $x, y \in X$ and $x \neq y$ then either $x R y$ or $y R x$.

Example 5.1. (1) The relation of set containment, \subseteq, is a reflexive and transitive relation on the power set $P(X)$ of all subsets of X.
(2) The relation of divisibility, denoted |, is a reflexive and transitive relation on the set \mathbb{Z} of integers.

A partial order \leq on a set X is a reflexive, antisymmetric, and transitive relation, that is,
(P1) $x \leq x$ for all x,
(P2) $x \leq y$ and $y \leq x$ then $x=y$,
(P3) if $x \leq y$ and $y \leq z$ then $x \leq z$.
A strict partial order on a set X is an irreflexive and transitive relation, that is,
(SP1) $x \nless x$ for all x, and
(SP2) if $x<y$ and $y<z$ then $x<z$.
If a relation R is a partial order, which is usually denoted by \leq, then the relation $<$, defined by $a<b$ iff $a \leq b$ but $a \neq b$, is a strict partial order. Conversely, for a strict partial order $<$ on a set X, the relation \leq defined by $a \leq b$ iff $a<b$ or $a=b$ is a partial order. A set X with a partial order \leq is called a partially ordered set (or poset for short), denoted (X, \leq).

A linear order on a set X is a partial order \leq such that either $a \leq b$ or $b \leq a$ for any two members a and b of X, i.e., a complete partial order. A strict linear order is an irreflexive, transitive, and complete relation. A preference relation is a relation which is reflexive and transitive. An equivalence relation is a reflexive, symmetric, and transitive relation.

Example 5.2. Let $S=\{1,2,3,4\}$. Then relation "larger than" in its ordinary meaning is the relation

$$
">"=\{(2,1),(3,1),(4,1),(3,2),(4,2),(4,3)\},
$$

and it is a strict linear order relation. The relation "less than or equal to" in its ordinary meaning is the relation

$$
" \leq "=\{(1,1),(1,2),(1,3),(1,4),(2,2),(2,3),(2,4),(3,3),(3,4),(4,4)\},
$$

and is a linear order relation.

Example 5.3. Let \mathbb{C} denote the set of complex numbers. Consider the relation R on \mathbb{C} given by $z R w$ if $|z|=|w|$, where $z=a+i b$ and $|z|=\sqrt{a^{2}+b^{2}}$. Then R is an equivalence relation on \mathbb{C}.

The relation L on \mathbb{C}, defined by $z L w$ (where $z=a+i b$ and $w=c+i d$) if $a<c$ or $a=c$ but $b \leq d$, is a linear order on \mathbb{C}.
Example 5.4. Let V be a vector space over \mathbb{R}. A partial order \preceq on V is said to be compatible with the addition and scalar multiplication provided that
(i) $u \preceq u$ for all $u \in V$;
(ii) if $u \preceq v$ then $c u \preceq c v$ for all $c \geq 0$;
(iii) if $u_{1} \preceq v_{1}$ and $u_{2} \preceq v_{2}$ then $u_{1}+u_{2} \preceq v_{1}+v_{2}$.

Properties (i) and (iii) imply the translation preserving property
(iv) if $u \preceq v$ then $u+w \preceq v+w$ for all $w \in V$.

A convex cone of V is a nonempty subset $C \subseteq V$ satisfying
(a) if $u \in C$ and $c \geq 0$ then $c u \in C$;
(b) if $u, v \in C$ then $u+v \in C$.

A convex cone C is said to be strongly convex if it further satisfies
(c) if $u \in C$ and $u \neq 0$, then $-u \notin C$, i.e., if $u,-u \in C$ then $u=0$.

Strongly convex cone does not contain any 1 -dimensional subspace.
Theorem 5.2. Let C be a strongly convex cone of V. Then the binary relation \preceq on V, defined by

$$
u \preceq v \quad \text { if } \quad v-u \in C,
$$

is a partial order compatible with the addition and scalar multiplication.
Conversely, let \preceq be a partial order on V compatible with the addition and scalar multiplication. Then the subset

$$
C:=\{v \in V \mid 0 \preceq v\}
$$

is a strongly convex cone of V.

Proof. The relation \preceq is antisymmetric and transitive, since $u \preceq v$ and $v \preceq u$ imply $u=v$, and $u \preceq v$ and $v \preceq w$ imply $u \preceq w$. Clearly, the relation \preceq is compatible with the addition and scalar multiplication. In fact, (i) $u \preceq u$ for all $u \in V$; (ii) if $u \preceq v$, then $c u \preceq c v$ for all $c \geq 0$; (iii) if $u_{1} \preceq v_{1}$ and $u_{2} \preceq v_{2}$, then $u_{1}+u_{2} \preceq v_{1}+v_{2}$.

In fact, (i) $u \in C$ implies $c u \in C$ for $c \geq 0$; (ii) $u, v \in C$ imply $u+v \in C$; (iii) if $u,-u \in C$, i.e., $0 \preceq u$ and $0 \preceq-u$, then $u=u+0 \preceq u-u=0$, thus $u=0$.

Let H be a subspace of V. Then the relation \sim on V, defined by $u \sim v$ if $v-u \in H$, is an equivalence relation on V.

Let \leq_{1} and \leq_{2} be two partial orders on a set X. The poset $\left(X, \leq_{2}\right)$ is called an extension of the poset $\left(X, \leq_{1}\right)$ if, whenever $a \leq_{1} b$, then $a \leq_{2} b$. In particular, an extension of a partial order has more compatible pairs. We show that every finite poset has a linear extension, that is, an extension which is a linearly ordered set.

Theorem 5.3. Let (X, \leq) be a finite partially ordered set. Then there is a linear order \preceq such that (X, \preceq) is an extension of (X, \leq).

Proof. We need to show that the elements of X can be listed in some order $x_{1}, x_{2}, \ldots, x_{n}$ in such a way that if $x_{i} \leq x_{j}$ then x_{i} comes before x_{j} in this list, i.e., $i \leq j$. The following algorithm does the job.

Algorithm 5.4. Algorithm for a Linear Extension of an n-Poset:
Step 1. Choose a minimal element x_{1} from X (with respect to the ordering \leq; if such elements are not unique, choose any one).
Step 2. Delete x_{1} from X; choose a minimal element x_{2} from $X \backslash\left\{x_{1}\right\}$.
Step 3. Delete x_{2} from $X \backslash\left\{x_{1}\right\}$; choose a minimal element x_{3} from $X \backslash\left\{x_{1}, x_{2}\right\}$.
:
Step n. Delete x_{n-1} from $X \backslash\left\{x_{1}, \ldots, x_{n-2}\right\}$ and choose the only element x_{n} in $X \backslash\left\{x_{1}, \ldots, x_{n-1}\right\}$.

Let R be an equivalence relation on a set X. For each element $x \in X$, we call the set

$$
[x]=\{y \in X: x R y\}
$$

an equivalence class of R and x a representative of the class $[x]$.
Theorem 5.5. Let R be an equivalence relation on a set X. Then for any $x, y \in X$, the following statements are logically equivalent:

1) $[x] \cap[y] \neq \emptyset$;
2) $[x]=[y]$;
3) $x R y$.

A collection $\mathcal{P}=\left\{A_{1}, A_{2}, \ldots, A_{k}\right\}$ of nonempty subsets of a set X is called a partition of X if $A_{i} \cap A_{j}=\emptyset$ for $i \neq j$ and $X=\bigcup_{i=1}^{k} A_{i}$. We will show below that if R is an equivalence relation on a set X, then the collection

$$
\mathcal{P}_{R}=\{[x]: x \in X\}
$$

is a partition of X. Conversely, if $\mathcal{P}=\left\{A_{1}, A_{2}, \ldots, A_{k}\right\}$ is a partition of X, then the relation

$$
R_{\mathcal{P}}=\bigcup_{i=1}^{k} A_{i} \times A_{i}
$$

is an equivalence relation on X.
Theorem 5.6. Let R be an equivalence relation on a set X, and let $\mathcal{P}=$ $\left\{A_{1}, A_{2}, \ldots, A_{k}\right\}$ be a partition of X. Then
(a) \mathcal{P}_{R} is a partition of X.
(b) $R_{\mathcal{P}}$ is an equivalence relation on X.
(c) $R_{\mathcal{P}_{R}}=R, \mathcal{P}_{R_{\mathcal{P}}}=\mathcal{P}$.

Proof. Parts (a) and (b) are trivial. We only prove Part (c).
Let $(x, y) \in R_{\mathcal{P}_{R}}$. Then, by definition of equivalence relation induced from the partition \mathcal{P}_{R}, there exists a part $A \in \mathcal{P}_{R}$ such that $x, y \in A$. Note that the parts in \mathcal{P}_{R} are the equivalence classes $[x]$ of the equivalence relation R; in
particular A is an equivalence class of R. Since A contains both x and y, it follows that $A=[x]=[y]$. So $(x, y) \in R$. Hence $R_{\mathcal{P}_{R}} \subseteq R$.

Let $(x, y) \in R$. Then $[x]=[y]$ is a part of \mathcal{P}_{R}. Thus $[x] \times[y] \subseteq R_{\mathcal{P}_{R}}$. Since $(x, y) \in[x] \times[y]$, we see that $(x, y) \in R_{\mathcal{P}_{R}}$. Therefore $R \subseteq R_{\mathcal{P}_{R}}$.
$A \in \mathcal{P}_{R_{\mathcal{P}}} \Leftrightarrow A$ is an equivalence class of the relation $R_{\mathcal{P}} \Leftrightarrow A$ is a part of the partition \mathcal{P}.

Example 5.5. Let V be a vector space over \mathbb{R}. An equivalence relation \sim on V is said to be translation preserving if $u \sim v$ implies $u+w \sim v+w$ for all $w \in V$.

A subspace of V is a nonempty subset $H \subset V$ such that if $u, v \in H$ then $a u+b v \in H$ for all $a, b \in \mathbb{R}$.

Given a subspace $H \subset V$. The relation \sim on V, defined by $u \sim v$ if $v-u \in H$, is an order preserving equivalence relation on V.

