
CHAPTER 6

Counting Orbits of Group Actions

6.1. Group Action

Let G be a finite group acting on a finite set X, said to be a group action, i.e., there is a map

G × X → X, (g, x) �→ gx,

satisfying two properties: (i) ex = x for all x ∈ X, where e is the group identity element of G, (ii)
h(gx) = (hg)x for all g, h ∈ G and x ∈ X. Each group element g induces a bijection g : X → X by
g(x) = gx, since the map g has the inverse map g−1.

The group action induces an equivalence relation ∼ on X, where x ∼ y for x, y ∈ X if and only if gx = y
for some g of G. Then X is partitioned into equivalence classes, each of them is called an orbit of X under
G. For each element x ∈ X, the orbit containing x is also called the orbit of x, and it consists of the
elements of the form gx, where g ∈ G. So we denote descriptively the orbit of x by

Gx = {y ∈ X : y = gx, g ∈ G}.
We denote by X/G the set of equivalence classes (orbits) of X under the action of G.

For each element x ∈ X, the stabilizer of x is the set

Stab(x) = {g ∈ G : gx = x},
which is a subgroup of G. Set H := Stab(x). The map Gx → G/H, gx �→ gH, is well-defined and is a
bijection. In fact, if gx = hx, then g−1hx = x, i.e., g−1h ∈ H, thus gH = g(g−1hH) = hH; the map is
well-defined. The surjectivity is obvious. If gH = hH, then h−1g ∈ H, thus g−1hx = x, i.e., hx = gx; the
map is injective. Therefore |G| = |Gx| |H|, since |G/H| = |G|/|H| and is the number of cosets of H in G.
We obtain the following lemma which can be proved directly without use of quotient group.

Lemma 6.1. Let G be a finite group acting on a finite set X. Then for each element x ∈ X,

|G| = |Gx| |Stab(x)|.
Proof. Consider the subset Sx = {(g, y) : y = gx} of G × X. Fix an element y ∈ Gx and an element

g0 ∈ G such that g0x = y. The map {g ∈ G : gx = y} → Stab(x), g �→ g−1
0 g, is a bijection. Thus

|Sx| =
∑

y∈Gx

∑
g∈G
gx=y

1 =
∑

y∈Gx

∣∣{g ∈ G : gx = y}∣∣ =
∑

y∈Gx

|Stab(x)| = |Stab(x)| |Gx|.

The identity follows by |Sx| = |G|, since Sx = {(g, gx) : g ∈ G}. �

For each group element g ∈ G, the fixed set of g is the subset

Fix(g) = {x ∈ X : gx = x}.
A weight function w on X with values in an abelian group A is just a map w : X → A. Each weigh

function w can be extended to a weight function on the power set of X, given by w(∅) ≡ 0 and

w(S) =
∑
x∈S

w(x), ∅ �= S ⊆ X.

There is an average weight function W on the power set of X, defined by W (∅) ≡ 0 and and

W (S) =
1
|S|

∑
x∈S

w(x), ∅ �= S ⊆ X.
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50 6. COUNTING ORBITS OF GROUP ACTIONS

Lemma 6.2 (Burnside’s Lemma). Let G be a finite group acting on a finite set X. Then the number of
orbits of X under the action of G is given by

|X/G| =
1
|G|

∑
g∈G

|Fix(g)|. (6.1)

Moreover, given a weight function w : X → A, where A is an abelian group, we have∑
P∈X/G

W (P ) =
1
|G|

∑
g∈G

w
(
Fix(g)

)
. (6.2)

Proof. The weight function w can be extended to w : G × X → A by w(g, x) = w(gx). Consider the
total weight of the subset S = {(g, x) : gx = x} ⊆ G × H. On the one hand,

w(S) =
∑
g∈G

∑
x∈X
gx=x

w(gx)

=
∑
g∈G

∑
x∈X
gx=x

w(x)

=
∑
g∈G

w
(
Fix(g)

)
.

On the other hand, we have

w(S) =
∑
x∈X

∑
g∈G
gx=x

w(gx)

=
∑
x∈X

∑
g∈G
gx=x

w(x)

=
∑
x∈X

w(x)|Stab(x)|

=
∑
x∈X

w(x) · |G|
|Gx| .

Since X =
⋃

P∈X/G P is a disjoint union, we see that

w(S) = |G|
∑
x∈X

w(x)
|Gx|

= |G|
∑

P∈X/G

∑
x∈P

w(x)
|P |

= |G|
∑

P∈X/G

W (P ).

The the weighted version of the Birnside identity (6.2) follows immediately. �

6.2. Groups Acting on Sets of Functions

Let G and H be finite groups. Let X be a finite G-set and Y a finite H-set. We denote by Map(X, Y )
the set of all functions from X to Y . Then the product group G×H acts on Map(X, Y ) in an obvious way:

G × H × Map(X, Y ) → Map(X, Y ), (g, h, φ) �→ (g, h)φ = hφg−1,

where hφg−1(x) = hφ(g−1x) for x ∈ X. In fact, for (g1, h1), (g2, h2) ∈ G × H and φ ∈ Map(X, Y ),

(g2, h2)((g1, h1)φ) = (g2, h2)(h1φg−1
1 ) = h2h1φg−1

1 g−1
2

= h2h1φ(g2g1)−1 = (g2g1, h2h1)φ
= ((g2, h2)(g1, h1))φ.
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Two functions φ1, φ2 ∈ Map(X, Y ) are said to be equivalent if they are in the same orbit of Map(X, Y ),
i.e.,

φ1 ∼ φ2 if and only if φ2g = hφ1

for some g ∈ G and h ∈ H. This means that the following diagram

X
φ1−→ Y

g ↓ ↓ h

X
φ2−→ Y

is commutative. For each φ ∈ Map(X, Y ), we have Fix(φ) = {(g, h) ∈ G × H : φg = hφ}.
Theorem 6.3 (DeBruijin Formula). Let G,H be finite groups acting on finite sets X, Y respectively. Let

G×H act on Map(X, Y ) as (g, h) · φ = hφg−1. Then for each weight function w : Map(X, Y ) → A (abelian
group), ∑

P∈Map(X,Y )/(G×H)

W (P ) =
1

|G × H|
∑

(g,h)∈G×H

∑
φ∈Map(X,Y )

φg=hφ

w(φ) (6.3)

Proof. This is a special case of the weighted version (6.2) of the Burnside Lemma with G replaced by
G × H and X replaced by Map(X, Y ). �

Exercise 3. Let |X| = n, Y = [k] = {1, 2, . . . , k}, n = n1+· · ·+nk. Consider the set Map(X, n1, . . . , nk)
of functions f : X → Y such that |f−1(i)| = ni. What is |Map(X, n1, . . . , nk)|? |Map(X, n1, . . . , nk)| =(

n
n1,...,nk

)
. Let G be a group acting on X with G = {1, σ, σ2, . . . , σn−1}, where σ(xi) = xi+1, xn+1 = x1.

What is |Map(X, n1, . . . , nk)H | for each subgroup H of G?

6.3. Pólya’s Theorem

We consider a special case of DeBruijin’s formula (6.3) with H = 1, i.e., there is no group action on
Y . Then the group action of G on Map(X, Y ) is given by g · φ = φg−1 for g ∈ G and φ ∈ Map(X, Y ). A
function φ : X → Y is said to be G-invariant if φg = φ for all g ∈ G. We denote by Map(X, Y )G the set of
G-invariant functions.

Let w : Y → A be a weight function, where A is an arbitrary finite set, not necessarily an abelian group.
Then w can be extended into a function w : Map(X, Y ) → Z[A], defined by

w(φ) =
∏
x∈X

w(φ(x)), φ ∈ Map(X, Y ).

The product exhibits the information of the map φ in terms of weights of the values φ(x). We shall see that w
is constant on each orbit of the group action of G on Map(X, Y ). In fact, given two maps φ1, φ2 ∈ Map(X, Y )
in an orbit, i.e., φ2 = φ1g for some g ∈ G, we have

w(φ2) =
∏
x∈X

w(φ1(g(x))) =
∏

x′∈X

w(φ1(x′)) = w(φ1) (let x′ = g(x)).

Definition 6.4. Let G be a finite group acting on an n-set X. The cycle index of each group element
g ∈ G of cycle type 1λ1(g)2λ2(g) · · ·nλn(g) is the monomial

Zg(t1, t2, . . . , tn) = t
λ1(g)
1 t

λ2(g)
2 · · · tλn(g)

n .

The cycle index of G is the polynomial

ZG(t1, t2, . . . , tn) =
1
|G|

∑
g∈G

Zg(t1, t2, . . . , tn). (6.4)

Theorem 6.5 (Pólya’s Theorem). Let G be a finite group acting on a finite set X with |X| = n. Let Y
be a finite set and w : Y → A be a weight function. Then∑

P∈Map(X,Y )/G

W (P ) = ZG

(∑
y

w(y),
∑

y

w(y)2, . . . ,
∑

y

w(y)n

)
. (6.5)
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In particular, if w(y) = 1 for y ∈ Y , then (6.5) becomes

|Map(X, Y )/G| = ZG

(|Y |, |Y |, . . . , |Y |). (6.6)

Proof. We may assume X = {1, 2, . . . , n}. Fix an element g ∈ G. Since g is a permutation of X, we
may write g as cycles (C1)(C2) · · · (Ck) with ci = |Ci|, where C1, . . . , Ck form a partition of X. Consider
maps φ : X → Y such that φg = φ, which is equivalent to that φ is constant on each cycle Ci of g. Let us
write yi = φ(Ci) = φ(x), where x ∈ Ci, for φg = φ and 1 ≤ i ≤ k. Notice the bijection

Fix(g) = {φ ∈ Map(X, Y ) : φg = φ} → Y k, φ �→ (φ(C1), . . . , φ(Ck)).

We then have ∑
φ∈Map(X,Y )

φg=φ

w(φ) =
∑

y1∈Y

∑
y2∈Y

· · ·
∑

yk∈Y

w(y1)c1w(y2)c2 · · ·w(yk)ck

=

⎛
⎝ ∑

y1∈Y

w(y1)c1

⎞
⎠

⎛
⎝ ∑

y2∈Y

w(y2)c2

⎞
⎠ · · ·

⎛
⎝ ∑

yk∈Y

w(yk)ck

⎞
⎠

=

⎛
⎝∑

y∈Y

w(y)c1

⎞
⎠

⎛
⎝∑

y∈Y

w(y)c2

⎞
⎠ · · ·

⎛
⎝∑

y∈Y

w(y)ck

⎞
⎠ .

Let g be of the cycle type 1λ1(g)2λ2(g) · · ·nλn(g). Collecting the like terms in the above product, we see that

∑
φ∈Map(X,Y )

φg=φ

w(φ) =

⎛
⎝∑

y∈Y

w(y)

⎞
⎠λ1(g) ⎛

⎝∑
y∈Y

w(y)2

⎞
⎠λ2(g)

· · ·
⎛
⎝∑

y∈Y

w(y)n

⎞
⎠λn(g)

= Zg

⎛
⎝∑

y∈Y

w(y),
∑
y∈Y

w(y)2, . . . ,
∑
y∈Y

w(y)n

⎞
⎠ .

Applying the weighted version of the Birnside Lemma (6.2), we see that∑
P∈Map(X,Y )/G

W (P ) =
1
|G|

∑
g∈G

∑
φ∈Map(X,Y )

φg=φ

w(φ)

= ZG

(∑
y

w(y),
∑

y

w(y)2, . . . ,
∑

y

w(y)n

)
.

The proof is finished. �

Definition 6.6. A function φ : X → Y may be considered as a coloring of X with the set Y of colors.
Let Y = {y1, . . . , ym}. The indicator of φ is the monomial

ind(φ) =
∏
x∈X

φ(x) =
m∏

i=1

y
|φ−1(yi)|
i

of the indeterminates y1, . . . , ym. The indicator (or patten inventory) of Map(X, Y )G is the multinomial
generating function

IndG(X; y1, . . . , ym) =
∑

(k1,...,km)∈Nm

ck1,...,kmyk1
1 · · · ykm

m ,

where N = {0, 1, 2, . . .}, the coefficient ck1,...,km is the number of G-invariant colorings of X such that the
number of elements of X receiving the color yi is ki, 1 ≤ i ≤ m.

Corollary 6.7. Let G be a finite group acting on a finite set X with |X| = n, and let Y = {y1, . . . , ym}.
Then the indicator of Map(X, Y )G is given by

IndG(X; y1, . . . , ym) = ZG

(
m∑

i=1

yi,
m∑

i=1

y2
i , . . . ,

m∑
i=1

yn
i

)
. (6.7)
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Proof. Let A = Y and w : Y → A be the identity map. The weight function ind : Map(X, Y ) → Z[Y ]
induced by w is G-invariant, i.e., Ind(P ) = ind(φ) for each orbit P of Map(X, Y ) and all φ ∈ P . If φ : X → Y

is of type (k1, . . . , km), where ki = |φ−1(yi)|, then Ind(P ) = ind(φ) = yk1
1 · · · ykm

m . Thus∑
P∈Map(X,Y )/G

Ind(P ) = IndG(X; y1, . . . , ym).

Now the Pólya cycle index formula (6.5) becomes the generating function formula (6.7). �

6.4. Examples

Example 6. Find the number of ways of coloring the vertices of a square with two colors, black and
white.

Let X = {1, 2, 3, 4} denote the four vertices of the square. There are 16 (= 24) colorings when the
vertices of the square are labelled by the numbers 1,2,3,4; see Figure 1. The sixteen colorings can be listed
as follows:

(b, b, w,w)
(b, w, b, w)

(b, b, b, w) (b, w, w, b) (b, w, w,w)
(b, b, w, b) (w, b, b, w) (w, b, w,w)
(b, w, b, b) (w, b, w, b) (w, w, b, w)

(b, b, b, b) (w, b, b, b) (w, w, b, b) (w, w, w, b) (w, w, w,w)
These colorings can be represented by the following binomial expansion

(b + w)4 = b4 + 4b3w + 6b2w2 + 4bw3 + w4.

The coefficient cij of biwj in the expansion represents the number of colorings with i black vertices and j
white vertices. For instance, the coefficient of b3w means that there are 4 colorings such that 3 vertices are
black and one vertex is white; and the coefficient of b2w2 means that there are 6 colorings such that two
vertices are black and other two vertices are white.

However, when the labels are removed, some colorings are essentially the same. For instance, the
following two colorings

4 4 3

211 2

3

Figure 1. Two indistinguishable colorings when the labels are removed.

are indistinguishable when the labels are removed, since the left one can be obtained from the right one by
a rotation of 180◦. The symmetry group of the square can be identified as a subgroup G of the symmetric
group for the set {1, 2, 3, 4}. The cycle indexes for all g ∈ G are listed in the following table.

g ∈ G λ1(g) λ2(g) λ3(g) λ4(g) Zg

(1)(2)(3)(4) 4 0 0 0 t41
(1)(3)(42) 2 1 0 0 t21t2
(2)(31)(4) 2 1 0 0 t21t2
(21)(43) 0 2 0 0 t22
(31)(42) 0 2 0 0 t22
(32)(41) 0 2 0 0 t22
(4321) 0 0 0 1 t4
(4123) 0 0 0 1 t4

Thus the cycle index of G is

ZG(t1, t2, t3, t4) =
1
8

(
t41 + 2t21t2 + 3t22 + 2t4

)
.
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Taking account of the symmetry of the square, the indistinguishable colorings of the square by two colors
can be listed as follows:

Figure 2.

The total number of indistinguishable colorings is 6, which is confirmed by the formula

ZG(2, 2, 2, 2) =
1
8

(
24 + 2 · 23 + 3 · 22 + 2 · 2)

= 6.

The generating function of the G-invariant colorings with the two colors b (black) and w (white) is

IndG(X; b, w) = b4 + b3w + 2b2w2 + bw3 + w4,

and is confirmed by

ZG(b + w, b2 + w2, b3 + w3, b4 + w4)

=
1
8

(
(b + w)4 + 2(b + w)2(b2 + w2) + 3(b2 + w2)2 + 2(b4 + w4)

)
=

1
8

(
(b4 + 4b3w + 6b2w2 + 4bw3 + w4) + (2b4 + 4b3w + 4b2w2 + 4bw3 + 2w4)

+ (3b4 + 6b2w2 + 3w4) + (2b4 + 2w4)
)

= b4 + b3w + 2b2w2 + bw3 + w4

= IndG(X; b, w).

Example 7. Find the number of indistinguishable colorings for the faces of a regular cube with three
colors, black (b), red (r), and white (w).

Let X = {1, 2, 3, 4, 5, 6} be the set of six faces of the cube. The symmetric group of the cube can be
identified as a subgroup of the symmetric group of X. This subgroup can be obtained by three kinds of
rotations, see Figure 3.

6

1

6

5 2

1

6

25 5 2

6

1

3
4

3
4

3
4

8

5

7

34

1 2

Figure 3. Three kinds of rotations of a cube.

g ∈ G # λ1(g) λ2(g) λ3(g) λ4(g) λ5(g) λ6(g) Zg

(1)(2)(3)(4)(5)(6) 1 6 0 0 0 0 0 t61
(3)(4)(6512) 6 2 0 0 1 0 0 t21t4
(3)(4)(52)(61) 3 2 2 0 0 0 0 t21t

2
2

(42)(53)(61) 6 0 3 0 0 0 0 t32
(513)(642) 8 0 0 2 0 0 0 t23
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There are 3 types of the first kind of rotations, 6 types of the second kind of rotations, and 4 types of
the third kind of rotations. Then |G| = 24 and the cycle index polynomial for the symmetry group of a cube
is

ZG(t1, . . . , t6) =
1
24

(
t61 + 3(2t21t4 + t21t

2
2) + 6t32 + 4 · 2t23

)
=

1
24

(
t61 + 3t21t

2
2 + 6t21t4 + 6t32 + 8t23

)
.

The total number of indistinguishable colorings is given by

ZG(3, 3, 3, 3, 3, 3) =
1
24

(
36 + 3 · 32 · 32 + 6 · 32 · 3 + 6 · 33 + 8 · 32

)
= 57.

The generating function for the G-invariant colorings is

IndG(X; b, r, w) = (b6 + r6 + w6)
+(b5r + b5w + br5 + r5w + bw5 + rw5)
+2(b4r2 + b4w2 + b2r4 + r4w2 + b2w4 + r2w4)
+2(b4rw + br4w + brw4)
+2(b3r3 + b3w3 + r3w3)
+3(b3r2w + b3rw2 + b2r3w + b2rw3 + br3w + brw3)
+6b2r2w2.

6

1

6

5 2

1

25 5 2

6

1

3
4

3
4

3
4

1

34

87

2

5

Figure 4. Two distinguishable colorings of a regular cube.

Example 8. Octahedron:

Figure 5. Duality of cube and octahedron

g ∈ G # λ1(g) λ2(g) λ3(g) λ4(g) Zg

(1)(2)(3) · · · (7)(8) 1 8 0 0 0 t81
(8743)(6125) 6 0 0 0 2 t24
(51)(62)(73)(84) 3 0 4 0 0 t42
(52)(61)(74)(83) 6 0 4 0 0 t42
(4)(5)(713)(862) 8 2 0 2 0 t21t

2
3
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ZG(t1, . . . , t8) =
1
24

(
t81 + 9t42 + 6t24 + 8t21t

2
3

)
.

IndG(X; b, w) = b8 + b7w + 3b6w2 + 3b5w3 + 7b4w4 + 3b3w5 + 3b2w7 + w8.

Example 9. Tetrahedron: The cycle index polynomials for both vertices and faces are the same.

22

4

1 31 3

4

Figure 6. Two kinds of rotations of a regular tetrahedron.

g ∈ G # λ1(g) λ2(g) λ3(g) λ4(g) Zg

(1)(2)(3)(4) 1 4 0 0 0 t41
(312)(4) 8 2 1 0 0 t1t3
(32)(41) 3 0 0 2 0 t22

ZG(t1, t2, t3, t4) =
1
12

(
t41 + 8t1t3 + 3t22

)
.

Example 10. Icosahedron:

9

1

12

3

2 11

10

9

85

6

74

1

11

3

9

12

10

4

2

6

5 8

7

1

2

3

11

12

10

5

6

7

8

4

Figure 7. Three kinds of rotations of a regular icosahedron.

g ∈ G # λ1(g) λ2(g) λ3(g) λ5(g) Zg

(1)(2) · · · (12) 1 12 0 0 0 t121
(4)(10, 5, 2, 1, 7)(12, 6, 3, 8, 11)(9) 24 2 0 0 2 t21t

2
5

(7, 4)(8, 5)(9, 6)(10, 1)(11, 2)(12, 3) 15 0 6 0 0 t62
(3, 1, 2)(8, 4, 6)(9, 6, 5)(12, 11, 10) 20 0 0 4 0 t43

ZG(t1, . . . , t12) =
1
60

(
t121 + 24t21t

2
5 + 15t62 + 20t43

)
.

Dodecahedron
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Figure 8. Three kinds of rotations of regular dodecahedron.

g ∈ G # λ1(g) λ2(g) λ3(g) λ5(g) Zg

(1)(2)(3) · · · (19)(20) 1 20 0 0 0 t201
(5, 4, 3, 2, 1)(20, 16, 17, 18, 19)

(13, 12, 7, 6, 10)(15, 11, 8, 9, 14) 24 0 0 0 4 t45
(2, 1)(6, 3)(7, 5)(8, 4)(11, 10)

(12, 9)(16, 14)(17, 13)(18, 15)(20, 19) 15 0 10 0 0 t102
(1)(6, 5, 2)(9, 4, 7)(10, 3, 8)

(17, 14, 12)(18, 13, 11)(19, 15, 16)(20) 20 2 0 6 0 t21t
6
3

The cycle index

ZG(t1, . . . , t20) =
1
60

(
t201 + 20t21t

6
3 + 15t102 + 24t45

)
.

Exercise 4. Use the Birnside Lemma to prove that the number of round permutations of n objects of
type (n1, . . . , nk) is

1
n

∑
d|m

(
n/d

n1/d, . . . , nk/d

)
φ(d),

where m = gcd(n1, . . . , nk). (Hint: Consider the cyclic group G = {1, σ, σ2, . . . , σn−1} of order n acting on
the set X = {1, 2, . . . , n}, where σ : X → X is defined by σ(j) = j + 1 and n + 1 = 1.)

Proof. Let M be a multiset of type (n; n1, . . . , nk). The group G acts naturally on the set S(M) of all
permutations of M : for g ∈ G and x1x2 · · ·xn ∈ S(M),

g · x1x2 · · ·xn = xg(1)xg(2) · · ·xg(n).

By the Birnside Lemma, the number of round permutations of the type is given by

1
n

n−1∑
j=0

∣∣Fix(σj)
∣∣ .

The problem is to figure out |Fix(σj)| for all 0 ≤ i ≤ n − 1. Note that for σj and w = x1x2 · · ·xn ∈ S(M),

σj · x1x2 · · ·xn = xj+1xj+2 · · ·xnx1x2 · · ·xj .

Let l be a period (not necessarily minimum) of w, that is,

w = x1x2 · · ·xl︸ ︷︷ ︸ · · ·x1x2 · · ·xl︸ ︷︷ ︸︸ ︷︷ ︸
d

,

then ld = n. Let li be the number of elements of type i in x1x2 · · ·xl. Then lid = ni, that is, d | ni. Thus
d | m, where m = gcd(n1, . . . , nk). Let S(M, l) be the set of all permutations of M with period l. Then

|S(M, l)| =
(

l

l1, . . . , lk

)
=

(
n/d

n1/d, . . . , nk/d

)
.

First Method: It is clear that if l | j, then σj · w = w. For a fixed j, we claim that each w ∈ Fix(σj) is
counted for some d such that d | m, n

d | j, and gcd(di
n , d) = 1. In fact, it is clear that each w ∈ Fix(σj) is
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counted for some d′ such that d′ | m and n
d′ | j. If a := gcd(d′j

n , d′) �= 1, set d = d′
a ; obviously, d | m, n

d | j,

and gcd
(

d′j
n , d′

)
= a gcd

(
dj
n , d

)
; then gcd

(
dj
n , d

)
= 1. Note that S

(
M, n

d

)
are disjoint for various d such

that d | m, n
d | j, and gcd

(
dj
n , d

)
= 1. Hence

∣∣Fix(σj)
∣∣ =

∑
d|m, n

d |j, gcd( dj
n ,d)=1

(
n/d

n1/d, . . . , nk/d

)
.

It follows that

1
n

n∑
j=1

∣∣Fix(σj)
∣∣ =

1
n

∑
1≤j≤n,d|m

n
d

|j,gcd( dj
n

,d)=1

(
n/d

n1/d, . . . , nk/d

)

=
1
n

∑
d|m

(
n/d

n1/d, . . . , nk/d

) ∑
1≤j≤n, n

d
|j

gcd( dj
n

,d)=1

1

=
1
n

∑
d|m

(
n/d

n1/d, . . . , nk/d

) ∑
1≤j≤d

gcd(j,d)=1

1

=
1
n

∑
d|m

(
n/d

n1/d, . . . , nk/d

)
φ(d).

Note: One can show that for each fixed j, there exists at most one d such that d | m, n
d | j, and gcd(di

n , d) = 1.
In fact, for two such d′ and d′′, let d = gcd(d′, d′′), d′ = da′, and d′′ = da′′. Then d | m and gcd(a′, a′′) = 1.
Since j = ( n

d′ )b′ = ( n
d′′ )b′′ for some integers b′ and b′′, we have (n

d )( b′
a′ ) = (n

d )( b′′
a′′ ), which implies that

a′b′′ = a′′b′. Since gcd(a′, a′′) = 1, we have a′ | b′ and a′′ | b′′. This means that n
d | j. Note that

1 = gcd(d′j
n , d′) = a′ gcd(dj

n , d), which forces a′ = 1. Similarly, a′′ = 1. We thus conclude d′ = d′′.

Second Method: For each j, 1 ≤ j ≤ n, if there is one w ∈ Fix(σj) with period l, then l | j and l | n; so
l | gcd(j, n). Since n

l | m, we have n
gcd(j,n) | m. Thus Fix(σj) �= ∅ if and only if n

gcd(j,n) | m. For each positive
integer c, note that

#{j | 1 ≤ j ≤ n, gcd(j, n) = c} = #
{

j
∣∣∣ 1 ≤ j ≤ n

c
, gcd

(
j,

n

c

)
= 1

}
= φ

(n

c

)
.

We claim that if gcd(j, n) = c and n
c | m, then Fix(σj) = S(M, c). In fact, it is obvious that S(M, c) ⊂ Fix(σj)

because c | j. For any w ∈ Fix(σj), by the Euclidean Algorithm, there are integers a and b such that
c = aj + bn, then

σc · w = σajσbn · w = σaj · w = w;
that is, w is of period c; thus w ∈ S(M, c). Hence Fix(σj) = S(M, c).

Now we have

1
n

n∑
j=1

∣∣Fix(σj)
∣∣ =

1
n

n∑
j=1

∑
n
c

|m
gcd(j,n)=c

(
c

n1/
n
c , . . . , nk/n

c

)

=
1
n

∑
n
c |m

(
c

n1/
n
c , . . . , nk/n

c

) ∑
1≤j≤n,

gcd(j,n)=c

1

=
1
n

∑
n
c |m

(
c

n1/
n
c , . . . , nk/n

c

)
φ

(n

c

)

=
1
n

∑
d|m

(
n/d

n1/d, . . . , nk/d

)
φ(d).

�
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Exercise 5. Find the number of ways to color the faces of a soccer ball with two colors.

Solution. The soccer has 60 vertices, 90 edges, 12 pentagons, and 20 hexagons. It has three kinds of
symmetries: rotations of order 5 around the normal vector at the center of each pentagon, rotations of order
3 around the normal vector at the center of each hexagon, and rotations of order 2 at the center of each edge
between two hexagons.

The the cycle index for the group of vertex automorphisms is given as follows:

g ∈ G # λ1(g) λ2(g) λ3(g) λ5(g) Zg

identity 1 60 0 0 0 t601
pentagon rotations 24 0 0 0 12 t125
hexagon rotations 20 0 0 20 0 t203
edge rotations 15 0 30 0 0 t302

ZG(t1, . . . , t60) =
1
60

(
t601 + 15t302 + 20t203 + 24t125

)
.

Exercise 6. Show that for the symmetric group Sn acting on the set of n elements, the cycle index is

ZSn
(t1, . . . , tn) =

∑ 1
k1!k2! · · · kn!

(
t1
1

)k1
(

t2
2

)k2

· · ·
(

tn
n

)kn

,

where the sum is extended over all non-negative integer sequences (k1, k2, . . . , kn) such that k1 + 2k2 + · · ·+
nkn = n.

Proof. By definition of cycle index,

ZSn
(t1, . . . , tn) =

1
|Sn|

∑
g∈Sn

t
λ1(g)
1 · · · tλn(g)

n .

Note that the number of permutations of an n-set of type 1k12k2 · · ·nkn (having k1 cycles of length 1, k2

cycles of length 2, ..., kn cycles of length n) is
n!

1k12k2 · · ·nkn(k1!)(k2!) · · · (kn!)
,

where k1 + 2k2 + · · · + nkn = n. Thus

ZSn
(t1, . . . , tn) =

1
n!

∑ n!
1k12k2 · · ·nkn(k1!)(k2!) · · · (kn!)

tk1
1 tk2

2 · · · tkn
n

=
∑ tk1

1 tk2
2 · · · tkn

n

1k12k2 · · ·nkn(k1!)(k2!) · · · (kn!)

=
∑ 1

k1! · · · kn!

(
t1
1

)k1
(

t2
2

)k2

· · ·
(

tn
n

)kn

,

where the sum is extended to nonnegative integer tuples (k1, k2, . . . , kn) such that k1+2k2+· · ·+nkn = n. �


