## Homework 4

Chapter 7 p. 246 (3rd edition) 7, 12, 19, 22, 24, 25b,e, 26, 30, 32, 37

1. Let $a_{n}$ equal the number of different ways in which the squares of 1 -by- $n$ chessboard can be colored, using the colors red, white, and blue so that no two squares colored red are adjacent. Find and verify a recurrence relation that $a_{n}$ satisfies. Then find a formula for $a_{n}$.
2. Solve the recurrence relation $a_{n}=8 a_{n-1}-2 a_{n-2},(n \geq 2)$, with initial values $a_{0}=-1$ and $a_{1}=0$.
3. Solve the nonhomogeneous recurrence relation $a_{n}=3 a_{n-1}-2$ with $a_{0}=1$.
4. Solve the nonhomogeneous recurrence relation $a_{n}=4 a_{n-1}-4 a_{n-2}+3 n+1$ with $a_{0}=1$ and $a_{1}=2$.
5. Let $M$ be the multiset $\left\{\infty \cdot e_{1}, \infty \cdot e_{2}, \infty \cdot e_{3}, \infty \cdot e_{4}\right\}$. Determine the generating function for the sequence $\left(a_{n} ; n \geq 0\right)$, where $a_{n}$ is the number of $n$-combinations of $M$ with the additional restrictions:
(a) Each $e_{i}$ occurs an odd number of times.
(b) Each $e_{i}$ occurs a multiple-of- 3 number of times.
(c) The element $e_{1}$ does not occur, and $e_{2}$ occurs at most once.
(d) The element $e_{1}$ occurs 1,3 , or 11 times, and the element $e_{2}$ occurs 2,4 , or 5 times.
(e) Each $e_{i}$ occurs at least 10 times.
6. Solve the following recurrence relations by using the method of generating functions.
(a) $a_{n}=a_{n-1}+a_{n-2},(n \geq 2) ; a_{0}=1, a_{1}=3$.
(b) $a_{n}=3 a_{n-2}-2 a_{n-3}, n \geq 3 ; a+0=1, a_{1}=1, a_{2}=0$.
7. Solve the nonhomogeneous recurrence relation

$$
a_{n}=4 a_{n-1}+4^{n}, \quad n \geq 1 ; \quad a_{0}=3
$$

8. Determine the generating function for the number $a_{n}$ of the bags of fruit of apples, oranges, bananas, and pears in which there are an even number of apples, at most two oranges, a multiple of three number of bananas, and at most one pear. Then find the formula for $a_{n}$ from the generating function.
9. Let $a_{n}=\binom{n}{2}, n \geq 0$. Determine the generating function of $\left(a_{n} ; n \geq 0\right)$.
10. Let $M$ be the multiset $\left\{\infty \cdot e_{1}, \infty \cdot e_{2}, \ldots, \infty \cdot e_{k}\right\}$. determine the exponential generating function for the sequence ( $a_{n} ; n \geq 0$ ), where $a_{0}=1$ and for $n \geq 1$ :
(a) $a_{n}$ equals the number of $n$-permutations of $M$ in which each object occurs an odd number of times.
(b) $a_{n}$ equals the number of $n$-permutations of $M$ in which each object occurs at least four times.
(c) $a_{n}$ equals the number of $n$-permutations of $M$ in which ${ }_{1}$ occurs at least once, $e_{2}$ occurs at least twice, $\ldots, e_{k}$ occurs at least $k$ times.
(d) $a_{n}$ equals the number of $n$-permutations of $M$ in which ${ }_{1}$ occurs at most once, $e_{2}$ occurs at most twice, $\ldots, e_{k}$ occurs at most $k$ times.
11. Let $q$ be a root of the characteristic polynomial of the recurrence relation

$$
\begin{equation*}
x_{n}=\alpha_{1} x_{n-1}+\alpha_{2} x_{n-2}+\cdots+\alpha_{k} x_{n-k}, \quad n \geq k, \tag{1}
\end{equation*}
$$

where $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}$ are constants and $\alpha_{k} \neq 0$.
(a) If the multiplicity of the root $q$ is $m$, show that $x_{n}=n^{i} q^{n}$, where $0 \leq i \leq m-1$, is a solution of the recurrence relation.
(b) Prove that the solutions $q^{n}, n q^{n}, \ldots, n^{m-1} q^{n}$ are linearly independent solutions.
2. In the recurrence relation (1), let $Y_{n}=\left[y_{n, 0}, y_{n, 1}, \ldots, y_{n, k-1}\right]^{T}$, where $y_{n, i}=x_{k n+i}$. Show that the recurrence relation (1) can be changed into the following matrix recurrence relation of order 1:

$$
Y_{n}=A Y_{n-1}
$$

Find possible relation between the roots of the characteristic polynomial of (1) and the eigenvalues of the matrix $A$.

Chapter 8, pp.290: 2, 6, 7, 12, 15, 19, 25, 29

1. Prove that the number of 2 -by- $n$ arrays

$$
\left[\begin{array}{llll}
x_{11} & x_{12} & \cdots & x_{1 n} \\
x_{21} & x_{22} & \cdots & x_{2 n}
\end{array}\right]
$$

that can be made from the numbers $1,2, \ldots, 2 n$ so that

$$
x_{11}<x_{12}<\cdots<x_{1 n}, \quad x_{21}<x_{22}<\cdots<x_{2 n}
$$

and

$$
x_{11}<x_{21}, \quad x_{12}<x_{22}, \quad \ldots, \quad x_{1 n}<x_{2 n}
$$

equals the $n$th Catalan number $C_{n}$.
2. Let $m$ and $n$ be the non-negative integers with $m \leq n$. There are $m+n$ people in line to get into a theater for which admission is 5 dollars. Of the $m+n$ people, $n$ have a 5 dollar single coin $m$ have a 10 dollar bill. The box office opens with an empty cash register. Show that the number of ways the people can line up so that change is available when needed is

$$
\frac{n-m+1}{n+1}\binom{m+n}{m} .
$$

3. Let $\left(a_{n} ; n \geq 0\right)$ be defined by $a_{n}=2 n^{2}-n+3$. Determine the difference table of ( $\left.a_{n} ; \geq 0\right)$; and find a formula for $\sum_{k=0}^{n} a_{k}$.
4. Show that the Stirling numbers of the second kind satisfy the relation:
(a) $S(n, 1)=1$ for $n \geq 1$;
(b) $S(n, 2)=2^{n-1}-1$ for $n \geq 2$;
(c) $S(n, n-1)=\binom{n}{2}$ for $n \geq 1$;
(d) $S(n, n-2)=\binom{n}{3}+3\binom{n}{4}$.
5. The number of partitions of a set of $n$ elements into $k$ distinguishable boxes (some of which may be empty) is $k^{n}$. By counting in a different way prove that

$$
k^{n}=\sum_{i=1}^{n}\binom{k}{i} i!S(n, i) .
$$

6. Show that the Stirling numbers of the first kind satisfy
(a) $S(n, 1)=(n-1)!, n \geq 1$.
(b) $S(n, n-1)=\binom{n}{2}, n \geq 1$.
7. Let $a_{1}, a_{2}, \ldots, a_{m}$ be distinct positive integers, and let $q_{n}=q_{n}\left(a_{1}, a_{2}, \ldots, a_{m}\right)$ be equal to the number of partitions of $n$ in which all parts are taken from $a_{1}, a_{2}, \ldots, a_{m}$. Define $q_{0}=1$. Show that the generating function for $q_{1}, q_{2}, \ldots, q_{n}, \ldots$ is

$$
\prod_{k=1}^{m} \frac{1}{\left(1-x^{t_{k}}\right)}
$$

8. Evaluation $h_{k-1}^{(k)}$, the number of regions into which $k$-dimensional spaces is partitioned by $k-1$ hyperplanes in general position.
