Homework 2

Chapter 3, pp.76: 9, 14, 20, 26, 30, 43.

1. In how many ways can 15 people be seated at a round table if a person B refuses to sit next to a person A ? What is B only refuses to sit on A's right?
2. Classroom has 2 rows of 8 seats each. There are 14 students, 5 of them always sit in the front row and 4 of them always sit in the back row. In how many ways can the students be seated?
3. Determine the number of circular permutations of $\{0,1,2, \ldots, 9\}$ in which 0 and 9 are not opposite. (Hint: Count those in which 0 and 9 are opposite.)
4. A group of $m n$ people are to be arranged into m teams each with n players.
(a) Determine the number of ways if each team has a different name.
(b) Determine the number of ways if the teams don't have names.
5. We are to seat 5 men, 5 women, and 1 dog in a circular arrangement around a round table. In how many ways can this be done if no man is to sit next to a man and no woman is to sit next to a woman?
6. Determine the number of r-combinations of the multiset

$$
\left\{1 \cdot a_{1}, \infty \cdot a_{2}, \ldots, \infty \cdot a_{k}\right\}
$$

Chapter 4, p.117: $4,6,7,8,12,23,28,38,39$.

1. Prove that in the algorithm of generating all permutations of $\{1,2, \ldots, n\}$, the directions of 1 and 2 never change.
2. Determine the inversion sequences of the following permutations of $\{1,2, \ldots, 8\}: 35168274 ; 83476215$.
3. Construct the permutations of $\{1,2, \ldots, 8\}$ whose inversion sequences are the following: $(2,5,5,0,2,1,1,0)$; (6,6,1,4,2,1,0,0).
4. How many permutations of $\{1,2, \ldots, 6\}$ have (a) exactly 15 inversions, (b) exactly 14 inversions, and (c) exactly 13 inversions?
5. Let $S=\left\{x_{7}, x_{6}, \ldots, x_{1}, x_{0}\right\}$. Determine the combinations of S corresponding to the following 8-tuples: (a) 00011011; (b) 01010101; (c) 00001111.
6. Determine the immediate successors of the following 9-tuples in the reflected Gray code of order 9: (a) 010100110; (b) 110001100; (c) 111111111.
7. Determine the 7 -combination of $\{1,2, \ldots, 15\}$ that immediately follows $1,2,4,6,8,14,15$ in the lexicographic order. Determine the 7 -combination that immediately precedes $1,2,4,6,8,14,15$.
8. Let $\left(X_{i}, \leq_{i}\right)$ be partially ordered sets, $i=1,2$. Define a relation T on the set

$$
X_{1} \times X_{2}=\left\{\left(x_{1}, x_{2}\right) \mid x_{1} \in X_{1}, x_{2} \in X_{2}\right\}
$$

by $\left(x_{1}, x_{2}\right) T\left(x_{1}^{\prime}, x_{2}^{\prime}\right)$ if and only if $x_{1} \leq_{1} x_{1}^{\prime}$ and $x_{2} \leq_{2} x_{2}^{\prime}$. Prove that $\left(X_{1} \times X_{2}, T\right)$ is a partially ordered set. $\left(X_{1} \times X_{2}, T\right)$ is called the direct product of $\left(X_{1}, \leq_{1}\right)$ and $\left(X_{2}, \leq_{2}\right)$ and is also denoted by $\left(X_{1}, \leq_{1}\right) \times\left(X_{2}, \leq_{2}\right)$. More generally, prove that the direct product $\left(X_{1}, \leq_{1}\right) \times\left(X_{2}, \leq_{2}\right) \times \cdots \times\left(X_{m}, \leq_{m}\right)$ of partially ordered sets is also a partially ordered set.
9. Let (J, \leq) be the partially ordered set with $J=\{0,1\}$ and with $0<1$. By identifying the combinations of a set X of n elements with the n-tuples of 0 's and 1 's, prove that the partially ordered set X, \subseteq) can be identified with the n-fold direct product $(J, \leq) \times(J, \leq) \times \cdots \times(J, \leq)(n$ factors $)$.

Supplementary Exercises

1. Find the number of ways to select m numbers from $\{1,2, \ldots, n\}$ so that no two numbers are consecutive.

Method 1. Let $a_{1}, a_{2}, \ldots, a_{m}$ be such a selection and $a_{1}<a_{2}<\cdots<a_{m}$. Let k_{i} be the number of integers between a_{i-1} and a_{i}, where $1 \leq i \leq m+1, a_{0}=0$ and $a_{m+1}=n+1$. Then the answer is equal to the number of integral solutions of

$$
k_{1}+k_{2}+\cdots+k_{m+1}=n-m
$$

satisfying $k_{1} \geq 0, k_{i} \geq 1$ for $2 \leq i \leq m$, and $k_{m+1} \geq 0$. This is equivalent to finding the number of nonnegative integral solutions of the equation

$$
x_{1}+x_{2}+\cdots+x_{m+1}=n-m-(m-1)=n-2 m+1 .
$$

Then the answer is

$$
\left\langle\begin{array}{c}
m+1 \\
n-2 m+1
\end{array}\right\rangle=\binom{n-m+1}{n-2 m+1}=\binom{n-m+1}{m} .
$$

Method 2. Let $a_{1}, a_{2}, \ldots, a_{m}$ be such a selection and $a_{1}<a_{2}<\cdots<a_{m}$. If $a_{m} \neq n$, we change each pair $\left\{a_{i}, a_{i}+1\right\}$ to a domino and any other number in $\{1,2, \ldots, n\}$ to a square. Then the selection $\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}$ can be viewed as a permutation of dominoes and squares with exactly m dominoes and $n-2 m$ squares. There are

$$
\binom{n-m}{m}
$$

such permutations.
If $a_{m}=n$, then $a_{m-1} \neq n-1$. This is equivalent to selecting $m-1$ integers from $\{1,2, \ldots, n-1\}$ such that no two numbers are consecutive and the last number $n-1$ is not selected. There are

$$
\binom{n-1-(m-1)}{m-1}=\binom{n-m}{m-1}
$$

such selections. Therefore, the answer is to the question

$$
\binom{n-m}{m}+\binom{n-m}{m-1}=\binom{n-m+1}{m} .
$$

2. A move of a permutation of $\{1,2, \ldots, n\}$ is to take an integer in the permutation and insert it somewhere in the permutation. For example,

$$
\begin{aligned}
& 352614 \rightarrow 352146 \rightarrow 321456 \rightarrow 213456 \rightarrow 123456 ; \\
& 352614 \rightarrow 352146 \rightarrow 321456 \rightarrow 342156 \rightarrow 134256 \rightarrow 123456 .
\end{aligned}
$$

Give an algorithm to compute the minimal number of moves to restore an arbitrary permutation of $\{1,2, \ldots, n\}$ back to the form $12 \cdots n$.

Solution. For any permutation $a_{1} a_{2} \cdots a_{n}$ of $\{1,2, \ldots, n\}$, we denote by $\delta\left(a_{1} a_{2} \cdots a_{n}\right)$ the minimal number of moves required to change it back to $12 \cdots n$. Let $n=a_{k}$ for some k. Notice the following observation: If n must be moved in order to change the permutation back to $12 \cdots n$, then

$$
\delta\left(a_{1} a_{2} \cdots a_{k} \cdots a_{n}\right)=\delta\left(a_{1} a_{2} \cdots a_{k-1} a_{k+1} \cdots a_{n}\right)+1 ;
$$

if n is not necessarily moved to change the permutation back to $12 \cdots n$, then the numbers a_{k+1}, \ldots, a_{n} must be moved in order to make n in the last position.

In the latter case, we observe that the moves of the numbers a_{k+1}, \ldots, a_{n} do not change the relative positions of the numbers $a_{1}, a_{2}, \ldots, a_{k-1}$ in the permutation $a_{1} a_{2} \cdots a_{k-1}$. Since the minimal number of moves required to sort $a_{1} a_{2} \cdots a_{k-1}$ is $\delta\left(a_{1} a_{2} \cdots a_{k-1}\right)$, we have

$$
\delta\left(a_{1} a_{2} \cdots a_{k} \cdots a_{n}\right)=\delta\left(a_{1} a_{2} \cdots a_{k-1}\right)+n-k .
$$

Therefore, if $n=a_{k}$, then we obtain the following recurrence relation

$$
\delta\left(a_{1} a_{2} \cdots a_{k} \cdots a_{n}\right)=\min \left\{\delta\left(a_{1} a_{2} \cdots a_{k-1} a_{k+1} \cdots a_{n}\right)+1, \delta\left(a_{1} a_{2} \cdots a_{k-1}\right)+n-k\right\} .
$$

For example, for the permutation 352614,

$$
\begin{aligned}
\delta(352614) & =\min \{\delta(35214)+1, \delta(352)+2\} \\
& =\min \{\delta(3214)+2, \delta(3)+4, \delta(32)+3, \delta(3)+3\}=3 .
\end{aligned}
$$

In fact, the following specific moves sort the permutation:

$$
352614 \rightarrow 135264 \rightarrow 134526 \rightarrow 123456 .
$$

Note that the number 6 should not be moved; otherwise 4 moves are required to sort the permutation. However, the number 6 must be moved in the permutation 136452 to achieve minimality:

$$
\begin{aligned}
\delta(126453) & =\min \{\delta(12453)+1, \delta(12)+3\} \\
& =\min \{\delta(1243)+2, \delta(124)+1+1,3\}=2 .
\end{aligned}
$$

The actual two moves can be taken as $126453 \rightarrow 124536 \rightarrow 123456$.

