
Week 13-14: Matchings in Bipartite Graphs

May 3, 2018

Problem 1. Consider an m-by-n chessboard in which certain squares are for-

bidden. What is the largest number of non-attacking rooks that can be placed

on the board?

Problem 2. Consider again an m-by-n chessboard where certain squares are

forbidden. What is the largest number of dominoes that can be placed on the

board so that each domino covers two allowed squares and no two dominoes

overlap?

Problem 3. A company has n jobs available, with each job demanding certain

qualifications. There are m people who apply for the n jobs. What is the largest

number of jobs that can be filled from the available m applicants if a job can be

filled only by a person who meets its qualifications?

1 Matchings

Definition 1.1. A (simple) graph is a system of ordered pair G = (V, E)

consisting of a nonempty vertex set V of vertices and an edge set E of edges,

such that each edge e ∈ E is assigned an unordered pair {u, v} of two vertices

(called endpoints of e), and no two edges are assigned to the same unordered

pair of vertices; we usually write e = uv and say that the edge e is incident

with the vertices u, v.

A graph G = (V, E) is said to be bipartite if the vertex set V can be

partitioned into two disjoint parts V1, V2 such that each edge e ∈ E has its two
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endpoints u ∈ V1 and v ∈ V2.

Definition 1.2. A subset M of edges of a graph G = (V, E) is called a match-

ing if no two edges of M incident with a common vertex; the two endpoints of

an edge in M are said to be matched under M . A matching M is said to be

maximum if there is no matching M ′ such that |M ′| > |M |. The matching

number of G is the cardinality of a maximum matching of G, i.e.,

m(G) = max
{|M | : M is a matching of G

}
. (1)

A matching M is said to be perfect if every vertex of G is matched under M .

Example 1.1. Let X = {x1, x2, x3, x4} and Y = {y1, y2, y3, y4, y5}. Consider

the 4-by-5 board, whose rows are indexed by elements of X and whose columns

are indexed by elements of Y , having forbidden positions shown below

y1 y2 y3 y4 y5

x1 ×
x2 × ×
x3 × ×
x4 ×

We associate with this board a bipartite graph G = (X ∪ Y, E) whose vertex

set is X ∪ Y and the edge set E is given by

xiyj ∈ E ⇔ (i, j)-sqaure is allowed.

The graph G = (X∪Y, E) is called a rook-bipartite graph. In this example,

the edge set E is the complement of the set {x1y2, x2y4, x2y5, x3y3, x3y5, x4y1}
in {xiyj : 1 ≤ i ≤ 4, 1 ≤ j ≤ 5}.

Example 1.2. Consider a 4-by-5 board whose squares are alternately col-

ored black and white, with some forbidden squares. For identification we label

the non-forbidden black squares b1, b2, . . . , b6 and non-forbidden white squares

w1, w2, . . . , w7; see below.

w1 × w2 b1 w3

b2 w4 × × ×
× b3 w5 b4 ×
× w6 b5 w7 b6
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We define a bipartite graph G = (X ∪ Y, E), where

X = {b1, b2, . . . , b6}, Y = {w1, w2, . . . , w7},
and biwj ∈ E iff the squares bi and wj have a common side.

Example 1.3. Four people x1, x2, x3, x4 apply for five jobs y1, y2, y3, y4, y5.

Assume that (1) the person x1 is qualified for the jobs y1, y2, y4, y5; (2) the

person x2 is qualified for the jobs y2, y3, y4; (3) the person x3 is qualified for

the jobs y2, y5; and (4) the person x4 is qualified for the jobs y1, y2, y4, y5. We

can construct a bipartite graph G = (X ∪ Y, E), where X = {x1, x2, x3, x4},
Y = {y1, y2, y3, y4, y5}, and

xiyj ∈ E ⇐⇒ the person xi is qualified for the job yj.

2 Covering

Definition 2.1. A vertex subset C of a graph G = (V, E) is called a covering

of G if every edge of G has an endpoint in C. A covering C is said to be

minimum if there is no covering C ′ such that |C ′| < |C|. The covering

number of G is the cardinality of a minimum covering of G, i.e.,

c(G) = min
{|C| : C is a covering of G

}
. (2)

Let M be a matching and C be a covering of a graph G. Since each edge

of M is covered by a vertex in C and distinct edges of M must be covered by

distinct vertices of C, so |M | ≤ |C|. We thus have

m(G) ≤ c(G).

It may be speculated that m(G) = c(G). Unfortunately, this is not true in

general. However, whenever G is bipartite, the equality m(G) = c(G) holds.

Lemma 2.2. Let M be a matching and C be a covering of a graph G. If

|M | = |C|, then M is a maximum matching and C is a minimum covering.

Proof. Trivial by contrapositive argument.
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Theorem 2.3 (König, 1931). If G is a bipartite graph, then m(G) = c(G).

In words it states that the number of edges in a maximum matching is equal

to the number of vertices in a minimum covering.

Proof. It is known that m(G) ≤ c(G). We only need to show that m(G) ≥ c(G).

Let M be a matching and C a covering of G.

Let G be a bipartite graph with the bipartition (X,Y ), and let M ∗ be a

maximum matching of G. Denote by U the set of all

3 Labeling Algorithm

Definition 3.1. Let M be a matching of a graph G. A vertex v of G is said to

be saturated by M (or M-saturated) if v is an endpoint of an edge of M ;

otherwise it is said to be unsaturated by M (or M-unsaturated).

A path P (self-intersection is allowed) of G is said to be M-alternating if

the edges of P alternate between M and its complement M̄ = E rM . An M -

alternating path is further said to be M-augmenting if its initial and terminal

vertices are not matched under M .

For each M -augmenting path P of a graph G, since the initial and terminal

vertices are not matched by M , the first and the last edges can not be edges

of M . So the length of P must be odd. The 1st, 3rd, 5th, . . ., edges of P are

contained in the complement M̄ , i.e., the odd edges of P belong to M̄ . The 2nd,

4th, 6th, . . ., edges of P are contained in M , i.e., the even edges of P belong to

M . The edges with either the initial vertex or the terminal vertex as an endpoint

are edges of M̄ .

Proposition 3.2. Let M be a matching of a graph G and P a path in G.

(a) If P is M-alternating, then P has no self-intersect vertices.

(b) If P is an M-augmenting path, then the symmetric difference

M ′ = M∆P := (M r P ) ∪ (P rM)

is a matching of G and |M ′| = |M | + 1.
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Proof. (a) Suppose that the path P = v0v1 . . . v2m+1 has self-intersection, i.e.,

two of the vertices v0, v1, . . . , v2m+1 are the same, say, vi = vj with i < j. There

are two possibilities: j−i is odd and j−i is even. In the former case, we see that

either the edges vi−1vi, vjvj+1 belong to M or the edges vivi+1, vj−1vj belong

to M . This is a contradiction since two edges of M share the common vertex

vi(vj). In the latter case, we see that either the edges vi−1vi, vj−1vj belong to M

or the edges vivi+1, vjvj+1 belong to M , so two edges of M share the common

vertex vi(vj).

v

1

v27v

v v5v6

v4v3

0v

8

2

7v v6

v5

v43v

v1

9v

0v 8v v

(b) Since M is a matching, no two edges of M r P share a common vertex.

Since P has no self-intersection, no two edges of P rM share a common vertex.

Note that the vertices of M ∩ P are internal vertices of P , and neither the

initial vertex nor the terminal vertex of P is an endpoint of M . We see that the

endpoints of MrP are disjoint from P , of course, disjoint from PrM . Thus the

symmetric difference M ′ = M∆P is a matching. Clearly, |M ′| = |M | + 1.

Theorem 3.3 (Berge). Let M be a matching of a graph G = (V, E). If

there is no M-augmenting path, then M is a maximum matching of G.

Proof. Suppose that M is not a maximum matching. Then there exists a match-

ing M ′ such that |M ′| > |M |. Consider the graph G∗ = (V, E∗), where

E∗ = (M −M ′) ∪ (M ′ −M).

Since |M ′| > |M |, we have

|M ′ −M | > |M −M ′|.
The graph G∗ has the property that each vertex is incident with at most one

edge in M −M ′ and at most one edge in M ′ −M , i.e., at most two edges of

E∗. This means that the degree of every vertex of G∗ is at most two. Thus
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each component of G∗ is either a simple path (without self-intersection) or a

cycle. The paths and cycles must be M -alternating and can be classified into

four types:

Type 1. A simple path whose first and last edges are in M ′ −M .

Type 2. A simple path whose first and last edges are in M −M ′.
Type 3. A simple path whose first edge is in M −M ′ and whose last edges is

in M ′−M , or whose first edge is in M ′−M and whose last edge is in M −M ′.
Type 4. A cycle.

Note that a Type 1 path has more edges in M ′ than the edges in M . A

Type 2 path has more edges in M than the edges in M ′. A Type 3 path has

equal number of edges in both M and M ′. And a Type 4 cycle has the same

number of edges in both M and M ′. Since |M ′−M | > |M −M ′|, there exists

at least one path P = v0v1 . . . v2k+1 of Type 1, whose first and last edges are

in M ′ − M . Since P is a component of G∗, the initial and terminal vertices

v0, v2k+1 are not incident with edges in M − M ′. We claim that both v0 and

v2k+1 are not incident with edges of M .

Suppose that v0 (v2k+1) is incident with an edge e in M . The edge e cannot

be in M ′ (since the vertex is already incident with an edge in M ′ −M). So e

belongs to M − M ′, i.e., v0 (v2k+1) is incident with at least two edges in G∗,
which is a contradictory to the fact that v0 (v2k+1) is an initial (terminal) vertex

of the path P , and that P is a component of G∗. Now we see that P is an

M -augmenting path, since its initial and terminal vertices are not incident with

edges of M . The symmetric difference M∆P gives a larger matching of G, this

is contradictory to that M is a maximum matching of G.

Algorithm 3.4 (Labeling Algorithm). Input: bipartite graph G = (X∪Y, E)

with a bipartition {X,Y }, |X| ≤ |Y |, and a matching M of G. Output:

Showing that M is a maximum matching or constructing an M -augmenting

path.

STEP 0: All vertices of G are unscanned. Begin by labeling with (∗) all ver-

tices of X that are M -unsaturated. In case there is no M -unsaturated

vertex in X , STOP. The matching M is already a maximum matching,

and X is a minimum covering.
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If there exist vertices of X that are unsaturated by M , then all such

vertices are labeled with (∗), go to STEP 1.

STEP 1: While there exists a labeled, but unscanned, vertex x in X , we label

with (x) for all vertices of Y that are adjacent to x by edges not in M

but not labeled previously. The vertex x is called a scanned vertex.

In case that no new label can be assigned to a vertex of Y , i.e., x is

not adjacent with any unlabeled vertex of Y by edges of M̄ , STOP.

The matching M is a maximum matching, and S = Xun ∪ Y lab is a

minimum covering, where Xun is the set of unlabeled vertices of X and

Y lab is the set of labeled vertices of Y .

Otherwise, go to STEP 2. (There are no labeled but unscanned vertices

in X , i.e., the set of both labeled and unscanned vertices of X is empty,

equivalently, all labeled vertices of X are scanned vertices.)

STEP 2: (Notice that Y certainly has some labeled vertices, some are M -saturated,

some are M -unsaturated.) If all labeled but unscanned vertices of Y

are M -saturated, select one of such vertices, say y, and label with (y)

for all vertices of X that are adjacent to y by edges of M but not

labeled previously. The vertex y is called a scanned vertex. Then

return to STEP 1.

If there exists a labeled but unscanned vertex y in Y that is M -

unsaturated, STOP. An M -augmenting path P can be constructed

as follows: Chase back from y through labels in reversing order to

construct P = yx1y1x2y2 . . . xkykxk+1, where

• (x1) is the label of the vertex y, and (y, x1) ∈ M̄ ;

• (yi) are the labels of xi, and (xi, yi) ∈ M , 1 ≤ i ≤ k;

• (xi+1) are the labels of yi, and (yi, xi+1) ∈ M̄ , 1 ≤ i ≤ k.

• The label of xk+1 is (∗).
Proof. Since each vertex receives at most one label and is scanned at most once,

the Labeling Algorithm halts after a finite number of steps. When the algorithm

stops in STEP 0, it is trivial that M is a maximum matching.
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Case 1. Algorithm 3.4 stops in STEP 1.

We first show that the set S = Xun∪Y lab is a covering. Suppose that S is not

a covering, that is, there is an edge e = (x, y), where x ∈ X and y ∈ Y , such

that x 6∈ Xun and y 6∈ Y lab, i.e., x is labeled and y is unlabeled. The edge e is

either in M or not in M . If e is not in M , then by STEP 1 the vertex y receives

the label (x); this is a contradiction. If e is in M , then x is M -saturated. Thus

the label of x can not be (∗) by STEP 0; the label of x must be (y′) by STEP 2

from a vertex y′ of Y , where y′ has been labeled and e′ = (x, y′) is an edge of

M . Since M is a matching, we see that y = y′. This is contradictory to that y

is unlabeled.

Next we show that |M | = |S|. This equality implies that M is a maximum

matching and S is a minimum covering. To see that |M | = |S|, we establish a

bijection from S to M .

For each y ∈ Y lab, the vertex y is labeled, we claim that y is M -saturated.

In fact, if y is scanned, then y is already M -saturated by definition of scanned

vertex. If y is unscanned, then y must be M -saturated; otherwise, the M -

unsaturation of y implies that the Algorithm 3.4 stops in STEP 2, which is a

contradictory to that the Algorithm stops in STEP 1.

Let y correspond to the unique edge (x′, y) of M incident with y. The vertex

x′ receives the label (y) in STEP 2. So x′ 6∈ Xun. Hence each vertex of Y lab is

incident with one edge of M whose other endpoint belongs to X rXun.

For each vertex x ∈ Xun, since x is not labeled, the vertex x must be M -

saturated, otherwise, x receives the label (∗). Let x correspond to the unique

edge (x, y′) of M incident with x. This edge (x, y′) is a distinct from each edge

(x, y) of M incident with a vertex y ∈ Y lab.

We have established an injection from S to M . Then |S| ≤ |M |. Since

|M | ≤ |S|, we conclude that |M | = |S|.
Case 2. Algorithm 3.4 stops in STEP 2. The vertex y is labeled and is

unscanned.

• Let (x1) be the label of y. Then (y, x1) ∈ M̄ by STEP 1, the vertex x1

must be labeled before y, and x1 is scanned by definition.

• Let (y1) be the label of x1. Then (x1, y1) ∈ M by STEP 2, the vertex y1
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must be labeled before x1, and y1 is scanned by definition.

• Let (x2) be the label of y1. Then (y1, x2) ∈ M̄ by STEP 1, the vertex x2

must be labeled before y1, and x2 is scanned by definition.

• Let (y2) be the label of x2. Then (x2, y2) ∈ M by STEP 2, the vertex y2

must be labeled before x2, and y2 is scanned by definition.

Continue this procedure, we obtain a sequence of vertices

y, x1, y1, x2, y2, . . . , xk, yk, xk+1,

where xk+1 has label (∗), and the edge (yk, xk+1) ∈ M̄ . Clearly,

P = yx1y1x2y2 . . . ykxk+1

is an M -alternating path, and the initial and terminal vertices y, xk+1 are M -

unsaturated. Hence P is an M -augmenting path. Thus

M ′ := (M − P ) ∪ (P −M)

is a new matching and |M ′| = |M | + 1.

The Algorithm 3.4 can be easily modified to give an algorithm to find a

maximum matching and a minimum covering for a bipartite graph. We give

such an algorithm in the following.

Algorithm 3.5 (Matching-Covering Algorithm). Input: a bipartite graph

G = (X ∪ Y, E) and a matching M consisting of a single edge. Output: a

maximum matching M .

Step 0. All vertices are unscanned. Label with the symbol (∗) all

vertices of X unsaturated by M . If there is no M -unsaturated

vertex in X , STOP. The matching M is a maximum matching,

and X is a minimum covering. Otherwise, go to STEP 1.
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Step 1. While there exists a labeled, but unscanned, vertex x in X , we

label with (x) for all vertices of Y that are adjacent to x by edges

not in M but not labeled previously. The vertex x is called a

scanned vertex. In case that no new label can be assigned to

a vertex of Y , i.e., x is not adjacent with any unlabeled vertex

of Y by edges of M̄ , STOP. The matching M is a maximum

matching, and S = Xun ∪ Y lab is a minimum covering, where

Xun is the set of unlabeled vertices of X and Y lab is the set of

labeled vertices of Y . Otherwise, go to STEP 2.

Step 2. If all labeled but unscanned vertices of Y are M -saturated,

select one of such vertices, say y, and label with (y) for all

vertices of X that are adjacent to y by edges of M but not

labeled previously. The vertex y is called a scanned vertex.

Then return to STEP 1.

If there exists a labeled but unscanned vertex y in Y that is

M -unsaturated, an M -augmenting path P can be constructed,

set M := (M − P ) ∪ (P −M), return to STEP 0.

4 Systems of Distinct Representatives

Let A = (A1, A2, . . . , An) be a family of subsets of a set X . A family S =

(a1, a2, . . . , an) of elements of X is called a system of representatives for

A if

a1 ∈ A1, a2 ∈ A2, . . . , an ∈ An;

and is further called a system of distinct representatives (SDR) if, in

addition to that S is a system of representatives, all the elements a1, a2, . . . , an

are distinct.

Example 4.1. Let (A1, A2, A3, A4) be a family of subsets of the set

Y = {a, b, c, d, e}
defined by

A1 = {a, b, c}, A2 = {b, d}, A3 = {a, b, d, e}, A4 = {a, d, e}.
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Then (c, d, d, e) is a system of representatives, and (b, d, e, a) is an SDR.

Let A = (A1, A2, . . . , An) be a family of sets. If A has an SDR

S = (a1, a2, . . . , an),

then for any selection {i1, i2, . . . , ik} of indices, the union

Ai1 ∪ Ai2 ∪ · · · ∪ Aik

contains the subset {ai1, ai2, . . . , aik}. Thus we have

(MC) : |Ai1 ∪ · · · ∪ Aik| ≥ k, ∀ i1 < · · · < ik. (3)

The condition (3) is known as the Marriage Condition (MC) because of

the following Marriage Problem. The condition (3) is also known as Hall’s

Condition because of Theorem 4.1.

Example 4.2 (Marriage Problem). There are n women in a society, all men

are eager to marry. If there were no restriction on who marries whom, in order

to marry off all the women, we need only require that the number of men be

at least as large as the number n of women. But we would expect that each

woman and each man would insist some compatibility with a spouse, thereby

eliminating some of the men as potential spouses for each woman. Thus each

woman would arrive at a certain set of compatible men from the set of available

men. Let (A1, A2, . . . , An) be the family of subsets of the men, where Ai denotes

the set of compatible men for the ith woman, i = 1, . . . , n. Then marrying off

all women corresponds to an SDR (y1, . . . , yn) of (A1, . . . , An). The marriage

is that the ith woman marries the man yi ∈ Ai, i = 1, . . . , n. No two women

marry the same man.

Theorem 4.1 (Hall, 1935). A family A = (A1, A2, . . . , An) of sets has an

SDR if and only if the Marriage Condition (MC) holds.

Proof. Proof by Contradiction. We have seen that MC is necessary. We

only need to prove that MC is sufficient. Let G be the bipartite graph whose

vertex set is the union X ∪ Y , where

X = {x1, x2, . . . , xn}, Y = A1 ∪ A2 ∪ · · · ∪ An,
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and whose edge set is

E =
{
(xi, yj) ∈ X × Y : yj ∈ Ai

}
.

To show that A has an SDR, it is equivalent to show that the bipartite graph G

has the matching number m(G) = n. It then suffices to show that the covering

number c(G) = n.

Suppose this is not true, i.e., there exits a covering C such that |C| < n. Let

C1 = C ∩X and C2 = C ∩ Y . Then

|C1| + |C2| < n.

Since |C1| < n and |X| = n, then X r C1 is nonempty. We write

X r C1 = {xi1, xi2, . . . , xik}.
Since C is a covering, there is no edge of G from a vertex in X rC1 to a vertex

in Y r C2. This means that all the sets Ai1, Ai2, . . ., Aik must be contained in

C2. Hence Ai1 ∪ Ai2 ∪ . . . ∪ Aik is a subset of C2. Thus

|Ai1 ∪ Ai2 ∪ · · · ∪ Aik| ≤ |C2|.
Since |C1| + |C2| < n and |C1| = n− k, we have

|C2| < n− |C1| = k.

Therefore

|Ai1 ∪ Ai2 ∪ · · · ∪ Aik| < k,

which is contradictory to the Marriage Condition.

Proof by Induction. For n = 1, it is trivially true.

Assume n ≥ 2. There are two cases to be considered: the tight case and

the case with room to spare.

The Tight Case. There is a proper subfamily of A of k sets whose union

contains exactly k elements, where 1 ≤ k ≤ n − 1. (By MC the union cannot

contain fewer than k elements, so we are tight.) Without loss of generality, we

may assume that the subfamily is the first k sets A1, . . . , Ak. Set

A := A1 ∪ · · · ∪ Ak.
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Clearly, |A| = k. Since A satisfies MC, so does the subfamily (A1, . . . , Ak).

Since k < n, it follows by induction that (A1, . . . , Ak) has an SDR (y1, . . . , yk).

Since |A| = k and y1, . . . , yk are distinct, we have A = {y1, . . . , yk}. It forces

that A1 = {y1}, . . . , Ak = {yk}.
Now consider the familyA∗ := (Ak+1rA, . . . ,AnrA) of n−k sets. We claim

thatA∗ satisfies MC. In fact, for each choice of indices k+1 ≤ i1 < · · · < ij ≤ n,

consider the subfamily (A1, . . . , Ak, Ai1, . . . , Aij) of A. Then by MC property

of A,

|A ∪ Ai1 ∪ · · · ∪ Aij | = |A1 ∪ · · · ∪ Ak ∪ Ai1 ∪ · · · ∪ Aij | ≥ k + j.

Since |A| = k, it follows that

|(Ai1 r A) ∪ · · · ∪ (Aij r A)| ≥ j.

We haver seen that the family A∗ satisfies MC.

Since n − k ≤ n − 1, by induction A∗ has an SDR (y∗k+1, . . . , y
∗
n). Then

(y1, . . . , yk, y
∗
k+1, . . . , y

∗
n) is an SDR for A.

The Case with Room to Spare. For every k with 1 ≤ k ≤ n− 1 and every

subfamily of A with k sets, its union contains at least k + 1 elements. (The

union contains more elements that needed for MC, so we have room to spare.)

Then each set Ai contains at least one element, actually two because of room to

spare. Fix an element yn ∈ An, set A′
i := Ai r {yn} for 1 ≤ i ≤ n − 1. We

claim that the family A′ := (A′
1, . . . , A

′
n−1) satisfies MC. In fact, for each choice

(i1, . . . , ik) of indices with 1 ≤ i1 < · · · < ik ≤ n− 1, we have

|A′
i1
∪ · · · ∪ A′

ik
| ≥ |Ai1 ∪ · · · ∪ Aik| − 1 ≥ (k + 1)− 1 = k.

This means that A′ satisfies MC. By induction, A′ has an SDR (y1, . . . , yn−1).

Hence (y1, . . . , yn−1, yn) is an SDR for A.

The Hall theorem can be stated in terms of bipartite graphs.

Theorem 4.2. Let A = (A1, A2, . . . , An) be a family of sets. Then the size

m(A) of a largest subfamily of A that has an SDR is given by

m(A) = min
{
n, n− k + |Ai1 ∪ · · · ∪ Aik| : i1 < · · · < ik

}
.
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Proof. Let G = (X ∪ Y, E) be the bipartite graph associated with the family

A, where X = {1, 2, . . . , n}, Y = A1 ∪ · · · ∪ An, and

E =
{
(i, y) ∈ X × Y : y ∈ Ai

}
.

To find the largest size of a subfamily of A that has an SDR, it is equivalent to

finding the matching number of the bipartite graph G; and by Theorem 2.3 it is

equivalent to finding the covering number of G. Thus m(A) = c(G).

Let S be a covering of G. Let |S ∩X| = n− k and let {i1, i2, . . . , ik} be the

complement of S∩X in X . Since the edges (ij, a), where a ∈ Ai1∪Ai2∪· · ·∪Aik ,

can not be covered by S ∩X , such edges must be covered by S ∩ Y . It follows

that

S ∩ Y = Ai1 ∪ Ai2 ∪ · · · ∪ Aik.

Thus

|S| = |S ∩X| + |S ∩ Y | = n− k + |Ai1 ∪ · · · ∪ Aik|.
Therefore, the covering number c(G) of G is

c(G) = min
{
n, n− k + |Ai1 ∪ · · · ∪ Aik| : i1 < · · · < ik

}
.

5 Stable Marriages

In the Marriage Problem of n men and n women, we assume that each woman

ranks each man in accordance with her preference for that man as a spouse, no

tie is allowed. So each woman has a total ordering about the n men. Similarly,

each man has a total ordering about the n women. It is clear that there are n!

possible ways of complete marriage. A complete marriage is called unstable if

there exist two women A,B and two men a, b such that

• A and a get married,

• B and b get married,

• A prefers b rather than a,

• b prefers A rather than B.
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A complete marriage is called stable if it is not unstable. Does there always

exist a stable marriage? If it does, how to find a stable marriage?

Let G = (X ∪ Y, E) be a complete bipartite graph, where X is the set of the

n women and Y is the set of the n men. We write

X = {x1, x2, . . . , xn},
Y = {y1, y2, . . . , yn},

E =
{
(xi, yj) : xi ∈ X, yj ∈ Y

}
.

Each woman xi ranks each man yj by assigning integer rij between 1 and n.

Then (ri1, ri2, . . . , rin) is a permutation of {1, 2, . . . , n}. Similarly, each man

yj ranks each woman xi by assigning integer sji so that (sj1, sj2, . . . , sjn) is a

permutation of {1, 2, . . . , n}. We thus have the preference ranking matrix

M =

y1 y2 · · · yn

x1

x2
...

xn




(r11, s11) (r12, s21) · · · (r1n, sn1)

(r21, s12) (r22, s22) · · · (r2n, sn2)
... ... ...

(rn1, s1n) (rn2, s2n) · · · (rnn, snn)


 .

Example 5.1. For n = 2, let the preference ranking matrix be

M =

[
(1, 2) (2, 2)

(2, 1) (1, 1)

]
.

This means that the woman x1 prefers the man y1 than y2, the woman x2 prefers

the man y2 than y1. The two women x1 and x2 have opposite taste. However,

both y1 and y2 prefer x2 than x1. The men y1 and y2 have the same taste. There

are two possible complete marriages:

x1 ↔ y1, x2 ↔ y2 and x1 ↔ y2, x2 ↔ y1.

The first one is stable because the three guys x1, x2, y2 are happy, only y1 is

upset, but he has no choice. However, the second one is unstable because the

wife x2 prefers the man y2 than her current husband y1 and the husband y2

prefers the woman x2 than his current wife x1.

15



Example 5.2. For n = 3, let the preference ranking matrix be

M =




(1, 3) (3, 2) (2, 1)

(2, 1) (1, 3) (3, 2)

(3, 2) (2, 1) (1, 3)




There are 3! = 6 possible complete marriages. There are two complete stable

marriages:

x1 ↔ y1, x2 ↔ y2, x3 ↔ y3 (each woman gets her first choice)

x1 ↔ y3, x2 ↔ y1, x3 ↔ y2 (each man gets his first choice)

The first marriage is stable even each man gets his last choice. The second

marriage is also stable even each woman gets her second choice. In general

letting each woman get her first choice does not necessarily result a complete

marriage. For instance, if two women have the same first choice. There are four

unstable complete marriages:

x1 ↔ y1, x2 ↔ y3, x3 ↔ y2 (x2 and y1 prefer each other)

x1 ↔ y3, x2 ↔ y2, x3 ↔ y1 (x3 and y2 prefer each other)

x1 ↔ y2, x2 ↔ y1, x3 ↔ y3 (x1 and y3 prefer each other)

x1 ↔ y2, x2 ↔ y3, x3 ↔ y1 (x1 and y3 prefer each other)

We now show that a stable marriage always exists and give an algorithm to

find a stable marriage. Thus complete chaos can be avoided.

Algorithm 5.1 (Gale-Shapley, 1962). Deferred Acceptance Algorithm

for stable marriage of women and men. Begin with all women marked as re-

jected, and no man rejected any woman.

Step 0. If there is no rejected woman, then Stop; a stable marriage is

obtained. Otherwise, go to Step 1.

Step 1. Let each woman, who is marked as rejected, choose the man

whom she ranks highest among all those men who have not yet

rejected her. Then go to Step 2.

Step 2. Let each man pick out the woman he ranks highest among all

those women who have chosen him and whom he has not yet

rejected, defer to her decision, and reject the others. Then

return to Step 0.
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Proof. During the execution of the algorithm, the women propose to men in

Step 1, some men and some women become engaged in Step 2. However,

the men engaged are able to break engagements if they receive a better offer in

the next run. It is clear that no two men can engage a same woman because of

Step 1, and no two women can be engaged to a same man because of Step 2.

We have the following properties:

• Once a man becomes engaged he remains engaged throughout the execution

of the algorithm, but his fiancee may be changed. A change of fiancee is an

improvement in the eyes of the man who breaks engagement.

• A woman may be engaged or disengaged several times during the execution

of the algorithm. However, each new engagement results in a less desirable

fiance.

Since each woman cannot be rejected twice by a same man, the number of times

to be rejected for each woman is at most the number of men. This indicates

that eventually there is no rejected woman, so the algorithm stops after a finite

number of runs of Step 1 and Step 2. Whenever there is no rejected woman,

then no two women had proposed to a same man in Step 1 in the previous run.

Thus each man was chosen by one woman, so each man was engaged in Step 2.

Now we obtain a complete marriage. Next we show that this marriage is stable.

Given two women x, x′ and two men y, y′ such that x marries y and x′ marries

y′:
x ↔ y, x′ ↔ y′.

If x prefers y′ rather than y, then x chose y′ at some early stage of the algorithm

in Step 1, and y′ may accept or reject x right after in Step 2, but eventually

y′ rejected x at some stage later of the algorithm in Step 2. This means that

y′ preferred someone else rather than x when x chose him. Since every man gets

his fiancee improved during execution of the algorithm, thus y′ prefers x′ rather

than x. Thus, it can not be happen that y′ prefers x rather x′.

Example 5.3. For n = 4, apply the Deferred Acceptance Algorithm to find a
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stable marriage for the preference ranking matrix

M =

y1 y2 y3 y4

x1

x2

x3

x4




(3, 3) (1, 4) (4, 1) (2, 4)

(4, 2) (1, 2) (2, 3) (3, 2)

(4, 1) (2, 1) (3, 4) (1, 3)

(4, 4) (1, 3) (3, 2) (2, 1)




Applying Step 1,

x1 → y2, x2 → y2, x3 → y4, x4 → y2.

Applying Step 2, we obtain a partial marriage

x1 ↔ ∅, x2 ↔ y2, x3 ↔ y4, x4 ↔ ∅.

Continuing to apply Step 1 and Step 2,

x1 → y4, x2 ↔ y2, x3 ↔ y4, x4 → y4;

x1 ↔ ∅, x2 ↔ y2, x3 ↔ ∅, x4 ↔ y4;

x1 → y1, x2 ↔ y2, x3 → y2, x4 ↔ y4;

x1 ↔ y1, x2 ↔ ∅, x3 ↔ y2, x4 ↔ y4;

x1 ↔ y1, x2 → y3, x3 ↔ y2, x4 ↔ y4;

x1 ↔ y1, x2 ↔ y3, x3 ↔ y2, x4 ↔ y4.

We thus obtain a stable marriage

x1 ↔ y1, x2 ↔ y3, x3 ↔ y2, x4 ↔ y4.

Among the stable complete marriages we may wish to compare one stable

complete marriage with certain other stable complete marriages. A man y is

called feasible for a woman x provided there is a stable complete marriage in

which y is the spouse of x. A man that is not feasible for a woman is called

infeasible for the woman. Obviously, feasibility is symmetric in the sense that if

y is feasible to x, then x is also feasible to y. A stable complete marriage is called

optimal for a woman x provided that x ranks her spouse in the marriage

higher than or equal to all her feasible spouses. A stable complete marriage

is called women-optimal provided that it is optimal for each woman. In a
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similar way we can define a men-optimal stable marriage. It is not obvious

whether there exist women-optimal and men-optimal stable complete marriages.

In fact, it is not even clear whether it results a complete marriage when each

woman is independently given her best feasible spouse. The following theorem

clarifies these questions.

Theorem 5.2. The stable complete marriage obtained from the Deferred

Acceptance Algorithm, with the woman choosing the men, is women-optimal.

Proof. The idea is to show that, if a woman x is rejected by a man y, then the

man y is infeasible for x. If so, at the end of the Deferred Acceptance Algorithm,

each woman obtains as her spouse the man she ranks highest among all the men

that are feasible for her, and hence the complete marriage is women-optimal. To

this end, we show that at the end of the kth round of Algorithm 5.1, all the men

who have rejected a woman x are infeasible for x. We proceed induction on k.

Recall that a man y is infeasible for a woman x if and only if there is no stable

complete marriage in which y is the spouse of x; in other words, if there is a

complete marriage in which y is the spouse of x, then the complete marriage is

unstable.

For k = 1, let x be a woman who is rejected by a man y at the end of the first

round. Then x ranks y highest among all men, but y prefers another woman x′

who also ranks y highest among all men. If there is a complete marriage such

that x ↔ y and x′ ↔ y′, then x′ prefers y rather than y′ and y prefers x′ rather

than x. This means that the complete marriage is unstable. Now assume it is

true for k, that is, all men are infeasible for those women whom they reject at

or before the end of the kth round. Consider the case of k + 1.

Let y be a man who rejects a woman x at the end of the (k + 1)th round.

We need to show that y is infeasible for x. Suppose y is feasible for x, this is,

there is a stable complete marriage M in which y is the spouse of x. Since the

men who did reject x before the (k + 1)th round are infeasible for x, the woman

x ranks y highest among all the men feasible for x. Since y rejects x in Step 2

of the (k + 1)th round, the man y chooses another woman x′ rather than x in

the same Step 2. Note that x′ ranks y highest among all the men who did not

reject her before the (k + 1)th round, and by the induction hypothesis, the men
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who did reject x′ before the (k + 1)th round are infeasible for x′. So x′ ranks

y highest among all the men feasible for x′ and some possibly infeasible for x′.
Let y′ be the spouse of x′ in M. Then in the complete marriage M, we have

x ↔ y, x′ ↔ y′,

but x′ prefers y rather than y′ (since y′ is feasible and y is ranked the highest by

x′ among all the feasible men and some possibly infeasible men for x′), y prefers

x′ rather than x (since y rejects x and accept x′). This means that the complete

marriage M is unstable, contrary to that M is stable.

Corollary 5.3. In any women-optimal stable complete marriage, each man

is paired with the woman he ranks lowest among all the women feasible for

him.

Proof. Suppose the theorem is not true, that is, there exist a women-optimal

stable marriage M such that x ↔ y, and a stable complete marriage M′ such

tat x′ ↔ y, but y ranks x′ lower than x. Let y′ be the spouse of x in the

complete marriage M′. The in the stable complete marriage M′, we have

x ↔ y′, x′ ↔ y.

Since both y, y′ are feasible for x (because M and M′ are stable marriages)

and x ranks y highest among all the men feasible for x (because M is women-

optimal), then x prefers y rather than y′. Note that y prefers x rather x′ by

assumption. This means that the complete marriage M′ is unstable, contrary

to that M′ is stable.

Corollary 5.4. The women-optimal and men-optimal stable complete mar-

riages are identical if and only if there is exactly one stable complete mar-

riage.

Proof. If the women-optimal and men-optimal stable complete marriages are

identical, then by Corollary 5.3 each woman (man) gets her (his) best and worst

partner taken over all stable complete marriages. It follows that there is exactly

one stable complete marriage. Conversely, if there is exactly one stable complete

marriage, then the women-optimal and men-optimal stable complete marriages

must be identically the same.
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Example 5.4. Suppose an even number 2n of girls wish to pair up as room-

mates. Each girl ranks the other girls in the order 1, 2, . . . , 2n− 1 of preference.

A complete marriage in this situation is a pairing of the girls into n pairs.

A complete marriage is unstable provided there exist two girls who are not

roommates such that each of them prefers the other person’s roommate to her

current roommate. A complete marriage is stable if it is not unstable. Does

there always exists a stable complete marriage?

Consider the case of four girls a, b, c, d; each of the four girls ranks the others

as the following
a : b, c, d

b : c, a, d

c : a, b, d

d : any order

We shall see that there is no stable complete marriage. Suppose a and d are

roommates, then b and c would be roommates. However, a prefers c rather d

and c prefers a rather b. So the complete marriage

a ↔ d, b ↔ c

is unstable. Similar, the complete marriages

b ↔ d, a ↔ c and c ↔ d, a ↔ b

are also unstable. So there is no stable complete marriage.
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