Homework 3

Chapter 5, pp.153: 11, 12, 22, 31, 40, 45.
Chapter 6, p.185: 4, 11, 16, 24, 30.

1. Use combinatorial reasoning to prove the identity
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Proof. Let S be a set of n elements, and let a, b, ¢ be distinct elements of S. The number of k-subsets of S is

(Z), and the number of k-subsets of S —{a,b,c} is (";3) Then the LHS is the number of k-subsets of S that

contains at least of the elements of {a,b,c}. Such k-subsets can be divided into 3 types: (1) the k-subsets
that contain the element a; (2) the k-subsets that do not contain a but contain b; and (3) the k-subsets that
do not contain a, b but contain c¢. The numbers k-subsets of type (1), type (2), type (3) are

n—1 n—2 n—3
k—-1)’ k—1)’ k—1
respectively. The sum of these numbers is exactly the RHS. O

2. Let n be a positive integer. Prove that
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Proof. Consider the expansion of (1 + z)"(1 — 2)" = (1 — 22)". On the one hand,
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Then the coefficient of 2™ in the product X7 () z'] [D°7(—1)7 () a7] is given by
> e (1) =2en ()
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which is exactly the LHS. On the other hand,
2n _ - e (TN 26
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There are only even terms in the expansion. Thus the coefficient of 2" is zero if n is odd; and the coefficient
of z™is (—1)™ (2;:) if n = 2m is even. O



3. Prove that for all real numbers o and all integers k and n,
o} n\ [« a—Fk
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Proof. For n < k, the LHS is zero because (Z) = 0. The RHS is also zero because (g::) = 0 by definition.

For n > k, we divide the situation into the following cases:

If k > 1, then
afla—1)---(a—n+1) n!
LHS = nl Ckl(n— k)
_ a(a—l)---(a—k+1).(a—k’)(a—k—l)-'-(a—n—i-l)
k! (n—k)!
= RHS.

If k = 0, then both LHS and RHS are both equal to (&) because () = () =1 by definition.
If £ < —1, then both LHS and RHS are both equal to zero because (Z) = (%) = 0 by definition. O

4. In a partition of the power set P(S) of S = {1,2,...,n} into symmetric chains, find a formula for the number
of chains of size 1, size 2, and size k, respectively.

Solution. We claim that the number of symmetric chains of size larger than k is

<[(n +nk)/21) '

Consider a symmetric chain

A1CA2C"'CA1

of size [ > k + 1. Since
[Ar] + [Ai] =2[A [ +1-1=n,

we have 11 .
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This means that each symmetric chain of length at leat k£ + 1 contains exactly one L";kJ—subset and exactly
one [%*ﬂ—subset of S. Conversely, since
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_ —k
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then any symmetric chain that contains one L”ng—subset and one [T] -subset must contain at leat k + 1

subsets. We thus conclude that the number of symmetric chains of size larger than k is

( [(n +nk>/2w ) B ( [(n —nk)/2J ) '

It is clear that the number of symmetric chains of size k (k > 1) is

([(n+kn— 1)/21) - <[(n +nk)/21> '



5. Assume the expansion formula

1 [e.9]
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l—z:E 2", |z| < 1.
k=0

Prove by induction on n the following expansion formula
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Proof. For n =1, it is obviously true because ("ﬂlzfl) = (Z) = 1. For n > 2, suppose
k
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Note that for k >0 and [ > 1,

()= () e ()

‘We thus have

6. Consider the partially ordered set {1,2,...,12} whose partial order is the divisibility.

(a) Determine a chain of largest size, and a partition of {1,2,...,12} into the smallest number of antichains.

(b) Determine an antichain of largest size, and a partition of {1,2,...,12} into the smallest number of chains.
(a) An antichain partition with four antichains: {1}, {2,3,5,7,11}, {4,6,10}, {8,9,12}.
There is one chain of length four: {1,2,4,8}.
(b) A chain partition with six chains: {1,2,4, 8}, {3,6,12}, {5,10}, {7}, {9}, {11}.
There are several antichains of largest size. For instance, {2,6,5,7,9,11}, {4,6,5,7,9,11}, {4,6,7,9,11,10}.



7. Determine the number of 12-combinations of the multiset {4a, 3, 4c, 5d}.

Solution. Let S be the set of permutations of the multiset M = {ocoa, cob, coc, 00d}. Aj, Ag, Az, Ay be the
sets of permutations of M such that the number of a’s are more than 4, the number of b’s are more than 3,
the number of ¢’s are more than 4, and the number of d’s are more than 5, respectively. Then

si= ()= (e 1) = (3g)
\A1|=|A3\=<141> (4“11) <)
w=()= ()= (5)
A= () - (4“0_1) (1)
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|A1 N A3| = |A2 N A4
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By the inclusion-exclusion formula, the answer is given by

(12> ) [2 (E) " (E) ! Gi)] i [(170> i <§> * (2)} —(10+2-441) +0.

8. Determine the number of permutations of {1,2,...,8} in which no even integer is in its natural position.

Solution. Let S be the set of all permutations of {1,2,...,8}. The even integers in {1,2,...,8} are 2,4,6,8.
Let Ay, As, A, A4 be the sets of permutations that 2,4,6,8 are fixed respectively. Then

S| = 8!,
|A; = |Ag| = |A3 = |Ay4| =T,
A, NAj|=6!, (1<i<j<8),
|A1 N Aa N Azl = A1 N AN Ayl = A1 NA3N Ay| = |A2 N Az N Ayl = 5!,
|A1 N Ay N Az N Ay| = 4.
Thus by the inclusion-exclusion formulas, the answer is given by

8 —4 xT7'+6x6!—4 x5 +4!.



9.

10.

Using combinatorial reasoning to prove the identity

0SS (o3 () o

Proof. Let S be the set of all permutations of {1,2,...,n}. Let Ay be the set of all permutations that k
integers are fixed at their positions. Then |S| = n! and |Ax| = (Z) D,,_r. The identity follows from the
disjoint union S = (Jj_, A- O

What is the number of ways to place six non-attacking rooks on the 6-by-6 boards with forbidden positions
as shown?

(a)

X | X
X | X
X | X
(b)
X | X
X | X
X | X
X | X
X | X
X | X
()
X | X
X | X
X
X | X
X

Recall that the number R, (C) of ways to place n non-attacking rooks on the n-by-n board C' with forbidden

positions is given by
n

Ry (C) = ) (=) ri(C)(n — k),

k=0
where 7 (C) is the number of ways to place k non-attacking rooks on the board C. In all three cases, n = 6.

(a) Sincerg=1,7r1 =6, 190 =3x2x2=12,r3=2x2x2=8, 14 =715 =rg =0, then

Rg(C) = 6! — 6 x 5! + 12 x 4! — 8 x 3.

(b) Since the rook polynomial

R(C,z) = (1+4z+ 23:2)3
= (1+8z+202% + 162° + 42*) (1 + 4z + 227)
= 14 12z + 542% 4 10227 + 442 + 4825 + 825,

then rg = 1, 71 = 12, ro = 54, r3 = 102, r4 = 44, r5 = 48, and rg = 8. Thus

Rs(C)=6!—12 x 5! +54 x 41 — 102 x 3! + 44 x 2! —48 x 11+ 8 x 0!



(c) Since the rook polynomial
R(C,x) = (1+ 5z + 62” + 2°) (14 3z + 2%) = 1+ 8z + 222 + 242° 4 92 + 2°,
thenrg=1,r1=8,19=22,1r3=24, 714 =9, 75 =1, 14 = 0. Thus

Re(C) = 6! — 8 x 51 +22 x 41 — 24 x 31 + 9 x 2! — 1.

11. How many circular permutations are there of the multiset
{2a, 3b, 4c, 5d}
so that the elements of the same type are not all consecutively together?
Solution. Let S be the set of all circular permutations of M = {2a, 3b,4c,5d}. Then

13!
191 = S

Let Ay, As, Az, and A4 be the sets of circular permutations that the type a, the type b, the type ¢, and the
type d elements are consecutively together respectively. Then

12! 11! 10! 9!
A= el = s Ml = o 144 = o
10! 9! ]!
8! 7! 6!
‘AQHAS‘:T5V ‘AQQA4‘:M7 ‘A3ﬂA4‘:T3!;
7! 6! 5! 41
[A1N A2 NAs| = ¢, [AiNA2NAgf =3, [AiNAsNAg| =5, [A2NAsNAdf = o

|A1 ﬂAQﬁAgﬁA4| = 3.

Thus the answer is given by

13! 12! 11! 10! 9!
51314150~ \ 314151 T 21450 T 213151 213141

10! 9! 8! 8! 7! 6! 7! 6! 5! 4! 31
T as Tam e T as Tam Tam) T\si T Ty ta) T



