Week 6-8: The Inclusion-Exclusion Principle

March 27, 2019

1 The Inclusion-Exclusion Principle

Let S be a finite set. Given subsets A, B, C of S, we have

$$
\begin{aligned}
& |A \cup B|=|A|+|B|-|A \cap B|, \\
|A \cup B \cup C|= & |A|+|B|+|C|-|A \cap B|-|A \cap C|-|B \cap C| \\
& +|A \cap B \cap C| .
\end{aligned}
$$

Let $P_{1}, P_{2}, \ldots, P_{n}$ be properties referring to the objects in S. Let A_{i} denote the subset of S whose elements satisfy the property P_{i}, i.e.,

$$
A_{i}=\left\{x \in S: x \text { satisfies property } P_{i}\right\}, \quad 1 \leq i \leq n
$$

The elements of A_{i} may possibly satisfy some properties other than P_{i}. In many occasions we need to find the number of objects satisfying none of the properties $P_{1}, P_{2}, \ldots, P_{n}$.
Theorem 1.1. The number of objects of S which satisfy none of the properties $P_{1}, P_{2}, \ldots, P_{n}$ is given by

$$
\begin{align*}
\left|\bar{A}_{1} \cap \bar{A}_{2} \cap \cdots \cap \bar{A}_{n}\right|= & |S|-\sum_{i}\left|A_{i}\right|+\sum_{i<j}\left|A_{i} \cap A_{j}\right|-\sum_{i<j<k}\left|A_{i} \cap A_{j} \cap A_{k}\right| \\
& +\cdots+(-1)^{n}\left|A_{1} \cap A_{2} \cap \cdots \cap A_{n}\right| . \tag{1}
\end{align*}
$$

Proof. The left side of (1) counts the number of objects of S with none of the properties. We establish the identity (1) by showing that an object with none of the properties makes a net contribution of 1 to the right side of (1), and for an object with at least one of the properties makes a net contribution of 0 .

Recall the indicator function 1_{A} of a subset $A \subseteq S$ is defined by $1_{A}(x)=1$ if $x \in A$ and $1_{A}(x)=0$ if $x \notin A$. We actually prove the following function identity:

$$
1_{\bar{A}_{1} \cap \bar{A}_{2} \cap \cdots \cap \bar{A}_{n}}=1_{S}-\sum_{k=1}^{n}(-1)^{k} \sum_{i_{1}<\cdots<i_{k}} 1_{A_{i_{1}} \cap \cdots \cap A_{i_{k}}} .
$$

Let x be an object satisfying none of the properties. Then the net contribution of x to the right side of (1) is

$$
1-0+0-0+\cdots+(-1)^{n} 0=1 .
$$

Let x be an object of S satisfying exactly r properties of $P_{1}, P_{2}, \ldots, P_{n}$, where $r>0$. The net contribution of x to the right side of (1) is

$$
\binom{r}{0}-\binom{r}{1}+\binom{r}{2}-\binom{r}{3}+\cdots+(-1)^{r}\binom{r}{r}=(1-1)^{r}=0 .
$$

Corollary 1.2. The number of objects of S which satisfy at least one of the properties $P_{1}, P_{2}, \ldots, P_{n}$ is given by

$$
\begin{align*}
\left|A_{1} \cup A_{2} \cup \cdots \cup A_{n}\right|= & \sum_{i}\left|A_{i}\right|-\sum_{i<j}\left|A_{i} \cap A_{j}\right|+\sum_{i<j<k}\left|A_{i} \cap A_{j} \cap A_{k}\right| \\
& -\cdots+(-1)^{n+1}\left|A_{1} \cap A_{2} \cap \cdots \cap A_{n}\right| . \tag{2}
\end{align*}
$$

Proof. Note that the set $A_{1} \cup A_{2} \cup \cdots \cup A_{n}$ consists of all those objects in S which possess at least one of the properties, and

$$
\left|A_{1} \cup A_{2} \cup \cdots \cup A_{n}\right|=|S|-\left|\overline{A_{1} \cup A_{2} \cup \cdots \cup A_{n}}\right| .
$$

Then by the DeMorgan law we have

$$
\overline{A_{1} \cup A_{2} \cup \cdots \cup A_{n}}=\bar{A}_{1} \cap \bar{A}_{2} \cap \cdots \cap \bar{A}_{n} .
$$

Thus

$$
\left|A_{1} \cup A_{2} \cup \cdots \cup A_{n}\right|=|S|-\left|\bar{A}_{1} \cap \bar{A}_{2} \cap \cdots \cap \bar{A}_{n}\right| .
$$

Putting this into the identity (1), the identity (2) follows immediately.

2 Combinations with Repetition

Given a multiset M and fix an object x, whose repetition number is larger than r. Let M^{\prime} be the multiset whose objects have the same repetition numbers as those objects in M, except that x repeats exactly r times. Then

$$
\#\{r \text {-combinations of } M\}=\#\left\{r \text {-combinations of } M^{\prime}\right\} .
$$

Example 2.1. Determine the number of 10 -combinations of the multiset

$$
M^{\prime}=\{3 a, 4 b, 5 c\} .
$$

Let S be the set of 10 -combinations of the multiset $M=\{\infty a, \infty b, \infty c\}$. Let P_{1}, P_{2}, and P_{3} be the properties that a 10 -combination of M^{\prime} has more than 3 a^{\prime} 's, $4 b$'s, and $5 c^{\prime}$'s, respectively. Then the number of 10 -combinations of M^{\prime} is the number of 10 -combinations of M which have none of the properties P_{1}, P_{2}, and P_{3}. Let A_{i} denote the sets consisting of the 10 -combinations of M which have the property $P_{i}, 1 \leq i \leq 3$. By the Inclusion-Exclusion Principle, the number to be determined is

$$
\begin{aligned}
\left|\bar{A}_{1} \cap \bar{A}_{2} \cap \bar{A}_{3}\right|= & |S|-\left(\left|A_{1}\right|+\left|A_{2}\right|+\left|A_{3}\right|\right)+\left(\left|A_{1} \cap A_{2}\right|+\left|A_{1} \cap A_{3}\right|\right. \\
& \left.+\left|A_{2} \cap A_{3}\right|\right)-\left|A_{1} \cap A_{2} \cap A_{3}\right| .
\end{aligned}
$$

Note that

$$
\begin{aligned}
|S| & =\left\langle\begin{array}{l}
3 \\
10
\end{array}\right\rangle=\binom{3+10-1}{10}=\binom{12}{10}=66, \\
\left|A_{1}\right| & =\left\langle\left\langle\begin{array}{c}
3 \\
6
\end{array}\right\rangle=\binom{3+6-1}{6}=\binom{8}{6}=28,\right. \\
\left|A_{2}\right| & =\left\langle\begin{array}{c}
3 \\
5
\end{array}\right\rangle=\binom{3+5-1}{5}=\binom{7}{5}=21, \\
\left|A_{3}\right| & =\left\langle\begin{array}{c}
3 \\
4
\end{array}\right\rangle=\binom{3+4-1}{4}=\binom{6}{4}=15, \\
\left|A_{1} \cap A_{2}\right| & =\left\langle\begin{array}{l}
3 \\
1
\end{array}\right\rangle=\binom{3+1-1}{1}=\binom{3}{1}=3, \\
\left|A_{1} \cap A_{3}\right| & =\left\langle\begin{array}{c}
3 \\
0
\end{array}\right\rangle=\binom{3+0-1}{0}=\binom{2}{0}=1, \\
\left|A_{2} \cap A_{3}\right| & =0, \\
\left|A_{1} \cap A_{2} \cap A_{3}\right| & =0 .
\end{aligned}
$$

Putting all these results into the inclusion-exclusion formula, we have

$$
\left|\bar{A}_{1} \cap \bar{A}_{2} \cap \bar{A}_{3}\right|=66-(28+21+15)+(3+1+0)-0=6 .
$$

The six 10 -combinations are
$\{3 a, 4 b, 3 c\},\{3 a, 3 b, 4 c\},\{3 a, 2 b, 5 c\},\{2 a, 4 b, 4 c\},\{2 a, 3 b, 5 c\},\{a, 4 b, 5 c\}$.
Example 2.2. Find the number of integral solutions of the equation

$$
x_{1}+x_{2}+x_{3}+x_{4}=15
$$

which satisfy the conditions

$$
2 \leq x_{1} \leq 6, \quad-2 \leq x_{2} \leq 1, \quad 0 \leq x_{3} \leq 6, \quad 3 \leq x_{4} \leq 8 .
$$

Let $y_{1}=x_{1}-2, y_{2}=x_{2}+2, y_{3}=x_{3}$, and $y_{4}=x_{4}-3$. Then the problem becomes to find the number of nonnegative integral solutions of the equation

$$
y_{1}+y_{2}+y_{3}+y_{4}=12
$$

subject to

$$
0 \leq y_{1} \leq 4, \quad 0 \leq y_{2} \leq 3, \quad 0 \leq y_{3} \leq 6, \quad 0 \leq y_{4} \leq 5 .
$$

Let S be the set of all nonnegative integral solutions of the equation $y_{1}+$ $y_{2}+y_{3}+y_{4}=12$. Let P_{1} be the property that $y_{1} \geq 5, P_{2}$ the property that $y_{2} \geq 4, P_{3}$ the property that $y_{3} \geq 7$, and P_{4} the property that $y_{4} \geq 6$. Let A_{i} denote the subset of S consisting of the solutions satisfying the property P_{i}, $1 \leq i \leq 4$. Then the problem is to find the cardinality $\left|\bar{A}_{1} \cap \bar{A}_{2} \cap \bar{A}_{3} \cap \bar{A}_{4}\right|$ by the inclusion-exclusion principle. In fact,

$$
|S|=\left\langle\begin{array}{c}
4 \\
12
\end{array}\right\rangle=\binom{4+12-1}{12}=\binom{15}{12}=455 .
$$

Similarly,

$$
\begin{aligned}
& \left|A_{1}\right|=\left\langle\begin{array}{l}
4 \\
7
\end{array}\right\rangle=\binom{4+7-1}{7}=\binom{10}{7}=120, \\
& \left|A_{2}\right|=\left\langle\begin{array}{l}
4 \\
8
\end{array}\right\rangle=\binom{4+8-1}{8}=\binom{11}{8}=165, \\
& \left|A_{3}\right|=\left\langle\begin{array}{l}
4 \\
5
\end{array}\right\rangle=\binom{4+5-1}{5}=\binom{8}{5}=56, \\
& \left|A_{4}\right|=\left\langle\begin{array}{l}
4 \\
6
\end{array}\right\rangle=\binom{4+6-1}{6}=\binom{9}{6}=84 .
\end{aligned}
$$

For the intersections of two sets, we have

$$
\left|A_{1} \cap A_{2}\right|=\left\langle\begin{array}{l}
4 \\
3
\end{array}\right\rangle=\binom{4+3-1}{3}=\binom{6}{3}=20
$$

$\left|A_{1} \cap A_{3}\right|=1, \quad\left|A_{1} \cap A_{4}\right|=\left|A_{2} \cap A_{3}\right|=4, \quad\left|A_{2} \cap A_{4}\right|=10, \quad\left|A_{3} \cap A_{4}\right|=0$. For the intersections of more sets,

$$
\begin{aligned}
\left|A_{1} \cap A_{2} \cap A_{3}\right| & =\left|A_{1} \cap A_{2} \cap A_{4}\right|=\left|A_{1} \cap A_{3} \cap A_{4}\right| \\
& =\left|A_{2} \cap A_{3} \cap A_{4}\right|=\left|A_{1} \cap A_{2} \cap A_{3} \cap A_{4}\right|=0 .
\end{aligned}
$$

Thus the number required is given by

$$
\left|\bar{A}_{1} \cap \bar{A}_{2} \cap \bar{A}_{3} \cap \bar{A}_{4}\right|=455-(120+165+56+84)+(20+1+4+4+10)=69 .
$$

3 Derangements

A permutation of $\{1,2, \ldots, n\}$ is called a derangement if every integer i $(1 \leq i \leq n)$ is not placed at the i th position. We denote by D_{n} the number of derangements of $\{1,2, \ldots, n\}$.

Let S be the set of all permutations of $\{1,2, \ldots, n\}$. Then $|S|=n!$. Let P_{i} be the property that a permutation of $\{1,2, \ldots, n\}$ has the integer i in its i th position, and let A_{i} be the set of all permutations satisfying the property P_{i}, where $1 \leq i \leq n$. Then

$$
D_{n}=\left|\bar{A}_{1} \cap \bar{A}_{2} \cap \cdots \cap \bar{A}_{n}\right|
$$

For each $\left(i_{1}, i_{2}, \ldots, i_{k}\right)$ such that $1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n$, a permutation of $\{1,2, \ldots, n\}$ with $i_{1}, i_{2}, \ldots, i_{k}$ fixed at the i_{1} th, i_{2} th, \ldots, i_{k} th position respectively can be identified as a permutation of the set $\{1,2, \ldots, n\}-\left\{i_{1}, i_{2}, \ldots, i_{k}\right\}$ of $n-k$ objects. Thus

$$
\left|A_{i_{1}} \cap A_{i_{2}} \cap \cdots \cap A_{i_{k}}\right|=(n-k)!
$$

By the inclusion-exclusion principle, we have

$$
\begin{aligned}
\left|\bar{A}_{1} \cap \bar{A}_{2} \cap \cdots \cap \bar{A}_{n}\right| & =|S|+\sum_{k=1}^{n}(-1)^{k} \sum_{i_{1}<i_{2}<\cdots<i_{k}}\left|A_{i_{1}} \cap A_{i_{2}} \cap \cdots \cap A_{i_{k}}\right| \\
& =n!+\sum_{k=1}^{n}(-1)^{k} \sum_{i_{1}<i_{2}<\cdots<i_{k}}(n-k)! \\
& =\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}(n-k)! \\
& =n!\sum_{k=0}^{n} \frac{(-1)^{k}}{k!} \simeq \frac{n!}{e} \quad \text { (when } n \text { is large.) }
\end{aligned}
$$

Theorem 3.1. For $n \geq 1$, the number D_{n} of derangements of $\{1,2, \ldots, n\}$ is

$$
\begin{equation*}
D_{n}=n!\left(1-\frac{1}{1!}+\frac{1}{2!}-\frac{1}{3!}+\cdots+(-1)^{n} \frac{1}{n!}\right) . \tag{3}
\end{equation*}
$$

Here are a few derangement numbers:

$$
D_{0} \equiv 1, \quad D_{1}=0, \quad D_{2}=1, \quad D_{3}=2, \quad D_{4}=9, \quad D_{5}=44 .
$$

Corollary 3.2. The number of permutations of $\{1,2, \ldots, n\}$ with exactly k numbers displaced is

$$
\binom{n}{n-k} D_{k}=\binom{n}{k} D_{k} .
$$

Proposition 3.3. The derangement sequence D_{n} satisfies the recurrence relation

$$
D_{n}=(n-1)\left(D_{n-1}+D_{n-2}\right), \quad n \geq 3
$$

with the initial condition $D_{1}=0, D_{2}=1$. The sequence D_{n} satisfies the recurrence relation

$$
D_{n}=n D_{n-1}+(-1)^{n}, \quad n \geq 2 .
$$

Proof. The recurrence relations can be proved without using the formula (3). Let S_{k} denote the set of derangements of $\{1,2, \ldots, n\}$ having the pattern $k a_{2} a_{3} \cdots a_{n}$, where $k=2,3, \ldots, n$. We may think of $a_{2} a_{3} \ldots a_{n}$ as a permutation of $\{2, \ldots, k-1,1, k+1, \ldots, n\}$ with respect to the order

$$
23 \cdots(k-1) 1(k+1) \cdots n .
$$

The derangements of S_{k} can be partitioned into two types:

$$
k a_{2} a_{3} \cdots a_{k} \cdots a_{n}\left(a_{k} \neq 1\right) \quad \text { and } \quad k a_{2} a_{3} \cdots a_{k-1} 1 a_{k+1} \cdots a_{n} .
$$

The first type can be considered as permutations of $k 23 \ldots(k-1) 1(k+1) \ldots n$ such that the first member is fixed and no one is placed in its original place for other members. The number of such permutations is D_{n-1}. The second type can be considered as permutations of $k 23 \ldots(k-1) 1(k+1) \ldots n$ such that the first and the k th members are fixed, and no one is placed in its original place for other members. The number of such permutations is D_{n-2}. We thus obtain the recurrence relation

$$
D_{n}=(n-1)\left(D_{n-1}+D_{n-2}\right), \quad n \geq 3 .
$$

Let us rewrite the recurrence relation as

$$
D_{n}-n D_{n-1}=-\left(D_{n-1}-(n-1) D_{n-2}\right), \quad n \geq 3 .
$$

Applying this recurrence relation continuously, we have

$$
D_{n}-n D_{n-1}=(-1)^{i}\left(D_{n-i}-(n-i) D_{n-i-1}\right), \quad 1 \leq i \leq n-2 .
$$

Thus $D_{n}-n D_{n-1}=(-1)^{n-2}\left(D_{2}-D_{1}\right)=(-1)^{n}$. Hence $D_{n}=n D_{n-1}+$ $(-1)^{n}$.

4 Surjective Functions

Let X be a set of m objects and Y a set of n objects. Then the number of functions of X to Y is n^{m}. The number of injective functions from X to Y is

$$
\binom{n}{m} m!=P(n, m)
$$

Let $C(m, n)$ denote the number of surjective functions from X to Y. What is $C(m, n)$?
Theorem 4.1. The number $C(m, n)$ of surjective functions from a set of m objects to a set of n objects is given by

$$
C(m, n)=\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}(n-k)^{m} .
$$

Proof. Let S be the set of all functions of X to Y. Write $Y=\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$. Let A_{i} be the set of all functions f such that y_{i} is not assigned to any element of X by f, i.e., $y_{i} \notin f(X)$, where $1 \leq i \leq n$. Then

$$
C(m, n)=\left|\bar{A}_{1} \cap \bar{A}_{2} \cap \cdots \cap \bar{A}_{n}\right| .
$$

For each $\left(i_{1}, i_{2}, \ldots, i_{k}\right)$ such that $1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n$, the intersection

$$
A_{i_{1}} \cap A_{i_{2}} \cap \cdots \cap A_{i_{k}}
$$

can be identified to the set of functions f from X to the set $Y \backslash\left\{y_{i_{1}}, y_{i_{2}}, \ldots, y_{i_{k}}\right\}$. Thus

$$
\left|A_{i_{1}} \cap A_{i_{2}} \cap \cdots \cap A_{i_{k}}\right|=(n-k)^{m} .
$$

By the Inclusion-Exclusion Principle, we have

$$
\begin{aligned}
\left|\bar{A}_{1} \cap \bar{A}_{2} \cap \cdots \cap \bar{A}_{n}\right| & =|S|+\sum_{k=1}^{n}(-1)^{k} \sum_{i_{1}<i_{2}<\cdots<i_{k}}\left|A_{i_{1}} \cap A_{i_{2}} \cap \cdots \cap A_{i_{k}}\right| \\
& =n^{m}+\sum_{k=1}^{n}(-1)^{k} \sum_{i_{1}<i_{2}<\cdots<i_{k}}(n-k)^{m} \\
& =\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}(n-k)^{m} .
\end{aligned}
$$

Note that $C(m, n)=0$ for $m<n$; we have

$$
\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}(n-k)^{m}=0 \quad \text { if } \quad m<n
$$

Corollary 4.2. For integers $m, n \geq 1$,

$$
\sum_{\substack{i_{1}+\ldots+i_{n}=m \\ i_{1}, \ldots, i_{n} \geq 1}}\binom{m}{i_{1}, \ldots, i_{n}}=\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}(n-k)^{m} .
$$

Proof. The integer $C(m, n)$ can be interpreted as the number of ways to place objects of X into n distinct boxes so that no box is empty. Let the 1st box be placed i_{1} objects, \ldots, the nth box be placed i_{n} objects; then $i_{1}+\cdots+i_{n}=m$.

The number of placements of X into n distinct boxes, such that the 1st box contains exactly i_{1} objects, \ldots, the nth box contains exactly i_{n} objects, is $\frac{m!}{i_{1}!\cdots i_{n}!}$, which is the multinomial coefficient $\binom{m}{i_{1}, \ldots, i_{n}}$. We thus have

$$
C(m, n)=\sum_{\substack{i_{1}+\cdots+i_{n}=m \\ i_{1}, \ldots, i_{n} \geq 1}}\binom{m}{i_{1}, \ldots, i_{n}}
$$

5 Euler Totient Function

Let n be a positive integer. We denote by $\phi(n)$ the number of integers of $[1, n]$ which are coprime to n, i.e., $\phi(n)=|\{k \in[1, n]: \operatorname{gcd}(k, n)=1\}|$. For example,

$$
\phi(1)=1, \quad \phi(2)=1, \quad \phi(3)=2, \quad \phi(4)=2, \quad \phi(5)=4, \quad \phi(6)=2 .
$$

The integer-valued function ϕ is defined on the set of positive integers, called the Euler phi (totient) function.

Theorem 5.1. Let n be a positive integer factorized into the form

$$
n=p_{1}^{e_{1}} p_{2}^{e_{r}} \cdots p_{r}^{e_{r}},
$$

where $p_{1}, p_{2}, \ldots, p_{r}$ are distinct primes and $e_{1}, e_{2}, \ldots, e_{r} \geq 1$. Then

$$
\phi(n)=n \prod_{i=1}^{r}\left(1-\frac{1}{p_{i}}\right) .
$$

Proof. Let $S=\{1,2, \ldots, n\}$. Let P_{i} be the property of integers in S having factor p_{i}, and let A_{i} be the set of integers in S that satisfy the property P_{i}, where $1 \leq i \leq r$. Then $\phi(n)$ is the number of integers satisfying none of the properties $P_{1}, P_{2}, \ldots, P_{r}$, i.e.,

$$
\phi(n)=\left|\bar{A}_{1} \cap \bar{A}_{2} \cap \cdots \cap \bar{A}_{r}\right| .
$$

Note that

$$
A_{i}=\left\{1 p_{i}, 2 p_{i}, \ldots,\left(\frac{n}{p_{i}}\right) p_{i}\right\}, \quad 1 \leq i \leq r .
$$

Likewise, for $q=p_{i_{1}} p_{i_{2}} \cdots p_{i_{k}}$ with $1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq r$,

$$
A_{i_{1}} \cap A_{i_{2}} \cap \cdots \cap A_{i_{k}}=\left\{1 q, 2 q, \ldots,\left(\frac{n}{q}\right) q\right\} .
$$

Thus

$$
\left|A_{i_{1}} \cap A_{i_{2}} \cap \cdots \cap A_{i_{k}}\right|=\frac{n}{q}=\frac{n}{p_{i_{1}} p_{i_{2}} \cdots p_{i_{k}}} .
$$

By the Inclusion-Exclusion Principle, we have

$$
\begin{aligned}
\left|\bar{A}_{1} \cap \cdots \cap \bar{A}_{r}\right|= & |S|+\sum_{k=1}^{r}(-1)^{k} \sum_{i_{1}<\cdots<i_{k}}\left|A_{i_{1}} \cap \cdots \cap A_{i_{k}}\right| \\
= & n+\sum_{k=1}^{r}(-1)^{k} \sum_{i_{1}<i_{2}<\cdots<i_{k}} \frac{n}{p_{i_{1}} p_{i_{2}} \cdots p_{i_{k}}} \\
= & n\left[1-\left(\frac{1}{p_{1}}+\cdots+\frac{1}{p_{r}}\right)\right. \\
& +\left(\frac{1}{p_{1} p_{2}}+\frac{1}{p_{1} p_{3}}+\cdots+\frac{1}{p_{r-1} p_{r}}\right) \\
& -\left(\frac{1}{p_{1} p_{2} p_{3}}+\frac{1}{p_{1} p_{2} p_{4}}+\cdots+\frac{1}{p_{r-2} p_{r-1} p_{r}}\right) \\
& \left.+\cdots+(-1)^{r} \frac{1}{p_{1} p_{2} \cdots p_{r}}\right] \\
= & n \prod_{i=1}^{r}\left(1-\frac{1}{p_{i}}\right) .
\end{aligned}
$$

Example 5.1. For the integer $36\left(=2^{2} 3^{2}\right)$, we have

$$
\phi(36)=36\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)=12 .
$$

The following are the twelve specific integers of $[1,36]$ that are coprime to 36 :

$$
1,5,7,11,13,17,19,23,25,29,31,35 .
$$

Corollary 5.2. For any prime number p,

$$
\phi\left(p^{k}\right)=p^{k}-p^{k-1} .
$$

Proof. The result can be directly proved without Theorem 5.1. The set $\left[1, p^{k}\right]$ has p^{k-1} integers $1 p, 2 p, \ldots p^{k-1} p$ not coprime to p^{k}. Thus $\phi\left(p^{k}\right)=p^{k}-p^{k-1}$.

Lemma 5.3. Let $m=m_{1} m_{2}$. If $\operatorname{gcd}\left(m_{1}, m_{2}\right)=1$, then we have
(i) The function $f:[m] \rightarrow\left[m_{1}\right] \times\left[m_{2}\right]$ defined by $f(a)=\left(r_{1}, r_{2}\right)$, where

$$
a=q_{1} m_{1}+r_{1}=q_{2} m_{2}+r_{2} \in[m], \quad 1 \leq r_{1} \leq m_{1}, \quad 1 \leq r_{2} \leq m_{2},
$$ is a bijection.

(ii) The restriction of f to $\{a \in[m]: \operatorname{gcd}(a, m)=1\}$ is a map to the product set

$$
\left\{a \in\left[m_{1}\right]: \operatorname{gcd}\left(a, m_{1}\right)=1\right\} \times\left\{a \in\left[m_{2}\right]: \operatorname{gcd}\left(a, m_{2}\right)=1\right\},
$$

and is also a bijection.
Proof. (i) It suffices to show that f is surjective. Since $\operatorname{gcd}\left(m_{1}, m_{2}\right)=1$, by the Euclidean Algorithm there exist integers x and y such that $x m_{1}+y m_{2}=1$.

For each $\left(r_{1}, r_{2}\right) \in\left[m_{1}\right] \times\left[m_{2}\right]$, the integer $r:=r_{2} x m_{1}+r_{1} y m_{2}$ can be written as

$$
r=\left(r_{2}-r_{1}\right) x m_{1}+r_{1}\left(x m_{1}+y m_{2}\right)=\left(r_{1}-r_{2}\right) y m_{2}+r_{2}\left(x m_{1}+y m_{2}\right) .
$$

Since $x m_{1}+y m_{2}=1$, we have

$$
r=\left(r_{2}-r_{1}\right) x m_{1}+r_{1}=\left(r_{1}-r_{2}\right) y m_{2}+r_{2} .
$$

We modify r by adding an appropriate multiple $q m$ of m to obtain

$$
a:=q m+r \text { such that } 1 \leq a \leq m .
$$

Then $a=q_{1} m_{1}+r_{1}=q_{2} m_{2}+r_{2} \in[m]$ for some integers q_{1} and q_{2}. We thus have $f(a)=\left(r_{1}, r_{2}\right)$. This shows that f is surjective. Since both $[m]$ and $\left[m_{1}\right] \times\left[m_{2}\right]$ have the same cardinality $m_{1} m_{2}$, it follows that f must be a bijection.
(ii) It follows from the fact that an integer $a \in\left[m_{1} m_{2}\right]$ is coprime to $m_{1} m_{2}$ iff a is coprime to m_{1} and coprime to m_{2}.
Theorem 5.4. For positive integers m and n such that $\operatorname{gcd}(m, n)=1$,

$$
\phi(m n)=\phi(m) \phi(n)
$$

If $n=p_{1}^{e_{1}} \cdots p_{r}^{e_{r}}$ with $e_{1}, \ldots, e_{r} \geq 1$, where p_{1}, \ldots, p_{r} are distinct primes, then

$$
\phi(n)=n \prod_{i=1}^{r}\left(1-\frac{1}{p_{i}}\right) .
$$

Proof. The first part follows from Lemma 5.3. Note that $\left[p_{i}^{e_{i}}\right]$ has $p_{i}^{e_{i}-1}$ integers $1 p_{i}, 2 p_{i}, \ldots, p_{i}^{e_{i}-1} p_{i}$ not coprime to $p_{i}^{e_{i}}$. So $\phi\left(p^{e_{i}}\right)=p^{e_{i}}-p^{e_{i}-1}$. The second part follows from the first part, i.e.,

$$
\begin{aligned}
\phi(n) & =\prod_{i=1}^{r} \phi\left(p_{i}^{e_{i}}\right)=\prod_{i=1}^{r}\left(p_{i}^{e_{i}}-p_{i}^{e_{i}-1}\right) \\
& =\prod_{i=1}^{r} p_{i}^{e_{i}}\left(1-\frac{1}{p_{i}}\right)=n \prod_{i=1}^{r}\left(1-\frac{1}{p_{i}}\right) .
\end{aligned}
$$

6 Permutations with Forbidden Positions

Let $X_{1}, X_{2}, \ldots, X_{n}$ be subsets (possibly empty) of $\{1,2, \ldots, n\}$. We denote by $P\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ the set of all permutations $a_{1} a_{2} \cdots a_{n}$ of $\{1,2, \ldots, n\}$ such that

$$
a_{1} \notin X_{1}, \quad a_{2} \notin X_{2}, \quad \ldots, \quad a_{n} \notin X_{n} .
$$

In other words, a permutation of S belongs to $P\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ provided that no members of X_{1} occupy the first place, no members of X_{2} occupy the second place, \ldots, and no members of X_{n} occupy the nth place. Let

$$
p\left(X_{1}, X_{2}, \ldots, X_{n}\right)=\left|P\left(X_{1}, X_{2}, \ldots, X_{n}\right)\right| .
$$

It is known that there is a one-to-one correspondence between permutations of $\{1,2, \ldots, n\}$ and the placement of n non-attacking indistinguishable rooks on an n-by- n board. The permutation $a_{1} a_{2} \cdots a_{n}$ of $\{1,2, \ldots, n\}$ corresponds to the placement of n rooks on the board in the squares with coordinates

$$
\left(1, a_{1}\right), \quad\left(2, a_{2}\right), \quad \ldots, \quad\left(n, a_{n}\right) .
$$

The permutations in $P\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ corresponds to placements of n nonattacking rooks on an n-by- n board in which certain squares are not allowed to be put a rook.

Let S be the set of all placements of n non-attacking rooks on an $n \times n$-board. A rook placement in S is said to satisfy the property P_{i} provided that the rook in the i th row having column index in X_{i}, where $1 \leq i \leq n$. Let A_{i} be the set of rook placements satisfying the property P_{i}. Then by the Inclusion-Exclusion Principle,

$$
\begin{aligned}
p\left(X_{1}, X_{2}, \ldots, X_{n}\right)= & \left|\bar{A}_{1} \cap \bar{A}_{2} \cap \cdots \cap \bar{A}_{n}\right| \\
= & |S|-\sum_{i}\left|A_{i}\right|+\sum_{i<j}\left|A_{i} \cap A_{j}\right|-\cdots \\
& \cdots+(-1)^{n}\left|A_{1} \cap A_{2} \cap \cdots \cap A_{n}\right| .
\end{aligned}
$$

Proposition 6.1. Let $r_{k}(1 \leq k \leq n)$ denote the number of ways to place k non-attacking rooks on an $n \times n$-board where each of the k rooks is in a forbidden position. Then

$$
\begin{equation*}
r_{k}=\frac{1}{(n-k)!} \sum_{1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n}\left|A_{i_{1}} \cap A_{i_{2}} \cap \cdots \cap A_{i_{k}}\right| . \tag{4}
\end{equation*}
$$

Proof. Fix $\left(i_{1}, i_{2}, \ldots, i_{k}\right)$ with $1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n$. Let $r\left(i_{1}, i_{2}, \ldots, i_{k}\right)$ denote the number of ways to place k non-attacking rooks such that

- the rook on the i_{1} th row has column index in $X_{i_{1}}$,
- the rook on the i_{2} th row has column index in $X_{i_{2}}, \ldots$, and
- the rook on the i_{k} th row has column index in $X_{i_{k}}$.

For each such k rook arrangement, delete the i_{1} th row, i_{2} th row, \ldots, i_{k} th row, and delete the columns where the i_{1} th, or i_{2} th, \ldots, or i_{k} th position is arranged a rook; the other $n-k$ rooks cannot be arranged in the deleted rows and columns. The leftover is an $(n-k) \times(n-k)$-board, and the other $n-k$ rooks can be arranged in $(n-k)$! ways. So

$$
\left|A_{i_{1}} \cap A_{i_{2}} \cap \cdots \cap A_{i_{k}}\right|=r\left(i_{1}, i_{2}, \ldots, i_{k}\right)(n-k)!.
$$

Since $r_{k}=\sum_{1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n} r\left(i_{1}, i_{2}, \ldots, i_{k}\right)$, it follows that

$$
r_{k}(n-k)!=\sum_{1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n}\left|A_{i_{1}} \cap A_{i_{2}} \cap \cdots \cap A_{i_{k}}\right|
$$

Theorem 6.2. The number of ways to place n non-attacking rooks on an $n \times n$-board with forbidden positions is given by

$$
p\left(X_{1}, X_{2}, \ldots, X_{n}\right)=\sum_{k=0}^{n}(-1)^{k} r_{k}(n-k)!
$$

where r_{k} is the number of ways to place k non-attacking rooks on an $n \times n$ board where each of the k rooks is in a forbidden position.

Example 6.1. Let $n=5$ and $X_{1}=\{1,2\}, X_{2}=\{3,4\}, X_{3}=\{1,5\}$, $X_{4}=\{2,3\}$, and $X_{5}=\{4,5\}$.

\times	\times			
		\times	\times	
\times				\times
	\times	\times		
			\times	\times

Find the number of rook placements with the given forbidden positions.
Solution. Note that $r_{0}=1$. It is easy to see that

$$
r_{1}=5 \times 2=10
$$

Since $r_{1}=\frac{1}{4!} \sum_{i}\left|A_{i}\right|$, we have

$$
\sum_{i}\left|A_{i}\right|=r_{1} 4!=10 \cdot 4!. \quad \text { (This is not needed.) }
$$

Since

$$
\begin{aligned}
& \left|A_{1} \cap A_{2}\right|=\left|A_{2} \cap A_{3}\right|=\left|A_{3} \cap A_{4}\right|=\left|A_{4} \cap A_{5}\right|=\left|A_{1} \cap A_{5}\right|=4 \cdot 3!, \\
& \left|A_{1} \cap A_{3}\right|=\left|A_{1} \cap A_{4}\right|=\left|A_{2} \cap A_{4}\right|=\left|A_{2} \cap A_{5}\right|=\left|A_{3} \cap A_{5}\right|=3 \cdot 3!,
\end{aligned}
$$

we see that

$$
r_{2}=\frac{1}{3!} \sum_{i<j}\left|A_{i} \cap A_{j}\right|=5 \times 4+5 \times 3=35 \text {. }
$$

Using the symmetry between $A_{1}, A_{2}, A_{3}, A_{4}, A_{5}$ and $A_{5}, A_{4}, A_{3}, A_{2}, A_{1}$ respectively, we see that

$$
\begin{aligned}
\left|A_{1} \cap A_{2} \cap A_{3}\right| & =\left|A_{1} \cap A_{2} \cap A_{5}\right|=\left|A_{1} \cap A_{4} \cap A_{5}\right| \\
& =\left|A_{2} \cap A_{3} \cap A_{4}\right|=\left|A_{3} \cap A_{4} \cap A_{5}\right| \\
& =6 \cdot 2!, \\
\left|A_{1} \cap A_{2} \cap A_{4}\right| & =\left|A_{1} \cap A_{3} \cap A_{4}\right|=\left|A_{1} \cap A_{3} \cap A_{5}\right| \\
& =\left|A_{2} \cap A_{3} \cap A_{5}\right|=\left|A_{2} \cap A_{4} \cap A_{5}\right| \\
& =4 \cdot 2!.
\end{aligned}
$$

These can be obtained by considering the following six patterns:

\times	\times			
		\times	\times	
\times				\times

\times	\times			
		\times	\times	
	\times	\times		

\times	\times			
		\times	\times	
			\times	\times

\times	\times			
\times				\times
	\times	\times		

\times	\times			
\times				\times
			\times	\times

		\times	\times	
\times				\times
	\times	\times		

We then have

$$
r_{3}=5 \cdot 6+5 \cdot 4=50
$$

Using the symmetric position again, we see that

$$
\begin{aligned}
\left|A_{1} \cap A_{2} \cap A_{3} \cap A_{4}\right| & =\left|A_{1} \cap A_{2} \cap A_{3} \cap A_{5}\right|=\left|A_{1} \cap A_{2} \cap A_{4} \cap A_{5}\right| \\
& =\left|A_{1} \cap A_{3} \cap A_{4} \cap A_{5}\right|=\left|A_{2} \cap A_{3} \cap A_{4} \cap A_{4}\right| \\
& =5 \cdot 1!.
\end{aligned}
$$

Thus

$$
r_{4}=5 \times 5=25 .
$$

Finally,

$$
r_{5}=\left|A_{1} \cap A_{2} \cap A_{3} \cap A_{4} \cap A_{5}\right|=2 .
$$

The answer $\sum_{k=0}^{5}(-1)^{k} r_{k}(5-k)$! is

$$
5!-10 \times 4!+35 \times 3!-50 \times 2!+25 \times 1!-2=13
$$

A permutation of $\{1,2, \ldots, n\}$ is nonconsecutive if $12,23, \ldots,(n-1) n$ do not occur. We denote by Q_{n} the number of nonconsecutive permutations of $\{1,2, \ldots, n\}$. We have $Q_{1}=1, Q_{2}=1, Q_{3}=3, Q_{4}=13$.

Theorem 6.3. For $n \geq 1$,

$$
Q_{n}=\sum_{k=0}^{n-1}(-1)^{k}\binom{n-1}{k}(n-k)!.
$$

Proof. Let S be the set of permutations of $\{1,2, \ldots, n\}$. Let P_{i} be the property that in a permutation the pattern $i(i+1)$ does occur, where $1 \leq i \leq n-1$. Let A_{i} be the set of all permutations satisfying the property P_{i}. Then Q_{n} is the number of permutations satisfying none of the properties P_{1}, \ldots, P_{n-1}, i.e.,

$$
Q_{n}=\left|\bar{A}_{1} \cap \bar{A}_{2} \cap \cdots \cap \bar{A}_{n-1}\right| .
$$

Note that

$$
\left|A_{i}\right|=(n-1)!, \quad 1 \leq i \leq n-1 .
$$

Similarly,

$$
\left|A_{i} \cap A_{j}\right|=(n-2)!, \quad 1 \leq i<j \leq n-1 .
$$

More generally,

$$
\left|A_{i_{1}} \cap \cdots \cap A_{i_{k}}\right|=(n-k)!, \quad 1 \leq i_{1}<\cdots<i_{k} \leq n-1 .
$$

Thus by the Inclusion-Exclusion Principle,

$$
\begin{aligned}
Q_{n} & =|S|+\sum_{k=1}^{n-1}(-1)^{k} \sum_{1 \leq i_{1}<\cdots<i_{k} \leq n-1}\left|A_{i_{1}} \cap \cdots \cap A_{i_{k}}\right| \\
& =\sum_{k=0}^{n-1}(-1)^{k}\binom{n-1}{k}(n-k)!.
\end{aligned}
$$

Example 6.2. Eight persons line up in one column in such a way that every person except the first one has a person in front. What is the chance when the eight persons reline up after a break so that everyone has a different person in his/her front?

We assign numbers $1,2, \ldots, 8$ to the eight persons so that the number i is assigned to the i th person (counted from the front). The problem is then to find the number of permutations of $\{1,2, \ldots, 8\}$ in which the patterns $12,23, \ldots, 78$ do not occur. For instance, 31542876 is an allowed permutation, while 83475126 is not. The answer is given by

$$
P=\frac{Q_{8}}{8!}=\sum_{k=0}^{7}(-1)^{k}\binom{7}{k} \frac{(8-k)!}{8!} \approx 0.413864
$$

Example 6.3. There are n persons seated at a round table. The n persons left the table and reseat after a break. How many seating plans can be made in the second time so that each person has a different person seating on his/her left comparing to the person before the break?

This is equivalent to finding the number of circular nonconsecutive permutations of $\{1,2, \ldots, n\}$. A circular nonconsecutive permutation of $\{1,2, \ldots, n\}$ is a circular permutation of $\{1,2, \ldots, n\}$ such that $12,23, \ldots,(n-1) n, n 1$ do not occur in the counterclockwise direction.
Let S be the set of all circular permutations of $\{1,2, \ldots, n\}$. Let A_{i} denote the subset of all circular permutations of $\{1,2, \ldots, n\}$ such that $i(i+1)$ does not occur, $1 \leq i \leq n$. We understand that A_{n} is the subset of all circular permutations that $n 1$ does not occur. The answer is

$$
\left|\bar{A}_{1} \cap \bar{A}_{1} \cap \cdots \cap \bar{A}_{n}\right| .
$$

Note that $|S|=(n-1)!$, and

$$
\left|A_{i}\right|=(n-1)!/(n-1)=(n-2)!.
$$

More generally,

$$
\begin{gathered}
\left|A_{i_{1}} \cap \cdots \cap A_{i_{k}}\right|=(n-k)!/(n-k)=(n-k-1)!, \quad 1 \leq k \leq n-1 ; \\
\left|A_{1} \cap A_{2} \cap \cdots \cap A_{n}\right|=1 .
\end{gathered}
$$

We thus have

$$
\left|\bar{A}_{1} \cap \cdots \cap \bar{A}_{n}\right|=\sum_{k=0}^{n-1}(-1)^{k}\binom{n}{k}(n-k-1)!+(-1)^{n} .
$$

Theorem 6.4.

$$
Q_{n}=D_{n}+D_{n-1}, \quad n \geq 2 .
$$

Proof.

$$
\begin{aligned}
D_{n}+D_{n-1} & =n!\sum_{k=0}^{n} \frac{(-1)^{k}}{k!}+(n-1)!\sum_{k=0}^{n-1} \frac{(-1)^{k}}{k!} \\
& =(n-1)!\left(n+n \sum_{k=1}^{n} \frac{(-1)^{k}}{k!}+\sum_{k=1}^{n} \frac{(-1)^{k-1}}{(k-1)!}\right) \\
& =n!+(n-1)!\sum_{k=1}^{n} \frac{(-1)^{k}}{k!}(n-k) \\
& =n!+\sum_{k=1}^{n-1}(-1)^{k}\binom{n-1}{k}(n-k)! \\
& =\sum_{k=0}^{n-1}(-1)^{k}\binom{n-1}{k}(n-k)!=Q_{n} .
\end{aligned}
$$

7 Rook Polynomials

Definition 7.1. Let C be a board; each square of C is referred as a cell. Let $r_{k}(C)$ denote the number of ways to arrange k rooks on the board C so that no one can take another. We assume $r_{0}(C)=1$. The rook polynomial of C is

$$
R(C, x)=\sum_{k=0}^{\infty} r_{k}(C) x^{k} .
$$

A k-rook arrangement on the board C is an arrangement of k rooks on C.

Proposition 7.2. Given a board C. For each cell σ of C, let $C-\sigma$ denote the board obtained from C by deleting the cell σ, and let C_{σ} denote the board obtained from C by deleting all cells on the row and column that contains the cell σ. Then

$$
r_{k}(C)=r_{k}(C-\sigma)+r_{k-1}\left(C_{\sigma}\right) .
$$

Equivalently,

$$
R(C, x)=R(C-\sigma, x)+x R\left(C_{\sigma}, x\right) .
$$

Proof. The k-rook arrangements on the board C can be divided into two kinds: the rook arrangements that the square σ is occupied and the rook arrangements that the square is not occupied, i.e., the k-rook arrangements on the board $C-\sigma$ and the $(k-1)$-rook arrangements on the board C_{σ}. We thus have $r_{k}(C)=r_{k}(C-\sigma)+r_{k-1}\left(C_{\sigma}\right)$.

Two boards C_{1} and C_{2} are said to be independent if they have no common rows and common columns. Independent boards must be disjoint. If C_{1} and C_{2} are independent boards, we denote by $C_{1}+C_{2}$ the board that consists of the cells either in C_{1} or in C_{2}, i.e., the union of cells.

Proposition 7.3. Let C_{1} and C_{2} be independent boards. Then

$$
r_{k}\left(C_{1}+C_{2}\right)=\sum_{i=0}^{k} r_{i}\left(C_{1}\right) r_{k-i}\left(C_{2}\right),
$$

where $C_{1}+C_{2}=C_{1} \cup C_{2}$. Equivalently,

$$
R\left(C_{1}+C_{2}, x\right)=R\left(C_{1}, x\right) R\left(C_{2}, x\right) .
$$

Proof. Since C_{1} and C_{2} have disjoint rows and columns, each i-rook arrangement of C_{1} and each j-rook arrangement of C_{2} will constitute a $(i+j)$-rook arrangement of $C_{1}+C_{2}$, and vice versa. Thus

$$
r_{k}\left(C_{1}+C_{2}\right)=\sum_{\substack{i+j=k \\ i, j \geq 0}} r_{i}\left(C_{1}\right) r_{j}\left(C_{2}\right) .
$$

Example 7.1. The rook polynomial of an m-by- n board C with $m \leq n$,

$$
R(C, x)=\sum_{k=0}^{m}\binom{m}{k}\binom{n}{k} k!x^{k} .
$$

Example 7.2. Find the rook polynomial of the board

We use \square (a square with a dot) to denote a selected square when applying the recurrence formula of rook polynomial.

$$
\begin{aligned}
R(\boxminus, x) & =R(母, x)+x R(\boxminus, x) \\
& =[R(\square, x)+x R(\boxminus, x)]+x R(\boxminus, x) \\
& =\left(1+6 x+3 \cdot 2 x^{2}\right)+2 x\left(1+4 x+2 x^{2}\right) \\
& =1+8 x+14 x^{2}+4 x^{3} .
\end{aligned}
$$

8 Weighted Version of Inclusion-Exclusion Principle

Let X be a set, either finite or infinite. The indicator function of a subset A of X is a real-valued function 1_{A} on X, defined by

$$
1_{A}(x)= \begin{cases}1 & \text { if } x \in A, \\ 0 & \text { if } x \notin A .\end{cases}
$$

For real-valued functions f, g, and a real number c, we define functions $f+g$, $c f$, and $f g$ on X as follows:

$$
\begin{gathered}
(f+g)(x)=f(x)+g(x), \\
(c f)(x)=c f(x), \\
(f g)(x)=f(x) g(x) .
\end{gathered}
$$

For subsets $A, B \subseteq X$ and arbitrary function f on X, it is easy to verify the following properties:
(i) $1_{A \cap B}=1_{A} 1_{B}$,
(ii) $1_{\bar{A}}=1_{X}-1_{A}$,
(iii) $1_{A \cup B}=1_{A}+1_{B}-1_{A \cap B}$,
(iv) $1_{X} f=f$.

The set of all real-valued functions on X is a vector space over \mathbb{R}, and is further a commutative algebra with identity 1_{X}.

Given a function $w: X \rightarrow \mathbb{R}$, usually referred to a weight function on X, such that w is nonzero at only finitely many elements of X; the value $w(x)$ is called the weight of x. For each subset $A \subseteq X$, the weight of A is

$$
w(A)=\sum_{x \in A} w(x)
$$

If $A=\emptyset$, we assume $w(\emptyset)=0$. For each function $f: X \rightarrow \mathbb{R}$, the weight of f is

$$
w(f)=\sum_{x \in X} w(x) f(x)=\langle w, f\rangle
$$

Clearly, $w\left(1_{A}\right)=w(A)$. For functions f_{i} and constants $c_{i}(1 \leq i \leq m)$, we have

$$
w\left(\sum_{i=1}^{m} c_{i} f_{i}\right)=\sum_{i=1}^{m} c_{i} w\left(f_{i}\right)
$$

This means that w is a linear functional on the vector space of all real-valued functions on X.

Proposition 8.1. Let P_{1}, \ldots, P_{n} be some properties about the elements of a set X. Let A_{i} denote the set of elements of X that satisfy the property P_{i}, $1 \leq i \leq n$. Given a weight function w on X. Then the Inclusion-Exclusion Principle can be stated as

$$
\begin{gather*}
1_{\bar{A}_{1} \cap \bar{A}_{2} \cap \cdots \cap \bar{A}_{n}}=1_{X}+\sum_{k=1}^{n}(-1)^{k} \sum_{1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n} 1_{A_{i_{1}} \cap A_{i_{2}} \cap \cdots \cap A_{i_{k}}} ; \tag{5}\\
w\left(\bar{A}_{1} \cap \cdots \cap \bar{A}_{n}\right)=w(X)+\sum_{k=1}^{n}(-1)^{k} \sum_{i_{1}<\cdots<i_{k}} w\left(A_{i_{1}} \cap \cdots \cap A_{i_{k}}\right) . \tag{6}
\end{gather*}
$$

Proof. Applying properties about indicator functions,

$$
\begin{aligned}
1_{\bar{A}_{1} \cap \cdots \cap \bar{A}_{n}} & =1_{\bar{A}_{1}} \cdots 1_{\bar{A}_{n}}=\left(1_{X}-1_{A_{1}}\right) \cdots\left(1_{X}-1_{A_{n}}\right) \\
& =\sum_{1} f_{1} \cdots f_{n} \quad\left(f_{i}=1_{X} \text { or } f_{i}=-1_{A_{i}}, 1 \leq i \leq n\right) \\
& =\underbrace{1_{X} \cdots 1_{X}}_{n}+\sum_{k=1}^{n} \sum_{i_{1}<\cdots<i_{k}} \underbrace{1_{X} \cdots 1_{X}}_{n-k}\left(-1_{A_{i_{1}}}\right) \cdots\left(-1_{A_{i_{k}}}\right) \\
& =1_{X}+\sum_{k=1}^{n}(-1)^{k} \sum_{1 \leq i_{1}<\cdots<i_{k} \leq n} 1_{A_{i_{1} \cap \cdots \cap A_{i_{k}}}} .
\end{aligned}
$$

Applying weight w to both sides, we obtain

$$
w\left(\bar{A}_{1} \cap \cdots \cap \bar{A}_{n}\right)=w(X)+\sum_{k=1}^{n}(-1)^{k} \sum_{i_{1}<\cdots<i_{k}} w\left(A_{i_{1}} \cap \cdots \cap A_{i_{k}}\right)
$$

Let X be a finite set and A_{1}, \ldots, A_{n} be subsets of X. Let $[n]=\{1,2, \ldots, n\}$. We introduce two functions α and β on the power set $\mathcal{P}([n])$ of $[n]$ as follows: For each subset $I \subseteq[n]$,

$$
\begin{aligned}
& \alpha(I)=\left\{\begin{array}{cl}
w\left(\bigcap_{i \in I} A_{i}\right) & \text { if } I \neq \emptyset \\
0 & \text { if } I=\emptyset
\end{array}\right. \\
& \beta(I)=\left\{\begin{array}{cl}
w\left(\bigcup_{i \in I} A_{i}\right) & \text { if } I \neq \emptyset \\
0 & \text { if } I=\emptyset
\end{array}\right.
\end{aligned}
$$

By Inclusion-Exclusion,

$$
1_{\bigcup_{i=1}^{n} A_{i}}=\sum_{k=1}^{n}(-1)^{k-1} \sum_{1 \leq i_{1}<\cdots<i_{k} \leq n} 1_{A_{i_{1} \cap \cdots \cap A_{i_{k}}}=\sum_{I \subseteq[n], I \neq \emptyset}(-1)^{|I|-1} 1_{\bigcap_{i \in I} A_{i}}}
$$

Taking weight w on both sides, we obtain

$$
\beta([n])=\sum_{I \subseteq[n], I \neq \emptyset}(-1)^{|I|-1} \alpha(I)=\sum_{I \subseteq[n]}(-1)^{|I|+1} \alpha(I) .
$$

If one replace \bar{A}_{i} with A_{i} in (5), we have

$$
\begin{aligned}
1_{\bigcap_{i=1}^{n} A_{i}} & =1_{X}+\sum_{k=1}^{n}(-1)^{k} \sum_{i_{1}<\cdots<i_{k}} 1_{\bar{A}_{i_{1}} \cap \cdots \cap \bar{A}_{i_{k}}}\left(\sum_{k=0}^{n}\binom{n}{k}(-1)^{k}=0\right) \\
& =\sum_{k=1}^{n}(-1)^{k+1} \sum_{i_{1}<\cdots<i_{k}}\left(1_{X}-1_{\bar{A}_{i_{1}} \cap \cdots \cap \bar{A}_{i_{k}}}\right) \\
& =\sum_{k=1}^{n}(-1)^{k+1} \sum_{i_{1}<\cdots<i_{k}} 1_{A_{i_{1}} \cup \cdots \cup A_{i_{k}}} \\
& =\sum_{I \subseteq[n], I \neq \emptyset}(-1)^{|I|+1} \bigcup_{\bigcup_{i \in I} A_{i} .}
\end{aligned}
$$

Taking the weight w on both sides, we obtain

$$
\alpha([n])=\sum_{I \subseteq[n], I \neq \emptyset}(-1)^{|I|+1} \beta(I)=\sum_{I \subseteq[n]}(-1)^{|I|+1} \beta(I) .
$$

Theorem 8.2. We have the identities

$$
\begin{array}{ll}
\beta(J)=\sum_{I \subseteq J}(-1)^{|I|+1} \alpha(I), & \forall J \subseteq[n] ; \\
\alpha(J)=\sum_{I \subseteq J}(-1)^{|I|+1} \beta(I), & \forall J \subseteq[n] . \tag{8}
\end{array}
$$

9 Möbius Inversion

Let (X, \leq) be a locally finite poset, i.e., for each $x \leq y$ in X the interval $[x, y]=\{z \in X: x \leq z \leq y\}$ is a finite set. Let $\mathcal{I}(X)$ be the set of all functions $f: X \times X \rightarrow \mathbb{R}$ such that

$$
f(x, y)=0 \quad \text { if } x \not \leq y
$$

such functions are called incidence functions on the poset X. For an incidence function f, we only specify the values $f(x, y)$ for the pairs (x, y) such that $x \leq y$, since $f(x, y)=0$ for all pairs (x, y) such that $x \not \leq y$.

The convolution product of two incidence functions $f, g \in \mathcal{I}(X)$ is an incidence function $f * g: X \times X \rightarrow \mathbb{R}$, defined by

$$
(f * g)(x, y)=\sum_{z \in X} f(x, z) g(z, y)
$$

In fact, $(f * g)(x, y)=0$ if $x \not \leq y$ (since either $x \not \leq z$ or $z \not \leq y$ for each $z)$ and

$$
(f * g)(x, y)=\sum_{x \leq z \leq y} f(x, z) g(z, y) \quad \text { if } x \leq y
$$

The convolution product satisfies the associative law:

$$
f *(g * h)=(f * g) * h
$$

where $f, g, h \in \mathcal{I}(X)$. Indeed, for $x \leq y$, we have

$$
\begin{aligned}
(f *(g * h))(x, y) & =\sum_{x \leq z_{1} \leq y} f\left(x, z_{1}\right)(g * h)\left(z_{1}, y\right) \\
& =\sum_{x \leq z_{1} \leq y} f\left(x, z_{1}\right) \sum_{z_{1} \leq z_{2} \leq y} g\left(z_{1}, z_{2}\right) h\left(z_{2},, y\right) \\
& =\sum_{x \leq z_{1} \leq z_{2} \leq y} f\left(x, z_{1}\right) g\left(z_{1}, z_{2}\right) h\left(z_{2}, y\right)
\end{aligned}
$$

Likewise, for $x \leq y$, we have

$$
((f * g) * h))(x, y)=\sum_{x \leq z_{1} \leq z_{2} \leq y} f\left(x, z_{1}\right) g\left(z_{1}, z_{2}\right) h\left(z_{2}, y\right)
$$

For $x \not \leq y$, we automatically have $(f *(g * h))(x, y)=((f * g) * h))(x, y)=0$. The vector space $\mathcal{I}(X)$ together with the convolution $*$ is called the incidence algebra of X.

We may think of that incidence functions f are only defined on the set $\{(x, y) \in X \times X: x \leq y\}$, and the convolution is defined as

$$
(f * g)(x, y)=\sum_{x \leq z \leq y} f(x, z) g(z, y)
$$

Example 9.1. Let $[n]=\{1,2, \ldots, n\}$ be the poset with the natrual order of natural numbers. An incidence function $f:[n] \times[n] \rightarrow \mathbb{R}$ can be viewed as a upper triangular $n \times n$ matrix $A=\left[a_{i j}\right]$ given by $a_{i j}=f(i, j)$. The convolution is just the multiplication of upper triangular matrices.

There is a special function $\delta \in \mathcal{I}(X)$, called the delta function of the poset (X, \leq), defined by

$$
\delta(x, y)= \begin{cases}1 & \text { if } x=y, \\ 0 & \text { if } x \neq y .\end{cases}
$$

The delta function δ is the identity of the algebra $\mathcal{I}(X)$, i.e., for all $f \in \mathcal{I}(X)$,

$$
\delta * f=f=f * \delta .
$$

Indeed, for $x \leq y$,

$$
\begin{aligned}
& (\delta * f)(x, y)=\sum_{x \leq z \leq y} \delta(x, z) f(z, y)=f(x, y) ; \\
& (f * \delta)(x, y)=\sum_{x \leq z \leq y} f(x, z) \delta(z, y)=f(x, y) .
\end{aligned}
$$

Given an incidence function $f \in \mathcal{I}(X)$. A left inverse of f is a function $g \in \mathcal{I}(X)$ such that

$$
g * f=\delta .
$$

A right inverse of f is a function $h \in \mathcal{I}(X)$ such that

$$
f * h=\delta .
$$

If f has a left inverse g and a right inverse h, then $g=h$. In fact,

$$
g=g * \delta=g *(f * h)=(g * f) * h=\delta * h=h .
$$

If f has both a left and right inverse, we say that f is invertible; the left inverse and right inverse of f must be same and unique, and it is just called the inverse of f.

Note that

$$
g * f=\delta \quad \Leftrightarrow \quad \sum_{x \leq z \leq y} g(x, z) f(z, y)=\delta(x, y), \quad \forall x \leq y
$$

When $x=y$, we have $g(x, x) f(x, x)=1$, i.e., $g(x, x)=\frac{1}{f(x, x)}$; so $f(x, x) \neq 0$. We can obtain $g \in \mathcal{I}(X)$ inductively as follows:

$$
\begin{align*}
g(x, x) & =\frac{1}{f(x, x)}, \quad \forall x \in X \\
g(x, y) & =\frac{-1}{f(y, y)} \sum_{x \leq z<y} g(x, z) f(z, y), \quad \forall x<y . \tag{10}
\end{align*}
$$

This means that f is invertible iff $f(x, x) \neq 0$ for all $x \in X$.
Likewise,

$$
f * g=\delta \quad \Leftrightarrow \quad \sum_{x \leq z \leq y} f(x, z) g(z, y)=\delta(x, y), \quad \forall x \leq y
$$

We can obtain $g \in \mathcal{I}(X)$ inductively as follows:

$$
\begin{align*}
g(x, x) & =\frac{1}{f(x, x)}, \quad \forall x \in X \tag{11}\\
g(x, y) & =\frac{-1}{f(x, x)} \sum_{x<z \leq y} f(x, z) g(z, y), \quad \forall x<y \tag{12}
\end{align*}
$$

The zeta function ζ of the poset (X, \leq) is an incidence function such that $\zeta(x, y)=1$ for all (x, y) with $x \leq y$. Clearly, ζ is invertible. The Möbius function μ of the poset (X, \leq) is the inverse of the zeta function ζ in the incidence algebra $\mathcal{I}(X)$, i.e.,

$$
\mu=\zeta^{-1}
$$

The Möbius function μ can be inductively defined by

$$
\begin{align*}
& \mu(x, x)=1, \quad \forall x \in X \tag{13}\\
& \mu(x, y)=-\sum_{x \leq z<y} \mu(x, z)=-\sum_{x<z \leq y} \mu(z, y), \quad \forall x<y \tag{14}
\end{align*}
$$

Example 9.2. Let $X=\{1,2, \ldots, n\}$ and consider the linearly ordered set (X, \leq), where $1<2<\cdots<n$. Then for $(k, l) \in X \times X$ with $k \leq l$, the Möbius function is given by

$$
\mu(k, l)=\left\{\begin{aligned}
1 & \text { if } l=k \\
-1 & \text { if } l=k+1 \\
0 & \text { otherwise }
\end{aligned}\right.
$$

It is easy to see that $\mu(k, k)=1$ and $\mu(k, k+1)=-1$. It follows that $\mu(k, k+$ $2)=0$ and subsequently, $\mu(k, k+i)=0$ for all $i \geq 2$.
Example 9.3. Let $X=\{1,2, \ldots, n\}$. The Möbius function of the poset $(\mathcal{P}(X), \subseteq)$ is given by

$$
\mu(A, B)=(-1)^{|B-A|}, \quad \text { where } A \subseteq B
$$

This can be proved by induction on $|B-A|$. For $|B-A|=0$, i.e., $A=B$, it is obviously true. Consider the case of $|B-A|=m \geq 1$ and assume that it is true when $|B-A|<m$. In fact,

$$
\begin{aligned}
\mu(A, B) & =-\sum_{A \subseteq C \subsetneq B} \mu(A, C)=-\sum_{A \subseteq C \subsetneq B}(-1)^{|C-A|} \\
& =-\sum_{D \subsetneq B-A}(-1)^{|D|}=-\sum_{k=0}^{m-1}\binom{m}{k}(-1)^{k} \\
& =(-1)^{m}-\sum_{k=0}^{m}\binom{m}{k}(-1)^{k}=(-1)^{|B-A|} .
\end{aligned}
$$

Example 9.4. Consider the poset of 12 members whose Hasse diagram is as follows. Fix an minimal element x, the second of the bottom member from the left blow. If y_{1} is the first member of the second bottom layer, then $\mu\left(x, y_{1}\right)=$ -1 . If y_{2} is the second of the second top layer, then $\mu\left(x, y_{2}\right)=2$. If y_{3} is the first of the top layer, then $\mu\left(x, y_{3}\right)=-2$.

Figure 1: Computing the Möbius function by Hasse diagram
Given a finite poset (X, \leq). For each function $f: X \rightarrow \mathbb{R}$, we can multiply an incidence function $\alpha \in \mathcal{I}(X)$ to the left of f and to the right as follows to obtain two functions $\alpha * f$ and $f * \alpha$ on X, defined by

$$
\begin{equation*}
(\alpha * f)(x)=\sum_{x \leq y} \alpha(x, y) f(y), \quad \forall x \in X ; \tag{15}
\end{equation*}
$$

$$
\begin{equation*}
(f * \alpha)(y)=\sum_{x \leq y} f(x) \alpha(x, y), \quad \forall y \in X \tag{16}
\end{equation*}
$$

Theorem 9.1. Let (X, \leq) be a finite poset. Given invertible $\alpha \in \mathcal{I}(X)$, $f, g \in F(X)$. Then $g=\alpha * f$ iff $f=\alpha^{-1} * g$, i.e.,

$$
g(x)=\sum_{x \leq y} \alpha(x, y) f(y), \forall x \in X \Leftrightarrow f(x)=\sum_{x \leq y} \alpha^{-1}(x, y) g(y), \forall x \in X
$$

Likewise, $g=f * \alpha$ iff $f=g * \alpha^{-1}$, i.e.,

$$
\begin{equation*}
g(y)=\sum_{x \leq y} f(x) \alpha(x, y), \forall y \in X \Leftrightarrow f(y)=\sum_{x \leq y} g(x) \alpha^{-1}(x, y), \forall y \in X \tag{17}
\end{equation*}
$$

Proof. It follows from the fact $g=\alpha * f$ iff $\alpha^{-1} * g=\alpha^{-1} *(\alpha * f)$, and the fact

$$
\alpha^{-1} *(\alpha * f)=\left(\alpha^{-1} * \alpha\right) * f=\delta * f=f
$$

Likewise, $g=f * \alpha \Leftrightarrow g * \alpha^{-1}=f * \alpha * \alpha^{-1}=f * \delta=f$.
Theorem 9.2. Let (X, \leq) be a finite poset. Let f, g be real-valued functions on X. Then

$$
\begin{align*}
& g(x)=\sum_{x \leq y} f(y), \quad \forall x \in X \Leftrightarrow f(x)=\sum_{x \leq y} \mu(x, y) g(y), \quad \forall x \in X \\
& g(y)=\sum_{x \leq y} f(x), \quad \forall y \in X \Leftrightarrow f(y)=\sum_{x \leq y} g(x) \mu(x, y), \quad \forall y \in X \tag{18}
\end{align*}
$$

Proof. The first inversion formula follows from the fact that $g=\zeta * f \Leftrightarrow$ $f=\zeta^{-1} * g=\mu * g$. The second inversion formula follows from the fact that $g=f * \zeta \Leftrightarrow f=g * \zeta^{-1}=g * \mu$.

Writing in summations, for each fixed $y \in X$, we have

$$
\begin{aligned}
\sum_{x \leq y} g(x) \mu(x, y) & =\sum_{x \leq y} \sum_{u \leq x} f(u) \mu(x, y) \\
& =\sum_{x \leq y} \sum_{u \leq x} f(u) \zeta(u, x) \mu(x, y) \\
& =\sum_{u \leq y} f(u) \sum_{u \leq x \leq y} \zeta(u, x) \mu(x, y) \\
& =\sum_{u \leq y} f(u) \delta(u, y) \\
& =f(y)
\end{aligned}
$$

Corollary 9.3. Let $[n]=\{1,2, \ldots, n\}$. Let $f, g: \mathcal{P}([n]) \rightarrow \mathbb{R}$ be functions such that

$$
g(I)=\sum_{J \subseteq I} f(J), \quad I \subseteq[n] .
$$

Then

$$
f(I)=\sum_{J \subseteq I}(-1)^{|I-J|} g(J), \quad I \subseteq[n] .
$$

Permanent. Fix a positive integer n. Let \mathfrak{S}_{n} denote the symmetric group of $[n]=\{1,2, \ldots, n\}$, i.e., the set of all permutations of $[n]$. Let A be an $n \times n$ real matrix. The permanent of A is defined as the number

$$
\operatorname{per}(A)=\sum_{\sigma \in \mathfrak{S}_{n}} \prod_{i=1}^{n} a_{i, \sigma(i)}
$$

For the chessboard C in Example 6.1, we associate a 0-1 matrix $A=\left[a_{i j}\right]$ as follows:

$C=$| \times | \times | | | |
| :---: | :---: | :---: | :---: | :---: |
| | | \times | \times | |
| \times | | | | \times |
| | \times | \times | | |
| | | | \times | \times |,

$$
A=\left[\begin{array}{lllll}
0 & 0 & 1 & 1 & 1 \\
1 & 1 & 0 & 0 & 1 \\
0 & 1 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 & 1 \\
1 & 1 & 1 & 0 & 0
\end{array}\right]
$$

Then the number of ways to put 5 non-attacking indistinguishable rooks on C is the permanent $\operatorname{per}(A)$.

Fix an n-by- n matrix A. For each subset $I \subseteq[n]$, let A_{I} denote the submatrix of A, whose rows are those of A indexed by members of I. Let $F(I)$ be the set of all functions $\sigma:[n] \rightarrow I$, and let $G(I)$ be the set of all surjective functions from $[n]$ onto I. Then

$$
F(I)=\bigsqcup_{J \subseteq I} G(J) .
$$

We introduce a real-valued function f on the power set $\mathcal{P}([n])$ of $[n]$, defined by

$$
\begin{aligned}
& f(\emptyset)=0, \\
& f(I)=\sum_{\sigma \in G(I)} \prod_{i=1}^{n} a_{i, \sigma(i)}, \quad \forall I \subseteq[n], I \neq \emptyset .
\end{aligned}
$$

Note that $f([n])=\operatorname{per}(A)$. Let $g: \mathcal{P}([n]) \rightarrow \mathbb{R}$ be defined by

$$
g(I)=\sum_{J \subseteq I} f(J), \quad \forall I \subseteq[n] .
$$

Then

$$
\begin{aligned}
g(I) & =\sum_{J \subseteq I} \sum_{\sigma \in G(J)} \prod_{i=1}^{n} a_{i, \sigma(i)} \\
& =\sum_{\sigma \in F(I)} \prod_{i=1}^{n} a_{i, \sigma(i)}, \\
& =\prod_{i=1}^{n}\left(\sum_{j \in I} a_{i j}\right), \quad \forall I \subseteq[n] .
\end{aligned}
$$

Thus by the Möbius inversion, we have

$$
f(I)=\sum_{J \subseteq I}(-1)^{|I-J|} g(J), \quad I \subseteq[n] .
$$

In particular,

$$
f([n])=\sum_{I \subseteq[n]}(-1)^{n-|I|} g(I) .
$$

Since $f([n])=\operatorname{per}(A)$, it follows that

$$
\begin{equation*}
\operatorname{per}(A)=\sum_{I \subseteq[n]}(-1)^{n-|I|} \prod_{i=1}^{n}\left(\sum_{j \in I} a_{i j}\right) \tag{19}
\end{equation*}
$$

However this formula is not much useful because there are 2^{n} terms in the summation.

Definition 9.4. Let $\left(X_{i}, \preceq_{i}\right)(i=1,2)$ be two posets. The product poset $\left(X_{1} \times X_{2}, \preceq\right)$ is given by

$$
\left(x_{1}, x_{2}\right) \preceq\left(y_{1}, y_{2}\right) \quad \text { iff } \quad x_{1} \preceq_{1} y_{1}, x_{2} \preceq_{2} y_{2}
$$

For the convenience, we write \preceq_{1} and \preceq_{2} simply as \preceq. Then $\left(X_{1} \times X_{2}\right.$, $\left.\preceq\right)$ is a poset.

Theorem 9.5. Let μ_{i} be the Möbius functions of posets $\left(X_{i}, \preceq_{i}\right), i=1,2$. Then the Möbius function μ of $X_{1} \times X_{2}$ for $\left(x_{1}, x_{2}\right) \preceq\left(y_{1}, y_{2}\right)$ is given by

$$
\mu\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right)=\mu_{1}\left(x_{1}, y_{1}\right) \mu_{2}\left(x_{2}, y_{2}\right)
$$

Proof. We proceed by induction on $\ell\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right)$, the length of the longest chains in the interval $\left[\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right]$. It is obviously true when $\ell=0$. For $\ell \geq 1$, by inductive definition of μ,

$$
\begin{aligned}
& \mu\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right)=-\sum_{\left(x_{1}, x_{2}\right) \preceq\left(z_{1}, z_{2}\right) \prec\left(y_{1}, y_{2}\right)} \mu\left(\left(x_{1}, x_{2}\right),\left(z_{1}, z_{2}\right)\right) \\
& =-\sum_{\left(x_{1}, x_{2}\right) \preceq\left(z_{1}, z_{2}\right) \prec\left(y_{1}, y_{2}\right)} \mu_{1}\left(x_{1}, z_{1}\right) \mu_{2}\left(x_{2}, z_{2}\right) \quad(\text { by IH }) \\
& =\mu_{1}\left(x_{1}, y_{1}\right) \mu_{2}\left(x_{2}, y_{2}\right)-\sum_{x_{1} \preceq z_{1} \preceq y_{1}} \mu_{1}\left(x_{1}, z_{1}\right) \sum_{x_{2} \preceq z_{2} \preceq y_{2}} \mu_{2}\left(x_{2}, z_{2}\right) \\
& =\mu_{1}\left(x_{1}, y_{1}\right) \mu_{2}\left(x_{2}, y_{2}\right)-\delta_{1}\left(x_{1}, y_{1}\right) \delta_{2}\left(x_{2}, y_{2}\right) \\
& =\mu_{1}\left(x_{1}, y_{1}\right) \mu_{2}\left(x_{2}, y_{2}\right) .
\end{aligned}
$$

Example 9.5. The set $\mathbb{Z}_{+}=\{1,2, \ldots\}$ of positive integers is a poset with the partial order of divisibility. Let $n \in \mathbb{Z}_{+}$be factored as

$$
n=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{k}^{e_{k}}
$$

where p_{i} are distinct primes and e_{i} are positive integers. Since $\mu(m, m)=1$ for all $m \in \mathbb{Z}_{+}$and $\mu(1, n)$ is inductively given by

$$
\mu(1, n)=-\sum_{m \in \mathbb{Z}_{+}, m \mid n, m \neq n} \mu(1, m)
$$

We only need to to consider the subposet $(D(n)$, divisibility), where

$$
D(n)=\{d \in[n]: d \mid n\}
$$

For $r, s \in D(n)$, they can be written as

$$
r=p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{k}^{a_{k}}, \quad s=p_{1}^{b_{1}} p_{2}^{b_{2}} \cdots p_{k}^{b_{k}}
$$

where $0 \leq a_{i}, b_{i} \leq e_{i}$. Then $r \mid s$ iff $a_{i} \leq b_{i}$. This means that the poset $D(n)$ is isomorphic to the product poset

$$
Q=\left\{\left(a_{1}, \ldots, a_{k}\right): a_{i} \in\left[0, e_{i}\right]\right\}=\prod_{i=1}^{k}\left[0, e_{i}\right]
$$

where $\left[0, e_{i}\right]=\left\{0,1, \ldots, e_{i}\right\}$. Thus $\mu(1, n)=\mu_{Q}\left((0, \ldots, 0),\left(e_{1}, \ldots, e_{k}\right)\right)$, where

$$
\mu_{Q}\left((0, \ldots, 0),\left(e_{1}, \ldots, e_{k}\right)\right)=\prod_{i=1}^{k} \mu_{\left[0, e_{i}\right]}\left(0, e_{i}\right)
$$

Note that

$$
\mu_{\left[0, e_{i}\right]}\left(0, e_{i}\right)=\left\{\begin{array}{rl}
1 & \text { if } e_{i}=0 \\
-1 & \text { if } e_{i}=1 \\
0 & \text { if } e_{i} \geq 2
\end{array},=\left\{\begin{array}{cl}
(-1)^{e_{i}} & \text { if } e_{i} \leq 1 \\
0 & \text { if } e_{i} \geq 2
\end{array}\right.\right.
$$

It follows that

$$
\begin{aligned}
\mu(1, n) & =\left\{\begin{array}{cl}
(-1)^{e_{1}+\cdots+e_{k}} & \text { if all } e_{i} \leq 1 \\
0 & \text { otherwise }
\end{array}\right. \\
& =\left\{\begin{array}{cl}
1 & \text { if } n=1 \\
(-1)^{j} & \text { if } n \text { is a product of } j \text { distinct primes, } \\
0 & \text { otherwise }
\end{array}\right.
\end{aligned}
$$

Now for arbitrary $m, n \in \mathbb{Z}_{+}$such that $m \mid n$, the bijection

$$
\left\{u \in \mathbb{Z}_{+}: m|u, u| n\right\} \xrightarrow{\sim}\left\{v \in \mathbb{Z}_{+}: v \left\lvert\, \frac{n}{m}\right.\right\}, \quad u \mapsto \frac{u}{m}
$$

is an isomorphism of posets for the partial order of divisibility. We thus have

$$
\mu(m, n)=\mu\left(1, \frac{n}{m}\right)
$$

In number theory, we write $\mu(1, n)$ as $\mu(n)$.
Theorem 9.6. Let $f, g: \mathbb{Z}_{+} \rightarrow \mathbb{C}$ be two functions. Then

$$
g(n)=\sum_{d \mid n} f(d), \quad \forall n \in \mathbb{Z}_{+}
$$

is equivalent to

$$
f(n)=\sum_{d \mid n} g(d) \mu\left(\frac{n}{d}\right), \quad \forall n \in \mathbb{Z}_{+}
$$

Example 9.6. Let $\Phi_{n}=\{a \in[n]: \operatorname{gcd}(a, n)=1\}$. Then $\phi(n)=\left|\Phi_{n}\right|$. Define

$$
g(n)=\sum_{d \mid n} \phi(d), \quad \forall n \in \mathbb{Z}_{+}
$$

Consider the set $\Phi_{n, d}=\{k \in[n]: \operatorname{gcd}(k, n)=d\}$ for each factor d of n. In particular, if $d=1$, then $\Phi_{n, 1}=\Phi_{n}$. In fact, there is a bijection

$$
\Phi_{n, d} \rightarrow \Phi_{n / d}, \quad k \mapsto k / d
$$

(Injectivity is trivial. Surjectivity follows from $d a \mapsto a$ for $a \in \Phi_{n / d}$) Then $\phi(n / d)=\left|\Phi_{n / d}\right|=\left|\Phi_{n, d}\right|$.

Note that for each integer $k \in[n]$, there is a unique integer $d \in[n]$ such that $\operatorname{gcd}(k, n)=d$. We have $[n]=\bigsqcup_{d \mid n} \Phi_{n, d}$ (disjoint union). Thus

$$
n=\sum_{d \mid n}\left|\Phi_{n, d}\right|=\sum_{d \mid n} \phi\left(\frac{n}{d}\right)=\sum_{k \mid n} \phi(k)=\sum_{d \mid n} \phi(d)
$$

By the Möbius inversion,

$$
\begin{equation*}
\phi(n)=\sum_{k \mid n} k \mu(k, n)=\sum_{k \mid n} k \mu\left(\frac{n}{k}\right)=\sum_{d k=n} k \mu(d)=\sum_{d \mid n} \mu(d) \cdot \frac{n}{d} \tag{20}
\end{equation*}
$$

Let $n \geq 2$ and let $p_{1}, p_{2}, \ldots, p_{r}$ be distinct primes dividing n. Then

$$
\{d \in[n]: d \mid n, \mu(d) \neq 0\}=\left\{\prod_{i \in I} p_{i}: I \subseteq[r]\right\}
$$

where $\prod_{i \in \emptyset} p_{i}=1$. Since $\mu(1)=1, \mu(d)=(-1)^{k}$ if $d=p_{i_{1}} \cdots p_{i_{k}}$ is a product of k distinct primes, and $\mu(d)=0$ otherwise, we see that (20) becomes

$$
\begin{aligned}
\phi(n)= & n-\left(\frac{n}{p_{1}}+\frac{n}{p_{2}}+\cdots\right)+\left(\frac{n}{p_{1} p_{2}}+\frac{n}{p_{1} p_{3}}+\cdots\right)-\cdots \\
& +\cdots+(-1)^{r} \frac{n}{p_{1} p_{2} \cdots p_{r}} \\
= & n \prod_{i=1}^{r}\left(1-\frac{1}{p_{i}}\right)=n \prod_{p \mid n, \text { primes }}\left(1-\frac{1}{p}\right) .
\end{aligned}
$$

Example 9.7. Let $\Sigma=\left\{a_{1}, \ldots, a_{k}\right\}$ be a set and $M=\left\{\infty \cdot a_{1}, \ldots, \infty \cdot a_{k}\right\}$ a multiset over Σ. A circular n-permutation of M is an arrangement of n elements of M around a circle. Each circular n-permutation of M may be considered as a periodic double-infinite sequence

$$
\left(x_{i}\right)=\left(x_{i}\right)_{i \in \mathbb{Z}}=\cdots x_{-2} x_{-1} x_{0} x_{1} x_{2} \cdots
$$

of period n, i.e., $x_{i+n}=x_{i}$ for all $i \in \mathbb{Z}$. The minimum period of a circular permutation $\left(x_{i}\right)$ of M is the smallest positive integer among all periods. We shall see below that the minimum period of a double-infinite sequence divides all periods of the sequence.

Let Σ_{n} denote the set of n-words over Σ, and Σ^{*} the set of all words over Σ. Then $\Sigma^{*}=\bigsqcup_{n \geq 0} \Sigma_{n}$ (disjoint union). Consider the map

$$
\sigma: \Sigma_{n} \rightarrow \Sigma_{n}, \quad \sigma\left(x_{1} x_{2} \cdots x_{n}\right)=x_{2} \cdots x_{n} x_{1}, \quad \sigma(\lambda)=\lambda
$$

An n-word w is primitive if

$$
w, \quad \sigma(w), \quad \sigma^{2}(w), \quad \ldots, \quad \sigma^{n-1}(w)
$$

are distinct. A period of an n-word w is a positive integer m such that

$$
\sigma^{m}(w)=w
$$

Every n-word has a trivial period n. The minimum period d of an n-word w is the smallest positive integer among all periods of w, which is a common factor of all periods of w; in particular, $d \mid n$. In fact, for a period m of an n-word w, write $m=q d+r$, where $0 \leq r<d$. Suppose $r>0$. Then

$$
\sigma^{r}(w)=\sigma^{r} \underbrace{\sigma^{d} \cdots \sigma^{d}}_{q}(w)=\sigma^{q d+r}(w)=\sigma^{m}(w)=w,
$$

which means that r is a period of w and is smaller than d, subsequently, contradictory to the minimality of d.

Let Σ_{d}^{0} denote the set of primitive d-words over Σ, and $\Sigma_{n, d}$ the subset of Σ_{n} whose n-words have minimum period d, where $d \mid n$. Clearly,

$$
\left|\Sigma_{n, d}\right|=\left|\Sigma_{d}^{0}\right|
$$

Let $\mathbb{Z}(\Sigma)$ denote the set of double-infinite sequences over Σ, and $\mathbb{Z}_{n}(\Sigma)$ the subset of $\mathbb{Z}(\Sigma)$ whose members have period n. Let $\mathbb{Z}_{d}^{0}(\Sigma)$ denote the subset of $\mathbb{Z}_{d}(\Sigma)$ whose members have minimum period d. Then

$$
\mathbb{Z}_{n}(\Sigma)=\bigsqcup_{d \mid n} \mathbb{Z}_{d}^{0}(\Sigma)
$$

Let $C_{n}(\Sigma)$ denote the set of all circular n-permutations of M. Then $C_{n}(\Sigma)$ can be identified to the set $\mathbb{Z}_{n}(\Sigma)$. Thus

$$
\left|C_{n}(M)\right|=\left|\mathbb{Z}_{n}(\Sigma)\right|=\sum_{m \mid n}\left|\mathbb{Z}_{m}^{0}(\Sigma)\right|
$$

Now we consider the map

$$
F: \Sigma_{m}^{0} \rightarrow \mathbb{Z}_{m}^{0}(\Sigma), \quad w=s_{1} s_{2} \cdots s_{m} \mapsto\left(x_{i}\right)=\cdots w w w \cdots
$$

which is clearly surjective and each member of $\mathbb{Z}_{m}^{0}(\Sigma)$ receives exactly m members of Σ_{m}^{0}. So $\left|\mathbb{Z}_{m}^{0}(\Sigma)\right|=\left|\Sigma_{m}^{0}\right| / m$. Thus

$$
\left|C_{n}(M)\right|=\sum_{m \mid n}\left|\mathbb{Z}_{m}^{0}(\Sigma)\right|=\sum_{m \mid n}\left|\Sigma_{m}^{0}\right| / m
$$

Since $\Sigma_{n}=\bigsqcup_{d \mid n} \Sigma_{n, d}$, where $\Sigma_{n, d}$ is the subset of Σ_{n} whose words have minimum period d, we have

$$
\left|\Sigma_{n}\right|=\sum_{d \mid n}\left|\Sigma_{n, d}\right|=\sum_{d \mid n}\left|\Sigma_{d}^{0}\right| .
$$

By the Möbius inversion,

$$
\left|\Sigma_{n}^{0}\right|=\sum_{d \mid n}\left|\Sigma_{d}\right| \mu(d, n)=\sum_{d \mid n}\left|\Sigma_{d}\right| \mu\left(\frac{n}{d}\right)
$$

It follows that

$$
\begin{aligned}
\left|C_{n}(M)\right| & =\sum_{m \mid n} \frac{1}{m} \sum_{a \mid m}\left|\Sigma_{a}\right| \mu\left(\frac{m}{a}\right) \\
& =\sum_{a|m, m| n} \frac{1}{m}\left|\Sigma_{a}\right| \mu\left(\frac{m}{a}\right)
\end{aligned}
$$

Set $b:=m / a$, i.e., $a b=m$. Then $a \mid m$ and $m \mid n$ are equivalent to $a \mid n$ and $b \mid(n / a)$. Thus

$$
\left|C_{n}(M)\right|=\sum_{a \mid n}\left|\Sigma_{a}\right| \sum_{b \mid(n / a)} \frac{\mu(b)}{a b}
$$

Since $\phi(n)=\sum_{d \mid n} \mu(d) \cdot \frac{n}{d}$ by (20), we see that

$$
\sum_{b \mid(n / a)} \frac{\mu(b)}{a b}=\frac{1}{n} \sum_{b \mid(n / a)} \mu(b) \cdot \frac{n / a}{b}=\frac{1}{n} \phi\left(\frac{n}{a}\right) .
$$

We finally have

$$
\begin{aligned}
\left|C_{n}(M)\right| & =\frac{1}{n} \sum_{a \mid n}\left|\Sigma_{a}\right| \phi\left(\frac{n}{a}\right) \quad\left(\text { since }\left|\Sigma_{a}\right|=k^{a} \mid\right) \\
& =\frac{1}{n} \sum_{a \mid n} k^{a} \phi\left(\frac{n}{a}\right) \quad(\text { set } d=n / a) \\
& =\frac{1}{n} \sum_{d \mid n} k^{n / d} \phi(d)
\end{aligned}
$$

Theorem 9.7. The number of circular n-permutations of a set of k objects with repetition allowed is

$$
\frac{1}{n} \sum_{d \mid n} k^{n / d} \phi(d)
$$

Theorem 9.8. The number circular permutations of a multiset M of type $\left(n_{1}, \ldots, n_{k}\right)$ with $m=\operatorname{gcd}\left(n_{1}, \ldots, n_{k}\right)$ and $n=n_{1}+\cdots+n_{k}$ is given by

$$
\begin{equation*}
\frac{1}{n} \sum_{a \mid m} \phi(a)\binom{n / a}{n_{1} / a, \ldots, n_{k} / a} \tag{21}
\end{equation*}
$$

Proof. If a is a period of a permutation of M, it is easy to see that $a \mid m$. Let

$$
M_{d}=\left\{\left(d n_{1} / m\right) \cdot a_{1}, \ldots,\left(d n_{k} / m\right) \cdot a_{k}\right\}, \quad d \geq 1 .
$$

Clearly, $\operatorname{gcd}\left\{d n_{1} / m, \ldots, d n_{k} / m\right\}=d$ and $M_{m}=M$.
Let $\mathfrak{S}\left(M_{d}\right)$ denote the set of all permutations of $M_{d}, \mathfrak{S}_{a}^{0}\left(M_{d}\right)$ the set of all permutations of M_{d} with minimum period a, and $\mathfrak{S}^{0}\left(M_{d}\right)$ the set of all primitive permutations of M_{d}, i.e., permutations whose minimum period is the cardinality $d n / m$ of M_{d}. For each $w \in \mathfrak{S}\left(M_{d}\right)$, let a be the minimum period of w. Then $w=\underbrace{w_{1} w_{1} \cdots w_{1}}_{b}$ with a primitive word w_{1}. Thus w_{1} is a word of length a of type

$$
\left(\frac{d n_{1} / m}{b}, \ldots, \frac{d n_{k} / m}{b}\right) .
$$

Since $b \mid\left(d n_{i} / m\right)$ for all i, it follows that $b \mid \operatorname{gcd}\left\{d n_{1} / m, \ldots, d n_{k} / m\right\}$, i.e., $b \mid d$. So $w \in \mathfrak{S}_{a}^{0}\left(M_{d}\right)$ with $a=\sum_{i=1}^{k}(d / b)\left(n_{i} / m\right)=(d / b)(n / m)$. Note that

$$
\operatorname{gcd}\left\{(d / b)\left(n_{1} / m\right), \ldots,(d / b)\left(n_{k} / m\right)\right\}=d / b .
$$

We see that

$$
\begin{gathered}
\mathfrak{S}\left(M_{d}\right)=\bigsqcup_{b \mid d} \mathfrak{S}_{(d / b)(n / m)}^{0}\left(M_{d}\right), \\
\mathfrak{S}_{(d / b)(n / m)}^{0}\left(M_{d}\right) \simeq \mathfrak{S}^{0}\left(M_{d / b}\right) \quad \text { if } \quad b \mid d .
\end{gathered}
$$

We then have

$$
\left|\mathfrak{S}\left(M_{d}\right)\right|=\sum_{b \mid d}\left|\mathfrak{S}^{0}\left(M_{d / b}\right)\right|=\sum_{a \mid d}\left|\mathfrak{S}^{0}\left(M_{a}\right)\right| .
$$

By the Möbius inversion,

$$
\left|\mathfrak{S}^{0}\left(M_{d}\right)\right|=\sum_{a \mid d}\left|\mathfrak{S}\left(M_{a}\right)\right| \mu\left(\frac{d}{a}\right) .
$$

Let $C\left(M_{d}\right)$ denote the set of all circular permutations of $M_{d}, C_{a}^{0}\left(M_{d}\right)$ the set of all circular permutations of M_{d} with minimum period a, and $C^{0}\left(M_{d}\right)$ the set of all primitive circular permutations of M_{d}. Likewise,

$$
C\left(M_{d}\right)=\bigsqcup_{a \mid d} C_{a}^{0}\left(M_{d}\right),
$$

$$
\left|C_{a}^{0}\left(M_{d}\right)\right|=\left|C^{0}\left(M_{a}\right)\right| \quad \text { if } \quad a \mid d
$$

Note that $\left|M_{a}\right|=a n / m$ and $\left|\mathfrak{S}^{0}\left(M_{a}\right)\right|=\left|C^{0}\left(M_{a}\right)\right| \cdot a n / m$. We have

$$
\begin{aligned}
\left|C\left(M_{d}\right)\right| & =\sum_{a \mid d}\left|C^{0}\left(M_{a}\right)\right|=\sum_{a \mid d}\left|\mathfrak{S}^{0}\left(M_{a}\right)\right| \cdot \frac{1}{a n / m} \\
& =\sum_{a \mid d} \frac{m}{a n} \sum_{b \mid a}\left|\mathfrak{S}\left(M_{b}\right)\right| \mu\left(\frac{a}{b}\right)
\end{aligned}
$$

Set $c=a / b$, i.e., $a=b c$, then $a \mid d$ and $b \mid a$ are equivalent to $b \mid d$ and $c \mid(d / b)$. Thus

$$
\begin{aligned}
\left|C\left(M_{d}\right)\right| & =\frac{1}{n} \sum_{b \mid d} \frac{m}{d}\left|\mathfrak{S}\left(M_{b}\right)\right| \sum_{c \left\lvert\, \frac{d}{b}\right.} \frac{d / b}{c} \mu(c) \\
& =\frac{1}{n} \sum_{b \mid d} \frac{m}{d}\left|\mathfrak{S}\left(M_{b}\right)\right| \phi\left(\frac{d}{b}\right) \quad(\text { set } a=d / b) \\
& =\frac{1}{n} \sum_{a \mid d} \frac{m}{d}\left|\mathfrak{S}\left(M_{d / a}\right)\right| \phi(a)
\end{aligned}
$$

Let $d=m$, we have $M=M_{m}$. Recall $\left|\mathfrak{S}\left(M_{b}\right)\right|=\binom{b n / m}{b n_{1} / m, \ldots, b n_{k} / m}$, therefore

$$
\begin{aligned}
|C(M)| & =\left|C\left(M_{m}\right)\right|=\frac{1}{n} \sum_{a \mid m} \phi(a)\left|\mathfrak{S}\left(M_{m / a}\right)\right| \\
& =\frac{1}{n} \sum_{a \mid m} \phi(a)\binom{n / a}{n_{1} / a, \ldots, n_{k} / a}
\end{aligned}
$$

Example 9.8. Consider the multiset $M=\left\{12 a_{1}, 24 a_{2}, 18 a_{3}\right\}$ of type $(12,24,18)$. Then $m=\operatorname{gcd}(12,24,18)=6$, whose factors are $1,2,3,6$. Recall the values

$$
\phi(1)=1, \quad \phi(2)=1, \quad \phi(3)=2, \quad \phi(6)=2 .
$$

The number of circular permutations of M is

$$
\frac{1}{54}\left[\phi(1)\binom{54}{12,24,18}+\phi(2)\binom{27}{6,12,9}+\phi(3)\binom{18}{4,8,6}+\phi(6)\binom{9}{2,4,3}\right]
$$

10 Problems

1. Let (P, \leq) be a finite poset. Recall that na incidence function is a function $F: P \times P \rightarrow \mathbb{C}$ such that $f(x, y)=0$ if $x \not \leq y$. The convolution of two incidence functions f, g is a function $f * g: P \rightarrow \mathbb{C}$ defined by

$$
(f * g)(x, y)=\sum_{z \in P} f(x, z) g(z, y) .
$$

(a) Show that $f * g$ is an incidence function, i.e., $(f * g)(x, y)=0$ for all pairs (x, y) such that $x \not \leq y$.
(b) If $x \leq y$, show that

$$
(f * g)(x, y)=\sum_{z \in P, x \leq z \leq y} f(x, z) g(z, y) .
$$

2. Let P be a finite poset. Think of each incidence function $f: P \times P \rightarrow \mathbb{C}$ as a square matrix whose row and column indices are members of P, and whose (x, y)-entry is $f(x, y)$.
(a) Show that the convolution of incidence functions is just the matrix multiplication.
(b) Incidence algebra of the poset P is a subalgebra of the algebra of matrices whose rows and columns are indexed by members of P.
3.
