Week 2

1 Pigeonhole Principle: Simple Form

Theorem 1.1. If $n+1$ objects are put into n boxes, then at least one box contains two or more objects.

Proof. Trivial.
Example 1.1. Among any 13 people there are two having their birthdays in the same month.

Example 1.2. There are n married couples. How many of the $2 n$ people must be selected in order to guarantee that a married couple is selected?

Other principles related to the pigeonhole principle:

- If n objects are put into n boxes and no box is empty, then each box contains exactly one object.
- If n objects are put into n boxes and no box gets more than one object, then each box has an object.

The abstract formulation of the three principles: Let X and Y be finite sets and let $f: X \rightarrow Y$ be a function.

- If X has more elements than Y, then f is not injective (one-to-one).
- If X and Y have the same number of elements and f is surjective (onto), then f is injective (one-to-one).
- If X and Y have the same number of elements and f is injective (one-toone), then f is surjective (onto).

Example 1.3. In any group of n people there are at least two persons having the same number of friends. (It is assumed that if a person x is a friend of y then y is also a friend of x.)

Proof. The number of friends of a person x is an integer k with $0 \leq k \leq n-1$. If there is a person y whose number of friends is $n-1$, then everyone is a friend of y, that is, no one has 0 friend. This means that 0 and $n-1$ can not be simultaneously the numbers of friends of some people in the group. The pigeonhole principle tells us that there are at least two people having the same number of friends.

Example 1.4. Given n integers $a_{1}, a_{2}, \ldots, a_{n}$, not necessarily distinct, there exist some consecutive terms whose sum is a multiple of n, i.e., there exist integers k and l with $0 \leq k<l \leq n$ such that $a_{k+1}+a_{k+2}+\cdots+a_{l}$ is a multiple of n.

Proof. Consider the n integers

$$
a_{1}, \quad a_{1}+a_{2}, \quad a_{1}+a_{2}+a_{3}, \quad \ldots, \quad a_{1}+a_{2}+\cdots+a_{n}
$$

Dividing these integers by n, we have

$$
a_{1}+a_{2}+\cdots+a_{i}=q_{i} n+r_{i}, \quad 0 \leq r_{i} \leq n-1, \quad i=1,2, \ldots, n
$$

If one of the remainders $r_{1}, r_{2}, \ldots, r_{n}$ is zero, say, $r_{k}=0$, then $a_{1}+a_{2}+\cdots+a_{k}$ is a multiple of n. If none of $r_{1}, r_{2}, \ldots, r_{n}$ is zero, then two of them must be the same (since $1 \leq r_{i} \leq n-1$ for all i), say, $r_{k}=r_{l}$ with $k<l$. This means that the two integers $a_{1}+a_{2}+\cdots+a_{k}$ and $a_{1}+a_{2}+\cdots+a_{l}$ have the same remainder. Thus $a_{k+1}+a_{k+2}+\cdots+a_{l}$ is a multiple of n.

Example 1.5. A chess master who has 11 weeks to prepare for a tournament decides to play at least one game every day but, in order not to tire himself, he decides not to play more than 12 games during any calendar week. Show that there exists a succession of consecutive days during which the chess master will have played exactly 21 games.

Proof. Let a_{1} be the number of games played on the first day, a_{2} the total number of games played on the first and second days, a_{3} the total number games played on the first, second, and third days, and so on. Since at least one game is played each day, the sequence of numbers $a_{1}, a_{2}, \ldots, a_{77}$ is strictly increasing, that is, $a_{1}<a_{2}<\cdots<a_{77}$ and $a_{1} \geq 1$. Since at most 12 games
are played during any one week, we have $a_{77} \leq 12 \times 11=132$. Thus

$$
1 \leq a_{1}<a_{2}<\cdots<a_{77} \leq 132 .
$$

Note that the sequence $a_{1}+21, a_{2}+21, \ldots, a_{77}+21$ is also strictly increasing, and

$$
22 \leq a_{1}+21<a_{2}+21<\cdots<a_{77}+21 \leq 132+21=153 .
$$

Now consider the 154 numbers

$$
a_{1}, a_{2}, \ldots, a_{77}, a_{1}+21, a_{2}+21, \ldots, a_{77}+21 ;
$$

each of them is between 1 and 153. It follows that two of them must be equal. Since $a_{1}, a_{2}, \ldots, a_{77}$ are distinct and $a_{1}+21, a_{2}+21, \ldots, a_{77}+21$ are also distinct, the two equal numbers must be an a_{i} and an $a_{j}+21$. Since the number of games played up to the i th day is $a_{i}=a_{j}+21$, we conclude that on the days $j+1, j+2, \ldots, i$ the chess master played a total of 21 games. \square Example 1.6. Given 101 integers from $1,2, \ldots, 200$, there are at least two integers such that one of them is divisible by the other.

Proof. By factoring out as many 2's as possible, we see that any integer can be written in the form $2^{k} \cdot a$, where $k \geq 0$ and a is odd. The number a can be one of the 100 odd numbers $1,3,5, \ldots, 199$. Thus among the 101 integers chosen, two of them must have the same a 's when they are written in the form, say, $2^{r} \cdot a$ and $2^{s} \cdot a$. If $r \leq s$, then the first one divides the second. If $r>s$, then the second one divides the first one.

Example 1.7 (Chinese Remainder Theorem). Let m and n be positive integers and relatively prime, i.e., $\operatorname{gcd}(m, n)=1$. Then there exist solutions for the system

$$
\left\{\begin{array}{l}
x \equiv a(\bmod m) \\
x \equiv b(\bmod n)
\end{array}\right.
$$

Proof. We may assume that $0 \leq a<m$ and $0 \leq b<n$. Let us consider the n integers

$$
a, \quad m+a, \quad 2 m+a, \quad \ldots, \quad(n-1) m+a .
$$

Each of these integers has remainder a when divided by m. Suppose that two of them had the same remainder r when divided by n. Let the two numbers be
$i m+a$ and $j m+a$, where $0 \leq i<j \leq n-1$. Then there are integers q_{i}, q_{j} such that

$$
i m+a=q_{i} n+r, \quad j m+a=q_{j} n+r .
$$

Subtracting the first equation from the second, we obtain

$$
(j-i) m=\left(q_{j}-q_{i}\right) n
$$

Since $\operatorname{gcd}(m, n)=1$, we conclude that $n \mid(j-i)$. Note that $0<j-i \leq n-1$. This is a contradiction. Thus the n integers $a, m+a, 2 m+a, \ldots,(n-1) m+a$ have distinct remainders when divided by n. That is, each of the n numbers $0,1,2, \ldots, n-1$ occurs as a remainder. In particular, the number b does. Let p be the integer with $0 \leq p \leq n-1$ such that the number $p m+a$ has remainder b when divided by n. Then $p m+a=q n+b$ for some integer q. Thus the integer

$$
x=p m+a=q n+b
$$

has the required property.

2 Pigeonhole Principle: Strong Form

Theorem 2.1. Let $q_{1}, q_{2}, \ldots, q_{n}$ be positive integers. If

$$
q_{1}+q_{2}+\cdots+q_{n}-n+1
$$

objects are put into n boxes, then either the 1 st box contains at least q_{1} objects, or the $2 n d$ box contains at least q_{2} objects, ..., or the nth box contains at least q_{n} objects.

Proof. Suppose it is not true, that is, the i th box contains at most $q_{i}-1$ objects, $i=1,2, \ldots, n$. Then the total number of objects contained in the n boxes can be at most

$$
\left(q_{1}-1\right)+\left(q_{2}-1\right)+\cdots+\left(q_{n}-1\right)=q_{1}+q_{2}+\cdots+q_{n}-n
$$

which is one less than the number of objects distributed. This is a contradiction.

The simple form of the pigeonhole principle is obtained from the strong form by taking $q_{1}=q_{2}=\cdots=q_{n}=2$. Then

$$
q_{1}+q_{2}+\cdots+q_{n}-n+1=2 n-n+1=n+1 .
$$

In elementary mathematics the strong form of the pigeonhole principle is most often applied in the special case when $q_{1}=q_{2}=\cdots=q_{n}=r$. In this case the principle becomes:

- If $n(r-1)+1$ objects are put into n boxes, then at least one of the boxes contains r or more of the objects.
- If the average of n nonnegative integers $a_{1}, a_{2}, \ldots, a_{n}$ is greater than $r-1$, i.e.,

$$
\frac{a_{1}+a_{2}+\cdots+a_{n}}{n}>r-1
$$

then at leats one of the integers is greater than or equal to r.
Example 2.1. A basket of fruit is being arranged out of apples, bananas, and oranges. What is the smallest number of pieces of fruit that should be put in the basket in order to guarantee that either there are at least 8 apples or at least 6 bananas or at least 9 oranges?

$$
\text { Answer: } 8+6+9-3+1=21 \text {. }
$$

Example 2.2. Given two disks, one is smaller than the other. Each disk is divided into $2 N$ congruent sectors. In the larger disk, N sectors are chosen arbitrarily and painted red; the other N sectors are painted blue. In the smaller disk each sector is painted either red or blue with no stipulation on the number of red and blue sectors. The smaller disk is placed on the larger disk so that the centers and sectors coincide. Show that it is possible to align the two disks so that the number of sectors of the smaller disk whose color matches the corresponding sector of the larger disk is at least N.

Proof. We fix the larger disk first, then place the smaller disk on the top of the larger disk so that the centers and sectors coincide. There $2 N$ ways to place the smaller disk in such a manner. For each such alignment, some sectors of the two disks may have the same color. Since each sector of the smaller disk
will match the same color sector of the larger disk N times among all the $2 N$ ways of alignment, and since there are $2 N$ sectors in the smaller disk, the total number of matched color sectors among the $2 N$ ways of alignment is

$$
N \times 2 N=2 N^{2} .
$$

Note that there are only $2 N$ ways. Then there is at least one way that the number of matched color sectors is $\frac{2 N^{2}}{2 N}(=N)$ or more.
Example 2.3. Show that every sequence $a_{1}, a_{2}, \ldots, a_{n^{2}+1}$ of $n^{2}+1$ real numbers contains either an increasing (including equal) subsequence of length $n+1$ or a decreasing subsequence of length $n+1$.

Proof. Assume that there is no increasing subsequence of length $n+1$. We suffices to show that there must be a decreasing subsequence of length $n+1$.

Let ℓ_{k} be the length of the longest increasing subsequence which begins with $a_{k}, 1 \leq k \leq n^{2}+1$. Since it is assumed that there is no increasing subsequence of length $n+1$, we have $1 \leq \ell_{k} \leq n$ for all k. By the strong form of the pigeonhole principle (if $n(r-1)+1$ objects are put into n boxes then at leat one of the boxes contains at least r objects; take $r=n+1), n+1$ of the $n^{2}+1$ integers $\ell_{1}, \ell_{2}, \ldots, \ell_{n^{2}+1}$ must be equal, say,

$$
\ell_{k_{1}}=\ell_{k_{2}}=\cdots=\ell_{k_{n+1}},
$$

where $1 \leq k_{1}<k_{2}<\cdots<k_{n+1} \leq n^{2}+1$. If there is one $k_{i}(1 \leq i \leq n)$ such that $a_{k_{i}}<a_{k_{i+1}}$, then any increasing subsequence of length $\ell_{k_{i+1}}$ beginning with $a_{k_{i+1}}$ will result a subsequence of length $\ell_{k_{i+1}}+1$ beginning with $a_{k_{i}}$ by adding $a_{k_{i}}$ in the front; so $\ell_{k_{i}}>\ell_{k_{i+1}}$, which is contradictory to $\ell_{k_{i}}=\ell_{k_{i+1}}$. Thus we must have

$$
a_{k_{1}} \geq a_{k_{2}} \geq \cdots \geq a_{k_{n+1}},
$$

which is a decreasing subsequence of length $n+1$.

3 Ramsey Theory

The following is the most popular and easily understood instance of the Ramsey Theory:

Of six (or more) people, either there are three who are mutually acquainted, or there are three who are mutually unacquainted.

Let K_{n} denote the complete graph with n vertices v_{1}, \ldots, v_{n}, i.e., every pair of vertices are connected by an edge. Given a set V of n elements; we denote by K_{V} the complete graph whose vertex set is V. We adopt the following notation

$$
K_{6} \rightarrow K_{3}, K_{3} \quad\left(\mathrm{read} \text { " } K_{6} \text { implies } K_{3}, K_{3} \text { " }\right)
$$

This means that no matter how the edges of K_{6} are colored with two colors, black and white, there is always a black triangle K_{3}, or there is always a white triangle K_{3}; in other words there is a monochromatic triangle K_{3}.

Proof. Let the edges of K_{6} be colored either black or white arbitrarily. Consider the vertex v_{1} which connects the other 5 vertices $v_{2}, v_{3}, \ldots, v_{6}$ by 5 edges. By the Pigeonhole Principle, among these 5 edges there are at least 3 edges colored black or colored white, say, the three edges incident with v_{2}, v_{3}, v_{4} are black. If there is one edge colored black between the pairs of v_{2}, v_{3}, v_{4}, say, $v_{2} v_{3}$ is black, then there is already a black triangle K_{3} with vertices v_{1}, v_{2}, v_{3}. Otherwise, all edges between the pairs of v_{2}, v_{3}, v_{4} are colored white; they form a white triangle K_{3} already.

Let us consider the following slightly more general problem

$$
K_{p} \rightarrow K_{m}, K_{n}
$$

which means the statement: given integers $m, n \geq 1$, if the edges of K_{p} are colored black or white arbitrarily, then there is either a black K_{m} (m vertices among them all edges are black) or there is a white K_{n} (n vertices among them all edges are white). Of course, this may not be true always, for instance, it is obviously not true when $p=2$, and $m, n \geq 3$. However,

$$
\text { If } \quad K_{p} \rightarrow K_{m}, K_{n}, \quad \text { then } \quad K_{q} \rightarrow K_{m}, K_{n} \quad \text { for all } \quad q \geq p
$$

We shall see that $K_{p} \rightarrow K_{m}, K_{n}$ is indeed true when p is large enough. The smallest such integer p is called the Ramsey number of type (m, n), denoted $R(m, n)$. We easily see by definition that

$$
R(m, n)=R(n, m)
$$

Example 3.1. $R(3,3)=6$. This is the case $m=3, n=3$. We have seen that $R(3,3) \leq 6$. We need to show that $K_{5} \rightarrow K_{3}, K_{3}$ is not true. It is clear for the following coloring of K_{5} (dotted lines represent white edges).

Figure 1: $K_{5} \rightarrow K_{3}, K_{3}$ is not true.

Example 3.2. $R(2, n)=R(n, 2)=n$.
Proof. It is clear that $R(1,2)=R(2,1)=1$.
Assume $n \geq 2$. Consider K_{n} and have its edges colored black or white arbitrarily. If one of its edges is colored black, then a black K_{2} is already found. Otherwise, all edges of K_{n} are colored white; then K_{n} itself is already a white K_{n}. So $R(2, n) \leq n$.

Consider K_{n-1} and have its edges colored white. Then there is no black K_{2} and there is no white K_{n}. So $R(2, n)>n-1$. Hence $R(2, n)=n$.

Instead of using two colors, we may use k colors $c_{1}, c_{2}, \ldots, c_{k}$ with $k \geq 2$. Given integers $n_{1}, n_{2}, \ldots, n_{k} \geq 1$, we consider the problem

$$
K_{p} \rightarrow K_{n_{1}}, K_{n_{2}}, \ldots, K_{n_{k}}
$$

This means that if the edges of K_{p} are colored with colors $c_{1}, c_{2}, \ldots, c_{k}$ arbitrarily, then there is either a $K_{n_{1}}$ of color c_{1} (existing n_{1} vertices between the pairs of them all edges are colored c_{1}), or a $K_{n_{2}}$ of color c_{2} (existing n_{2} vertices between the pairs of them all edges are colored c_{2}), \ldots, or a $K_{n_{k}}$ of color c_{k} (existing n_{k} vertices between the pairs of them all edges are colored c_{k}). It is easy to see that

$$
\text { If } K_{p} \rightarrow K_{n_{1}}, K_{n_{2}}, \ldots, K_{n_{k}} \text {, then } K_{q} \rightarrow K_{n_{1}}, K_{n_{2}}, \ldots, K_{n_{k}} \text { for } q \geq p
$$

Theorem 3.1 (Ramsey Theorem - Simplified Version). Given integers $n_{1}, n_{2}, \ldots, n_{k} \geq 1$. There exists a smallest integer $R\left(n_{1}, n_{2}, \ldots, n_{k}\right)$, called the Ramsey number of type $\left(n_{1}, n_{2}, \ldots, n_{k}\right)$, such that if $p \geq$ $R\left(n_{1}, n_{2}, \ldots, n_{k}\right)$ then $K_{p} \rightarrow K_{n_{1}}, K_{n_{2}}, \ldots, K_{n_{k}}$.

It is clear that if σ is a permutation of $\{1,2, \ldots, k\}$ then

$$
R\left(n_{1}, n_{2}, \ldots, n_{k}\right)=R\left(n_{\sigma(1)}, n_{\sigma(2)}, \ldots, n_{\sigma(k)}\right)
$$

Proposition 3.2. $\left.R\left(2, n_{1}, \ldots, n_{k}\right)\right)=R\left(n_{1}, \ldots, n_{k}, 2\right)=R\left(n_{1}, \ldots, n_{k}\right)$, $k \geq 1$.

Proof. For $k=1$, it is easy to see $R\left(n_{1}\right)=n_{1}$. Then $R\left(2, n_{1}\right)=R\left(n_{1}, 2\right)=$ $n_{1}=R\left(n_{1}\right)$ by Example 3.2.

Assume $k \geq 2$, we set $p:=R\left(n_{1}, \ldots, n_{k}\right)$. Let the edges of K_{p} be colored arbitrarily with $k+1$ colors c_{1}, \ldots, c_{k+1}. We first claim that $K_{p} \rightarrow$ $K_{n_{1}}, \ldots, K_{n_{k}}, K_{2}$.

If there is one edge of K_{p} colored c_{k+1}, then a K_{2} of color c_{k+1} is found. Otherwise, all edges of K_{p} are colored with colors c_{1}, \ldots, c_{k}. Since $p=R\left(n_{1}, \ldots, n_{k}\right)$, by definition of the Ramsey number there exists either a subgraph $K_{n_{1}}$ whose edges are colored c_{1}, or a subgraph $K_{n_{2}}$ whose edges are colored c_{2}, \ldots, or a subgraph $K_{n_{k}}$ whose edges are colored c_{k}. We thus have $R\left(n_{1}, \ldots, n_{k}, 2\right) \leq p$.

Next we claim that $K_{p-1} \nrightarrow K_{n_{1}}, \ldots, K_{n_{k}}, K_{2}$. Since $K_{p-1} \nrightarrow K_{n_{1}}, \ldots, K_{n_{k}}$, the edges of K_{p-1} can be colored by c_{1}, \ldots, c_{k} such that there is neither a subgraph $K_{n_{1}}$ of color c_{1}, nor a subgraph $K_{n_{2}}$ of color c_{2}, \ldots, nor a subgraph $K_{n_{k}}$ of color c_{k}. Of course such a k-coloring of K_{p-1} can be viewed as a $(k+1)$ coloring with colors $c_{1}, c_{2}, \ldots, c_{k+1}$ that no edges are colored c_{k+1}. It is clear that within such $(k+1)$-coloring there is neither a subgraph $K_{n_{1}}$ of color c_{1}, nor a subgraph $K_{n_{2}}$ of color c_{2}, \ldots, nor a subgraph $K_{n_{k}}$ of color c_{k}, nor a subgraph K_{2} of color c_{k+1}. Thus $R\left(n_{1}, \ldots, n_{k}, 2\right) \geq p$.

We have concluded that $R\left(n_{1}, \ldots, n_{k}, 2\right)=p$.
W may view each edge of K_{p} with endpoints u, v as a subset $\{u, v\}$ of two elements. The collection of edges of K_{p} is the set of all 2-subsets of the vertex set V of K_{p}, where $|V|=p$. Then $K_{p} \rightarrow K_{n_{1}}, \ldots, K_{n_{k}}$ states that if all 2subsets of V are colored with colors c_{1}, \ldots, c_{k} arbitrarily, then there is either
an n_{1}-subset $V_{1} \subseteq V$ such that all 2-subsets of V_{1} have the color c_{1}, or an n_{2}-subset $V_{2} \subseteq V$ such that all 2-subsets of V_{2} have the color c_{2}, \ldots, or an n_{k}-subset $V_{k} \subseteq V$ such that all 2-subsets of V_{k} have the color c_{k}.

We are not necessarily restrict ourselves to consider only 2-subsets of V. Fix an integer $t \geq 1$ and integers $q_{1}, \ldots, q_{k} \geq t$. We may consider the problem:

Let all t-subsets of V be colored with colors c_{1}, \ldots, c_{k} arbitrarily. There is either a q_{1}-subset $V_{1} \subseteq V$ such that all t-subsets of V_{1} are colored c_{1}, or a q_{2}-subset $V_{2} \subseteq V$ such that all t-subsets of V_{2} are colored c_{2}, \ldots, or a q_{k}-subset $V_{k} \subseteq V$ such that all t-subsets of V_{k} are colored c_{k}.

We use the notation

$$
\left\{\begin{array}{c}
p \\
t
\end{array}\right\} \rightarrow\left\{\begin{array}{c}
q_{1} \\
t
\end{array}\right\},\left\{\begin{array}{c}
q_{2} \\
t
\end{array}\right\}, \ldots,\left\{\begin{array}{c}
q_{k} \\
t
\end{array}\right\}
$$

to denote the statement. It is easy to see that if $q \geq p$, then

$$
\left\{\begin{array}{c}
p \\
t
\end{array}\right\} \rightarrow\left\{\begin{array}{c}
q_{1} \\
t
\end{array}\right\},\left\{\begin{array}{c}
q_{2} \\
t
\end{array}\right\}, \ldots,\left\{\begin{array}{c}
q_{k} \\
t
\end{array}\right\} \Rightarrow\left\{\begin{array}{c}
q \\
t
\end{array}\right\} \rightarrow\left\{\begin{array}{c}
q_{1} \\
t
\end{array}\right\},\left\{\begin{array}{c}
q_{2} \\
t
\end{array}\right\}, \ldots,\left\{\begin{array}{c}
q_{k} \\
t
\end{array}\right\} .
$$

Let V be a set of p elements, called a p-set. A collection of 2-subsets of V may be viewed as a symmetric binary relation on V. We may consdier ternary, quaternary, quinary relations on V. Let $\boldsymbol{P}_{t}(V)$ denote the set of all t-subsets of V, called a complete t-family of size p.

Figure 2: A triangle and a tetrahedron
An n-simplex is interpreted as the collection of all nonempty subsets of an $(n+1)$-set. For $n=0,1,2,3$, they are called vertex, edge, triangle, and tetrahedron respectively.

Definition 3.3. Let V be a set of n elements. Given a positive integer t and integers $q_{1}, \ldots, q_{k} \geq t$. A k-coloring of $\boldsymbol{P}_{t}(V)$ by colors c_{1}, \ldots, c_{k} is said to satisfy the Ramsey property of type $\left(q_{1}, \ldots, q_{k}\right)$, provided that there exists either a q_{1}-subset $V_{1} \subseteq V$ such that all members of $\boldsymbol{P}_{t}\left(V_{1}\right)$ are colored c_{1}, or a q_{2}-subset $V_{2} \subseteq V$ such that all members of $\boldsymbol{P}_{t}\left(V_{2}\right)$ are colored c_{2}, \ldots, or a q_{k}-subset $V_{k} \subseteq V$ such that all members of $\boldsymbol{P}_{t}\left(V_{k}\right)$ are colored c_{k}.

A complete t-family of size n satisfies the Ramsey property of type $\left(q_{1}, \ldots, q_{k}\right)$ if its every k-coloring satisfies the Ramsey property of type $\left(q_{1}, \ldots, q_{k}\right)$. The smallest number n that its complete t-family satisfies the Ramsey property of type $\left(q_{1}, \ldots, q_{k}\right)$ is called the Ramsey number of type $\left(q_{1}, \ldots, q_{k}\right)$ and size t, denoted

$$
R_{t}\left(q_{1}, \ldots, q_{k}\right)
$$

Ramsey numbers satisfy the following trivial properties:
(a) If σ is a permutation of $\{1,2, \ldots, k\}$, then

$$
R_{t}\left(q_{1}, q_{2}, \ldots, q_{k}\right)=R_{t}\left(q_{\sigma(1)}, q_{\sigma(2)}, \ldots, q_{\sigma(k)}\right)
$$

(b) If a complete t-family of size n satisfies the Ramsey property of type $\left(q_{1}, \ldots, q_{k}\right)$, then any complete t-family of size $m \geq n$ satisfies the Ramsey property of type $\left(q_{1}, \ldots, q_{k}\right)$.
(c) If a k-coloring of a complete t-family satisfies the Ramsey property of type $\left(q_{1}, \ldots, q_{k}\right)$, then the coloring can be considered as a $(k+l)$-coloring, and satisfies the Ramsey property of type $\left(q_{1}, \ldots, q_{k}, p_{1}, \ldots, p_{l}\right)$.
(d) If a k-coloring of a complete t-family does not satisfy the Ramsey property of type $\left(q_{1}, \ldots, q_{k}\right)$, then the coloring can be considered as a $(k+l)$-coloring, and does not satisfy the Ramsey property of type $\left(q_{1}, \ldots, q_{k}, p_{1}, \ldots, p_{l}\right)$.
Theorem 3.4 (Ramsey Theorem - Complete Version). Given a positive integer t and integers $q_{1}, \ldots, q_{k} \geq t$. There exists a smallest integer $R_{t}\left(q_{1}, \ldots, q_{k}\right)$ such that if t-subsets of an n-set V are colored with colors c_{1}, \ldots, c_{k} arbitrarily, then there is either
(1) a q_{1}-subset $V_{1} \subseteq V$ such that all t-subsets of V_{1} are colored c_{1}, or
(2) a q_{2}-subset $V_{2} \subseteq V$ such that all t-subsets of V_{2} are colored c_{2}, or
(k) a q_{k}-subset $V_{k} \subseteq V$ such that all t-subsets of V_{k} are colored c_{k}.

The number $R_{t}\left(q_{1}, \ldots, q_{k}\right)$ is called the Ramsey number of size t and type $\left(q_{1}, \ldots, q_{k}\right)$.

In the special case $t=1$, the set of all 1 -subsets of V may be considered as the set V by identifying each 1 -subset $\{v\}$ to the element v itself. Then a coloring of all 1 -subsets of V is just a coloring of the set V. Given a subset $A \subseteq V$; all 1 -subsets of A having the same color means all elements of A are colored the same. Thus $K_{p}^{1} \rightarrow K_{q_{1}}^{1}, \ldots, K_{q_{k}}^{1}$ means that if p elements are colored with k colors c_{1}, \ldots, c_{k}, then there is either at least q_{1} elements colored c_{1}, or at least q_{2} elements colored c_{2}, \ldots, or at least q_{k} elements colored c_{k}. Thus the Ramsey number of size 1 and of type $\left(q_{1}, \ldots, q_{k}\right)$ is

$$
R_{1}\left(q_{1}, \ldots, q_{k}\right)=q_{1}+\cdots+q_{k}-k+1 .
$$

Lemma 3.5. $R_{t}(q)=q$ and

$$
R_{t}\left(t, q_{1}, \ldots, q_{k}\right)=R_{t}\left(q_{1}, \ldots, q_{k}\right) .
$$

Proof. Let V be a q-set and members of $\boldsymbol{P}_{t}(V)$ be colored into one class \boldsymbol{C}_{1}. If $q \geq q_{1} \geq t$, take any q_{1}-subset $V_{1} \subseteq V$, we have $\boldsymbol{P}_{t}\left(V_{1}\right) \subseteq \boldsymbol{C}_{1}$. Thus $R_{t}\left(q_{1}\right) \leq q_{1}$. Let V be a $\left(q_{1}-1\right)$-set and members of $\boldsymbol{P}_{t}(V)$ be colored into one class \boldsymbol{C}_{1}. There is no q_{1}-subset of V such that $\boldsymbol{P}_{t}\left(V_{1}\right) \subseteq \boldsymbol{C}_{1}$. So $R_{t}\left(q_{1}\right)>q_{1}-1$, i.e., $R_{t}\left(q_{1}\right) \geq q_{1}$. Therefore $R_{t}\left(q_{1}\right)=q_{1}$.

Let $k \geq 1$ and set $p:=R_{t}\left(q_{1}, \ldots, q_{k}\right)$. We claim $R_{t}\left(t, q_{1}, \ldots, q_{k}\right) \leq p$. Given a p-set V. It suffices to show that $\boldsymbol{P}_{t}(V)$ satisfies the Ramsey property of type $\left(t, q_{1}, \ldots, q_{k}\right)$. Let $\boldsymbol{P}_{t}(V)$ be colored arbitrarily by $k+1$ colors $c_{0}, c_{1}, \ldots, c_{k}$.

Case 1: There exists a member $V_{0} \in \boldsymbol{P}_{t}(V)$ such that V_{0} is colored c_{0}. Since V_{0} is a t-subset of V, we have $\boldsymbol{P}_{t}\left(V_{0}\right)=\left\{V_{0}\right\}$, then all members of $\boldsymbol{P}_{t}\left(V_{0}\right)$ are colored c_{0}. Thus the coloring satisfies the Ramsey property of type $\left(t, q_{1}, \ldots, q_{k}\right)$.

Case 2: No members of $\boldsymbol{P}_{t}(V)$ are colored c_{0}, i.e., $\boldsymbol{P}_{t}(V)$ is colored by colors c_{1}, \ldots, c_{k}. Now the $(k+1)$-coloring becomes a k-coloring. Since $|V|=R_{t}\left(q_{1}, \ldots, q_{k}\right)$, the k-coloring satisfies the Ramsey property of type $\left(q_{1}, \ldots, q_{k}\right)$. The corresponding $(k+1)$-coloring (without using the color c_{0}) satisfies the Ramsey property of type $\left(t, q_{1}, \ldots, q_{k}\right)$.

We have shown that an arbitrary $(k+1)$-coloring of $\boldsymbol{P}_{t}(V)$ satisfies the Ramsey property of type $\left(t, q_{1}, \ldots, q_{k}\right)$. By definition of Ramsey numbers, $R_{t}\left(t, q_{1}, \ldots, q_{k}\right) \leq p$.

Next we claim $R_{t}\left(t, q_{1}, \ldots, q_{k}\right) \geq p$.
It suffices to show that there exists a $(p-1)$-set V and a coloring of $\boldsymbol{P}_{t}(V)$ by colors $c_{0}, c_{1}, \ldots, c_{k}$, such that the $(k+1)$-coloring does not satisfy the Ramsey property of type $\left(t, q_{1}, \ldots, q_{k}\right)$. Since $p=R_{t}\left(q_{1}, \ldots, q_{k}\right)$, there exists a t-family of size $p-1$ such that one of its k-coloring does not satisfy the Ramsey property of type $\left(q_{1}, \ldots, q_{k}\right)$, i.e., the t-family $\boldsymbol{P}_{t}(V)$ with $|V|=p-1$ has a k-coloring (using colors c_{1}, \ldots, c_{k}) which does not satisfy the Ramsey property of type $\left(q_{1}, \ldots, q_{k}\right)$. Viewing this k-coloring as a $(k+1)$-coloring of $\boldsymbol{P}_{t}(V)$ by colors $c_{0}, c_{1}, \ldots, c_{k}$ (the color c_{0} is not used), then the $(k+1)$-coloring of $\boldsymbol{P}_{t}(V)$ does not satisfy the Ramsey property of type $\left(t, q_{1}, \ldots, q_{k}\right)$.
Theorem 3.6 (Ramsey Theorem - Special Version). Given positive integers $p, q \geq t$. There exists a smallest integer $R_{t}(p, q)$ such that, if $n \geq R_{t}(p, q), V$ is an n-set, and if each member of $\boldsymbol{P}_{t}(V)$ is colored either black or white arbitrarily, then there exists either a p-subset $X \subseteq V$ such that all members of $\boldsymbol{P}_{t}(X)$ are colored black, or a q-subset $Y \subseteq V$ such that all members of $\boldsymbol{P}_{t}(Y)$ are colored white.

Proof. We proceed by induction on p, q and t. For $t=1$ and arbitrary $p, q \geq 1$, we have $r_{1}(p, q)=p+q-1$. Moreover, it has been shown in Lemma 3.5 that for all $t \geq 1$,

$$
R_{t}(t, q)=q, \quad R_{t}(p, t)=p,
$$

which are the induction bases.
Now for integers p, q, t such that $p, q \geq t \geq 2$, we show that $R_{t}(p, q)$ exists under the existence of $R_{t}(p-1, q), R_{t}(p, q-1)$, and the existence of $R_{t-1}(a, b)$ for arbitrary integers $a, b \geq t-1$. This is achieved by establishing the following upper bound recurrence relation:

$$
R_{t}(p, q) \leq R_{t-1}\left(p_{1}, q_{1}\right)+1,
$$

where $p_{1}=R_{t}(p-1, q)$ and $q_{1}=R_{t}(p, q-1)$.

Let V be an n-set with $n \geq R_{t-1}\left(p_{1}, q_{1}\right)+1$. Fix an element $v \in V$ and consider the $(n-1)$-set $V^{\prime}:=V \backslash\{v\}$. Note that $\left|V^{\prime}\right| \geq R_{t-1}\left(p_{1}, q_{1}\right)$. Given an arbitrary 2-coloring $\{\boldsymbol{B}, \boldsymbol{W}\}$ of $\boldsymbol{P}_{t}(V)$. Let

$$
\boldsymbol{B}\left(V^{\prime}\right):=\boldsymbol{B} \cap \boldsymbol{P}_{t}\left(V^{\prime}\right), \quad \boldsymbol{W}\left(V^{\prime}\right):=\boldsymbol{W} \cap \boldsymbol{P}_{t}\left(V^{\prime}\right)
$$

Then $\left\{\boldsymbol{B}\left(V^{\prime}\right), \boldsymbol{W}\left(V^{\prime}\right)\right\}$ forms a 2 -coloring of $\boldsymbol{P}_{t}\left(V^{\prime}\right)$. Let

$$
\begin{aligned}
\boldsymbol{B}^{\prime} & :=\left\{A \in \boldsymbol{P}_{t-1}\left(V^{\prime}\right) \mid A \cup v \in \boldsymbol{B}\right\} \\
\boldsymbol{W}^{\prime} & :=\left\{A \in \boldsymbol{P}_{t-1}\left(V^{\prime}\right) \mid A \cup v \in \boldsymbol{W}\right\} .
\end{aligned}
$$

Then \boldsymbol{B}^{\prime} and \boldsymbol{W}^{\prime} are disjoint. For each $A \in \boldsymbol{P}_{t-1}\left(V^{\prime}\right)$, we have either $A \cup v \in \boldsymbol{B}$ or $A \cup v \in \boldsymbol{W}$; i.e., either $A \in \boldsymbol{B}^{\prime}$ or $A \in \boldsymbol{W}^{\prime}$. Thus $\left\{\boldsymbol{B}^{\prime}, \boldsymbol{W}^{\prime}\right\}$ forms a 2 coloring of $\boldsymbol{P}_{t-1}\left(V^{\prime}\right)$. Since $\left|V^{\prime}\right| \geq R_{t-1}\left(p_{1}, q_{1}\right)$, by induction on t there exists
(1) either a p_{1}-subset $X_{1} \subseteq V^{\prime}$ such that $\boldsymbol{P}_{t-1}\left(X_{1}\right) \subseteq \boldsymbol{B}^{\prime}$,
(2) or a q_{1}-subset $Y_{1} \subseteq V^{\prime}$ such that $\boldsymbol{P}_{t-1}\left(Y_{1}\right) \subseteq \boldsymbol{W}^{\prime}$.

We elaborate each of the two cases.
Case (1): $X_{1} \subseteq V^{\prime},\left|X_{1}\right|=p_{1}=R_{t}(p-1, q)$, and $\boldsymbol{P}_{t-1}\left(X_{1}\right) \subseteq \boldsymbol{B}^{\prime}$. Since $\{\boldsymbol{B}, \boldsymbol{W}\}$ is a 2-coloring of $\boldsymbol{P}_{t}(V)$, its restriction to $\boldsymbol{P}_{t}\left(X_{1}\right)$ induces a 2-coloring $\left\{\boldsymbol{B}\left(X_{1}\right), \boldsymbol{W}\left(X_{1}\right)\right\}$ of $\boldsymbol{P}_{t}\left(X_{1}\right)$, where

$$
\boldsymbol{B}\left(X_{1}\right):=\boldsymbol{B} \cap \boldsymbol{P}_{t}\left(X_{1}\right), \quad \boldsymbol{W}\left(X_{1}\right):=\boldsymbol{W} \cap \boldsymbol{P}_{t}\left(X_{1}\right)
$$

By induction on p (when t is fixed), there exists

- either a $(p-1)$-subset $X_{2} \subseteq X_{1}$ such that $\boldsymbol{P}_{t}\left(X_{2}\right) \subseteq \boldsymbol{B}\left(X_{1}\right)(\subseteq \boldsymbol{B})$,
- or a q-subset $Y_{2} \subseteq X_{1}$ such that $\boldsymbol{P}_{t}\left(Y_{2}\right) \subseteq \boldsymbol{W}\left(X_{1}\right)(\subseteq \boldsymbol{W})$.

In the former case, consider the p-subset $X:=X_{2} \cup v \subseteq V$. For each t-subset $A \in \boldsymbol{P}_{t}(X)$, if $v \notin A$, then $A \subseteq X_{2}$, thus $A \in \boldsymbol{P}_{t}\left(X_{2}\right) \subseteq \boldsymbol{B}$; if $v \in A$, then $A \backslash v$ is a $(t-1)$-subset of $X_{2}\left(\subseteq X_{1}\right)$, consequently, $A \backslash v \in \boldsymbol{P}_{t-1}\left(X_{1}\right) \subseteq \boldsymbol{B}^{\prime}$, thus $A=(A \backslash v) \cup v \in \boldsymbol{B}$ by definition of \boldsymbol{B}^{\prime}. We have a p-subset $X \subseteq V$ such that $\boldsymbol{P}_{t}(X) \subseteq \boldsymbol{B}$. In the latter case, we already have a q-subset $Y:=Y_{2} \subseteq V$ such that $\boldsymbol{P}_{t}(Y) \subseteq \boldsymbol{W}$. We see that the coloring $\{\boldsymbol{B}, \boldsymbol{W}\}$ of $\boldsymbol{P}_{t}(V)$ satisfies the Ramsey property of type (p, q).

Case (2): $Y_{1} \subseteq V^{\prime},\left|Y_{1}\right|=q_{1}=R_{t}(p, q-1)$, and $\boldsymbol{P}_{t-1}\left(Y_{1}\right) \subseteq \boldsymbol{W}^{\prime}$. Since $\left\{\boldsymbol{B}\left(V^{\prime}\right), \boldsymbol{W}\left(V^{\prime}\right)\right\}$ is a 2-coloring of $\boldsymbol{P}_{t}\left(V^{\prime}\right)$, its restriction to $\boldsymbol{P}_{t}\left(Y_{1}\right)$ induces a 2-coloring $\left\{\boldsymbol{B}\left(Y_{1}\right), \boldsymbol{W}\left(Y_{1}\right)\right\}$ of $\boldsymbol{P}_{t}\left(Y_{1}\right)$, where

$$
\boldsymbol{B}\left(Y_{1}\right):=\boldsymbol{B} \cap \boldsymbol{P}_{t}\left(Y_{1}\right), \quad \boldsymbol{W}\left(Y_{1}\right):=\boldsymbol{W} \cap \boldsymbol{P}_{t}\left(Y_{1}\right) .
$$

By induction on q (when t is fixed), there exists

- either a p-subset $X_{2} \subseteq Y_{1}$ such that $\boldsymbol{P}_{t}\left(X_{2}\right) \subseteq \boldsymbol{B}\left(Y_{1}\right)(\subseteq \boldsymbol{B})$,
- or a $(q-1)$-subset $Y_{2} \subseteq Y_{1}$ such that $\boldsymbol{P}_{t}\left(Y_{2}\right) \subseteq \boldsymbol{W}\left(Y_{1}\right)(\subseteq \boldsymbol{W})$.

In the former case, we already have a p-subset

$$
X:=X_{2} \subseteq V \text { such that } \boldsymbol{P}_{t}(X) \subseteq \boldsymbol{B} .
$$

In the latter case, consider the q-subset $Y:=Y_{2} \cup v \subseteq V$. For each $A \in \boldsymbol{P}_{t}(Y)$, if $v \notin A$, then $A \in \boldsymbol{P}_{t}\left(Y_{2}\right) \subseteq \boldsymbol{W}$; if $v \in A$, then $A \backslash v \subseteq Y_{2} \subseteq Y_{1}$, i.e., $A \backslash v \in \boldsymbol{P}_{t-1}\left(Y_{1}\right) \subseteq \boldsymbol{W}^{\prime}$, thus $A=(A \backslash v) \cup v \in \boldsymbol{W}$ by definition of \boldsymbol{W}^{\prime}. So we have $\boldsymbol{P}_{t}(Y) \subseteq \boldsymbol{W}$. Now we see that the coloring $\{\boldsymbol{B}, \boldsymbol{W}\}$ of $\boldsymbol{P}_{t}(V)$ satisfies the Ramsey property of type (p, q).

We have established the upper bound recurrence relation:

$$
R_{t}(p, q) \leq R_{t-1}\left(R_{t}(p-1, q), R_{t}(p, q-1)\right)+1 .
$$

Theorem 3.7 (Ramsey Theorem - General Version). Given positive integers $q_{1}, q_{2}, \ldots, q_{k} \geq t$. There exists a smallest integer $R_{t}\left(q_{1}, q_{2}, \ldots, q_{k}\right)$ such that, if $n \geq R_{t}\left(q_{1}, q_{2}, \ldots, q_{k}\right), V$ is an n-set, and $\boldsymbol{P}_{t}(V)$ is arbitrarily colored into k color classes $\boldsymbol{C}_{1}, \boldsymbol{C}_{2}, \ldots, \boldsymbol{C}_{k}$, then there is at least one i $(1 \leq i \leq k)$ and a q_{i}-subset $V_{i} \subseteq V$ such that $\boldsymbol{P}_{t}\left(V_{i}\right) \subseteq \boldsymbol{C}_{i}$.
Proof. We proceed by induction on k. For $k=1$, let members of $\boldsymbol{P}_{t}(V)$ be colored into one class \boldsymbol{C}_{1}. If $n \geq n_{1}$, take any n_{1}-subset $V_{1} \subseteq V$, we have $\boldsymbol{P}_{t}\left(V_{1}\right) \subseteq \boldsymbol{C}_{1}$. Thus $R_{t}\left(n_{1}\right) \leq n_{1}$. If $n<n_{1}$, it is impossible to find an $n_{1^{-}}$ subset of V. So $R_{t}\left(n_{1}\right) \geq n_{1}$. Hence $R_{t}\left(n_{1}\right)=n_{1}$. For $k=2$, it is Theorem 3.6.

For $k \geq 3$, fix integers q_{1}, \ldots, q_{k}. By induction there exist the Ramsey numbers $q_{k-1}^{\prime}:=R_{t}\left(q_{k-1}, q_{k}\right)$ and (consequently) $R_{t}\left(q_{1}, \ldots, q_{k-2}, q_{k-1}^{\prime}\right)$. Let V be an n-set with

$$
n \geq R_{t}\left(q_{1}, \ldots, q_{k-2}, q_{k-1}^{\prime}\right)
$$

Let $\left\{\boldsymbol{C}_{1}, \ldots, \boldsymbol{C}_{k}\right\}$ be an arbitrary k-coloring of $\boldsymbol{P}_{t}(V)$. Consider the $(k-1)$ coloring $\left\{\boldsymbol{D}_{1}, \ldots, \boldsymbol{D}_{k-1}\right\}$ of $\boldsymbol{P}_{t}(V)$, where $\boldsymbol{D}_{i}=\boldsymbol{C}_{i}$ for $i=1, \ldots, k-2$ and $\boldsymbol{D}_{k-1}=\boldsymbol{C}_{k-1} \cup \boldsymbol{C}_{k}$. By induction there is at least one q_{i}-subset $V_{i} \subseteq V$ with $1 \leq i \leq k-2$ such that $\boldsymbol{P}_{t}\left(V_{i}\right) \subseteq \boldsymbol{D}_{i}\left(=\boldsymbol{C}_{i}\right)$, or a q_{k-1}^{\prime}-subset $V_{k-1}^{\prime} \subseteq V$ such that $\boldsymbol{P}_{t}\left(V_{k-1}^{\prime}\right) \subseteq \boldsymbol{D}_{k-1}=\boldsymbol{C}_{k-1} \cup \boldsymbol{C}_{k}$. In the formal case, nothing is to be proved. In the latter case, let

$$
\boldsymbol{D}_{k-1}^{\prime}:=\boldsymbol{P}_{t}\left(V_{k-1}^{\prime}\right) \cap \boldsymbol{C}_{k-1}, \quad \boldsymbol{D}_{k}^{\prime}:=\boldsymbol{P}_{t}\left(V_{k-1}^{\prime}\right) \cap \boldsymbol{C}_{k} .
$$

Then $\left\{\boldsymbol{D}_{k-1}^{\prime}, \boldsymbol{D}_{k}^{\prime}\right\}$ is a 2-coloring of $\boldsymbol{P}_{t}\left(V_{k-1}^{\prime}\right)$. Since $\left|V_{k-1}^{\prime}\right|=q_{k-1}^{\prime}=R_{t}\left(q_{k-1}, q_{k}\right)$, there exists either a q_{k-1}-subset $V_{k-1} \subseteq V_{k-1}^{\prime}$ such that $\boldsymbol{P}_{t}\left(V_{k-1}\right) \subseteq \boldsymbol{D}_{k-1}^{\prime}$ $\left(\subseteq \boldsymbol{C}_{k-1}\right)$ or a q_{k}-subset $V_{k} \subseteq V_{k-1}^{\prime}$ such that $\boldsymbol{P}_{t}\left(V_{k}\right) \subseteq \boldsymbol{D}_{k}^{\prime}\left(\subseteq \boldsymbol{C}_{k}\right)$. Thus there exists either a q_{k-1}-subset $V_{k-1} \subseteq V$ such that $\boldsymbol{P}_{t}\left(V_{k-1}\right) \subseteq \boldsymbol{C}_{k-1}$ or a q_{k}-subset $V_{k} \subseteq V$ such that $\boldsymbol{P}_{t}\left(V_{k}\right) \subseteq \boldsymbol{C}_{k}$.

Summarizing the above argument we obtain the upper bound recurrence relation:

$$
\begin{align*}
R_{t}\left(q_{1}, q_{2}, \ldots, q_{k}\right) & \leq R_{t}\left(q_{1}, q_{2}, \ldots, q_{k-2}, q_{k-1}^{\prime}\right) \\
& =R_{t}\left(q_{1}, q_{2}, \ldots, q_{k-2}, R_{t}\left(q_{k-1}, q_{k}\right)\right) . \tag{1}
\end{align*}
$$

Proposition 3.8 (Strong Form of Pigeonhole Principle). If $t=1$, then the Ramsey number $r_{1}\left(q_{1}, q_{2}, \ldots, q_{k}\right)$ is the smallest integer n such that if the elements of an n-set are colored with k colors $c_{1}, c_{2}, \ldots, c_{k}$, then either there are q_{1} elements of color c_{1}, or q_{2} elements of color c_{2}, \ldots, or q_{k} elements of color c_{k}. Moreover,

$$
R_{1}\left(q_{1}, q_{2}, \ldots, q_{k}\right)=q_{1}+q_{2}+\cdots+q_{k}-k+1 .
$$

The known Ramsey numbers:

$$
\begin{gathered}
\left.R_{2}(3,3)=6, \quad R_{2}(3,4)=R_{2}(4,3)=9, \quad R_{2}(3,5)=R_{2}(5,3)=14 \text { (or } 13 \text { ? }\right), \\
R_{2}(3,6)=R_{2}(6,3)=18, \quad R_{2}(3,7)=R_{2}(7,3)=23, \\
R_{2}(3,8)=r_{2}(8,3)=28, \quad R_{2}(3,9)=R_{2}(9,3)=36, \\
R_{2}(4,4)=18, \quad R_{2}(4,5)=R_{2}(5,4)=25 .
\end{gathered}
$$

There are estimates: $40 \leq R_{2}(3,10)=R_{2}(10,3) \leq 43, \quad 43 \leq R_{2}(5,5) \leq 49$.

Example 3.3. Consider $V=\{1,2,3,4,5\}$. Then

$$
\boldsymbol{P}_{3}(V)=\{123,124,125,134,135,145,234,235,245,345\}
$$

Many 2-colorings of $\boldsymbol{P}_{3}(V)$ does not satisfy the Ramsey property of type $(4,4)$. For instance, the 2-coloring $\left\{\boldsymbol{C}_{1}, \boldsymbol{C}_{2}\right\}$, where

$$
\boldsymbol{C}_{1}=\{123,124,125,134,135\} \quad \text { and } \quad \boldsymbol{C}_{2}=\{145,234,235,245,345\},
$$

does not satisfy the Ramsey property of type $(4,5)$, since none of

$$
\boldsymbol{P}_{3}(1234), \quad \boldsymbol{P}_{3}(1235), \quad \boldsymbol{P}_{3}(1245), \quad \boldsymbol{P}_{3}(1345), \quad \boldsymbol{P}_{3}(2345)
$$

is contained in \boldsymbol{C}_{1}, and $\boldsymbol{P}(12345)$ is not contained in \boldsymbol{C}_{2}. So $r_{3}(4,5)>5$.
The 2-coloring $\left\{\boldsymbol{C}_{1}, \boldsymbol{C}_{2}\right\}$ of the following does not satisfy the Ramsey property of type $(4,4)$, where

$$
\boldsymbol{C}_{1}=\{123,124,125,134\} \quad \text { and } \quad \boldsymbol{C}_{2}=\{135,145,234,235,245,345\} .
$$

So $r_{3}(4,4)>5$. However, the 2 -coloring $\left\{\boldsymbol{C}_{1}, \boldsymbol{C}_{2}\right\}$, where

$$
\boldsymbol{C}_{1}=\{123,124,134,234,125\} \quad \text { and } \quad \boldsymbol{C}_{2}=\{135,145,235,245,345\},
$$

does satisfy the Ramsey property of type $(4,4)$, since $\boldsymbol{P}_{\mathbf{3}}(1234)$ is contained in \boldsymbol{C}_{1}. The Ramsey number $r_{3}(4,4)$ can be estimated as follows: Since $r_{2}(4,4)=$ 18, we have

$$
r_{3}(4,4) \leq r_{2}\left(r_{3}(3,4), r_{3}(4,3)\right)+1=r_{2}(4,4)+1=18+1=19 .
$$

So $6 \leq r_{3}(4,4) \leq 19$.

4 Applications of the Ramsey Theorem

Theorem 4.1. For positive integers q_{1}, \ldots, q_{k} there exists a smallest positive integer $R\left(q_{1}, \ldots, q_{k}\right)$ such that, if $n \geq R\left(q_{1}, \ldots, q_{k}\right)$ and for any edge coloring of the complete graph K_{n} with k colors c_{1}, \ldots, c_{k}, there is at least one $i(1 \leq i \leq k)$ such that K_{n} contains a complete subgraph $K_{q_{i}}$ of the color c_{i}.

Proof. Each edge of K_{n} can be considered as a 2 -subset of its vertices.

Theorem 4.2 (Erdös-Szekeres). For any integer $k \geq 3$ there exists a smallest integer $N(k)$ such that, if $n \geq N(k)$ and for any n points on a plane having no three points through a line, then there is a convex k-gon whose vertices are among the given n points.

Before proving the theorem we prove the following two lemmas.
Lemma 4.3. Among any 5 points on a plane, no three points through a line, 4 of them must form a convex quadrangle.

Proof. Join every pair of two points by a segment to have a configuration of 10 segments. The circumference of the configuration forms a convex polygon. If the convex polygon is a pentagon or a quadrangle, the problem is done. Otherwise the polygon must be a triangle, and the other two points must be located inside the triangle. Draw a straight line through the two points; two of the three vertices must be located in one side of the straight line. The two vertices on the same side and the two points inside the triangle form a quadrangle.

Lemma 4.4. Given $k \geq 4$ points on a plane, no 3 points through a line. If any 4 points are vertices of a convex quadrangle, then the k points are actually the vertices of a convex k-gon.

Proof. Join every pair of two points by a segment to have a configuration of $k(k-1) / 2$ segments. The circumference of the configuration forms a convex l-polygon. If $l=k$, the problem is solved. If $l<k$, there must be at least one point inside the l-polygon. Let $v_{1}, v_{2}, \ldots, v_{l}$ be the vertices of the convex l-polygon, and draw segments between v_{1} and $v_{3}, v_{4}, \ldots, v_{l-1}$ respectively. The point inside the convex l-polygon must be located in one of the triangles $\triangle v_{1} v_{2} v_{3}, \Delta v_{1} v_{3} v_{4}, \ldots, \Delta v_{1} v_{l-1} v_{l}$. Obviously, the three vertices of the triangle with a given point inside together with the given point do not form a convex quadrangle. This is a contradiction.
Proof of Theorem 4.2. We apply the Ramsey theorem to prove Theorem 4.2. For $k=3$, it is obviously true. Now for $k \geq 4$, if $n \geq r_{4}(k, 5)$, we divide the 4 -subsets of the n points into a class \mathcal{C} of 4 -subsets whose points are vertices of a convex quadrangle, and another class \mathcal{D} of 4 -subsets whose points are not
vertices of any convex quadrangle. By the Ramsey theorem, there is either k points whose any 4 -subset belongs to \mathcal{C}, or 5 points whose any 4 -subset belongs to \mathcal{D}. In the formal case, the problem is solved by Lemma 4.4. In the latter case, it is impossible by Lemma 4.3.

Theorem 4.5 (Schur). For any positive integer k there exists a smallest integer N_{k} such that, if $n \geq N_{k}$ and for any k-coloring of $[1, n]$, there is a monochromatic sequence $x_{1}, x_{2}, \ldots, x_{l}(l \geq 2)$ such that $x_{l}=\sum_{i=1}^{l-1} x_{i}$.
Proof. Let $n \geq R(l, \ldots, l)$ and let $\left\{A_{1}, \ldots, A_{k}\right\}$ be a k-coloring of $[1, n]$. Let $\left\{\mathcal{C}_{1}, \ldots, \mathcal{C}_{k}\right\}$ be a k-coloring of $P_{2}([1, n])$ defined by
$\{a, b\} \in \mathcal{C}_{i} \quad$ if and only if $\quad|a-b| \in A_{i}, \quad$ where $\quad 1 \leq i \leq k$.
By the Ramsey theorem, there is one $r(1 \leq r \leq k)$ and an l-subset $A=$ $\left\{a_{1}, a_{2}, \ldots, a_{l}\right\} \subseteq[1, n]$ such that $P_{2}(A) \subseteq \mathcal{C}_{r}$. We may assume $a_{1}<a_{2}<$ $\cdots<a_{l}$. Then

$$
\left\{a_{i}, a_{j}\right\} \in \mathcal{C}_{r} \quad \text { and } \quad a_{j}-a_{i} \in A_{r} \quad \text { for all } i<j
$$

Let $x_{i}=a_{i+1}-a_{i}$ for $1 \leq i \leq l-1$ and $x_{l}=a_{l}-a_{1}$. Then $x_{i} \in A_{r}$ for all $1 \leq i \leq l$ and $x_{l}=\sum_{i=1}^{l-1} x_{i}$.

5 Van der Waerden Theorem

The Van der Waerden theorem states that for any k-coloring of \mathbb{Z}_{+}, the set of positive integers, there always exists a monochromatic arithmetic progression of arbitrary length. An arithmetic progression (AP) (or arithmetic sequence) is a finite sequence of numbers such that the difference between the consecutive terms is constant. For instance, $3,7,11,15,19,23,27,31,35$ is an arithmetic progression of difference 4 and length 9. The following statements are equivalent.

Theorem 5.1. (a) If $\mathbb{Z}_{+}=C_{1} \cup C_{2} \cup \cdots \cup C_{k}$, then some C_{i} contains arbitrarily long arithmetic progression.
(b) Given positive integers k and l. There exists a constant $N(k, l)$, known as Van der Waerden number, such that if $n \geq N(k, l)$ and
$\{1,2, \ldots, n\} \subseteq C_{1} \cup C_{2} \cup \cdots \cup C_{k}$, then some C_{i} contains an arithmetic progression of length l.
(c) Let $a_{0}, a_{1}, a_{2}, \ldots$ be an infinite sequence such that $0<a_{i+1}-a_{i}<r$ for all i, where r is a fixed number. Then the sequence contains arbitrarily long arithmetic progressions.
(d) For integers $k, r \geq 1$, there exists a constant $M(k, r)$ such that if $m \geq M(k, l)$ and a_{1}, \ldots, a_{m} is a sequence satisfying $0<a_{i+1}-a_{i} \leq r$ for all i, then k of the numbers a_{1}, \ldots, a_{m} are in arithmetic progression.
Let $[a, b]$ denote the set of integers x such that $a \leq x \leq b$. Two tuples $\left(x_{1}, \ldots, x_{m}\right)$ and $\left(y_{1}, \ldots, y_{m}\right)$ of $[1, l]^{m}$ are said to be l-equivalent, written

$$
\left(x_{1}, \ldots, x_{m}\right) \sim\left(y_{1}, \ldots, y_{m}\right),
$$

if all entries before the last l in each tuple are the same. For instance, for $l=5$ and $m=4$,

$$
\begin{aligned}
& (3,5,2,5) \sim(3,5,2,5), \quad(2,4,5,2) \sim(2,4,5,4), \\
& (4,3,1,4) \sim(2,3,2,1), \quad(3,5,5,1) \nsim(3,5,2,4) .
\end{aligned}
$$

Obviously, l-equivalence is an equivalence relation on $[0, l]^{m}$. All tuples of $[0, l-1]^{m}$ are l-equivalent.

Definition 5.2. For integers $l, m \geq 1$, let $A(l, m)$ denote the statement: For any integer $k \geq 1$ there exists a smallest integer $N(l, m, k)$ such that, if $n \geq$ $N(l, m, k)$ and $[1, n]$ is k-colored, then there are integers $a, d_{1}, d_{2}, \ldots, d_{m} \geq 1$ such that $a+l \sum_{i=1}^{m} d_{i} \leq n$ and for each l-equivalence class E of $[0, l]^{m}$,

$$
\left\{a+\sum_{i=1}^{m} x_{i} d_{i}:\left(x_{1}, \ldots, x_{m}\right) \in E\right\}
$$

is monochromatic (having the same color).
When $m=1$, there are only two l-equivalence classes for $[0, l]^{m}$, i.e.,

$$
\{0,1,2, \ldots, l-1\} \text { and }\{l\} .
$$

The statement $A(l, 1)$ means that for any integer $k \geq 1$ there exists a smallest integer $N(l, 1, k)$ such that, if $n \geq N(l, 1, k)$ and $[1, n]$ is k-colored, then there
are integers $a, d \geq 1$ such that $a+l d \leq n$ and the sequence, $a, a+d, a+$ $2 d, \ldots, a+(l-1) d$, is monochromatic.

Theorem 5.3 (Graham-Rothschild). The statement $A(l, m)$ is true for all integers l, $m \geq 1$.

Proof. We proceed induction on l and m. For $l=m=1$, the 1-equivalence classes of $[0,1]$ are $\{0\}$ and $\{1\}$; the statement $A(1,1)$ states that for any integer $k \geq 1$ there exists a smallest integer $N(1,1 ; k)$ such that, if $n \geq N(1,1 ; k)$ and $[1, n]$ is k-colored, then there are integers $a, d \geq 1$ such that $a+d \leq n$, and both $\{a\}$ and $\{a+d\}$ are monochromatic. This is obviously true and $N(1,1 ; k)=2$. We divide the induction argument into two statements:
(I) If $A(l, m)$ is true for some $m \geq 1$ then $A(l, m+1)$ is true.
(II) If $A(l, m)$ is true for all $m \geq 1$ then $A(l+1,1)$ is true.

The induction goes as follows: The truth of $A(1,1)$ implies the truth of $A(1, m)$ for all $m \geq 1$ by (I). Then by (II) the statement $A(2,1)$ is true. Again by (I) the statement $A(2, m)$ is true for all $m \geq 1$. Continuing this procedure we obtain that $A(l, m)$ is true for all $l, m \geq 1$.

First Proof. Let the integer $k \geq 1$ be fixed. Since $A(l, m)$ is true, the integer $N(l, m, k)$ exists and set $p=N(l, m, k)$. Since $A(l, 1)$ is true, the integer $N\left(l, 1, k^{p}\right)$ exists and we set $q=N\left(l, 1, k^{p}\right), N=p q$. Let $\phi:[1, N] \longrightarrow$ $[1, k]$ be a k-coloring of $[1, N]$. Let $\psi:[1, q] \longrightarrow[1, k]^{p}$ be a k^{p}-coloring of $[1, q]$ defined by

$$
\begin{equation*}
\psi(i)=(\phi((i-1) p+1), \phi((i-1) p+2), \ldots, \phi((i-1) p+p)), \quad 1 \leq i \leq q \tag{2}
\end{equation*}
$$

Since $A(l, 1)$ is true, then for the k^{p}-coloring ψ of $[1, q]$ there are integers $a, d \geq 1$ such that

$$
a+l d \leq q
$$

and

$$
\{a+x d: x=0,1,2, \ldots, l-1\}
$$

is monochromatic, i.e.,

$$
\begin{equation*}
\psi(a+x d)=\text { constant }, \quad x=0,1,2, \ldots, l-1 \tag{3}
\end{equation*}
$$

Note that $[(a-1) p+1, a p] \subseteq[1, p q]$ because $a \leq q$. Since $A(l, m)$ is true, then when ϕ is restricted to the p-set $[(a-1) p+1, a p]$ there are integers $b, d_{1}, d_{2}, \ldots, d_{m} \geq 1$ such that

$$
(a-1) p+1 \leq b, \quad b+l \sum_{i=1}^{m} d_{i} \leq a p
$$

and for each l-equivalence class E of $[0, l]^{m}$,

$$
\left\{b+\sum_{i=1}^{m} x_{i} d_{i}:\left(x_{1}, \ldots, x_{m}\right) \in E\right\}
$$

is monochromatic, i.e.,

$$
\begin{equation*}
\phi\left(b+\sum_{i=1}^{m} x_{i} d_{i}\right)=\mathrm{constant}, \quad\left(x_{1}, \ldots, x_{m}\right) \in E \tag{4}
\end{equation*}
$$

Recall that our job is to prove that $A(l, m+1)$ is true. For the k-coloring ϕ of $[1, N]$, we have had the integers

$$
b, d_{1}, d_{2}, \ldots, d_{m+1} \geq 1, \quad \text { where } \quad d_{m+1}=d p
$$

Since $b+l \sum_{i=1}^{m} d_{i} \leq a p$ and $a+l d \leq q$, we have

$$
b+l \sum_{i=1}^{m+1} d_{i} \leq a p+l d p=(a+d l) p \leq p q=N
$$

Now for any two l-equivalent tuples $\left(x_{1}, \ldots, x_{m+1}\right)$ and $\left(y_{1}, \ldots, y_{m+1}\right)$ of $[0, l]^{m+1}$, consider the numbers

$$
\begin{aligned}
& \alpha=b+\sum_{i=1}^{m+1} x_{i} d_{i}, \beta=b+\sum_{i=1}^{m+1} y_{i} d_{i} \\
& \alpha_{0}=b+\sum_{i=1}^{m} x_{i} d_{i}, \quad \beta_{0}=b+\sum_{i=1}^{m} y_{i} d_{i}
\end{aligned}
$$

Notice that our job is to show that α and β have the same color, i.e., $\phi(\alpha)=$ $\phi(\beta)$. We divide the job into three cases:

Case 1. $x_{m+1}=y_{m+1}=l$. Then $x_{i}=y_{i}$ for all $1 \leq i \leq m$. Thus $\alpha=\beta$, and obviously, $\phi(\alpha)=\phi(\beta)$.

Case 2. $x_{m+1}=l$ and $y_{m+1} \leq l-1$, or, $x_{m+1} \leq l-1$ and $y_{m+1}=l$. This implies that $\left(x_{1}, \ldots, x_{m+1}\right)$ and $\left(y_{1}, \ldots, y_{m+1}\right)$ are not l-equivalent. This is a contradiction.

Case 3. $x_{m+1}, y_{m+1} \in[0, l-1]$. Then $\left(x_{1}, \ldots, x_{m}\right)$ and $\left(y_{1}, \ldots, y_{m}\right)$ are l-equivalent. It follows from (3) that $\psi(a)=\psi\left(a+x_{m+1} d\right)$, and by definition (2) of ψ, the corresponding coordinates of $\psi(a)$ and $\psi\left(a+x_{m+1} d\right)$ are equal, i.e.,

$$
\phi((a-1) p+i)=\phi\left(\left(a+x_{m+1} d-1\right) p+i\right), \quad i=1,2, \ldots, p .
$$

Since $(a-1) p+1 \leq b \leq \alpha_{0} \leq b+l \sum_{i=1}^{m} d_{i} \leq a p=(a-1) p+p$, there exists $j \in[1, p]$ such that $\alpha_{0}=(a-1) p+j$. We then have

$$
\alpha=\alpha_{0}+x_{m+1} d p=(a-1) p+j+x_{m+1} d p=\left(a+x_{m+1} d-1\right) p+j .
$$

Thus

$$
\phi(\alpha)=\phi\left(\left(a+x_{m+1} d-1\right) p+j\right)=\phi((a-1) p+j)=\phi\left(\alpha_{0}\right) .
$$

Similarly, $\phi(\beta)=\phi\left(\beta_{0}\right)$. Since $\left(x_{1}, \ldots, x_{m}\right)$ and $\left(y_{1}, \ldots, y_{m}\right)$ are l-equivalent, it follows from (4) that $\phi\left(\alpha_{0}\right)=\phi\left(\beta_{0}\right)$. Therefore $\phi(\alpha)=\phi(\beta)$. This means that $A(l, m+1)$ is true and

$$
N(l, m+1, k) \leq N(l, m, k) \cdot N\left(l, 1, k^{N(l, m, k)}\right) .
$$

Second Proof. Fix an integer $k \geq 1$. Since $A(l, m)$ is true for all $m \geq 1$, the statement $A(l, k)$ is true and $N(l, k, k)$ exists. Let $N=2 N(l, k, k)$ and let ϕ be a k-coloring of $[1, N]$. Notice that the restriction of ϕ on $[1, N(l, k, k)]$ is a k-coloring. Then there are integers $a, d_{1}, d_{2}, \ldots, d_{k} \geq 1$ such that

$$
a+l \sum_{i=1}^{k} d_{i} \leq N(l, k, k)
$$

and for l-equivalent tuples $\left(x_{1}, \ldots, x_{k}\right),\left(y_{1}, \ldots, y_{k}\right) \in[0, l]^{k}$,

$$
\phi\left(a+\sum_{i=1}^{k} x_{i} d_{i}\right)=\phi\left(a+\sum_{i=1}^{k} y_{i} d_{i}\right) .
$$

Consider the $k+1$ tuples (none of them are l-equivalent)

$$
(0,0, \ldots, 0),(l, 0, \ldots, 0),(l, l, \ldots, 0), \ldots,(l, l, \ldots, l)
$$

of $[0, l]^{k}$ to have $k+1$ distinct integers

$$
a, a+l d_{1}, a+l\left(d_{1}+d_{2}\right), \ldots, a+l\left(d_{1}+d_{2}+\cdots+d_{k}\right)
$$

At least two of them, say $a+l\left(d_{1}+\cdots+d_{\lambda}\right)$ and $a+l\left(d_{1}+\cdots+d_{\mu}\right)$ with $\lambda<\mu$, must have the same color, i.e.,

$$
\begin{equation*}
\phi\left(a+l \sum_{i=1}^{\lambda} d_{i}\right)=\phi\left(a+l \sum_{i=1}^{\mu} d_{i}\right) . \tag{5}
\end{equation*}
$$

For any $x \in[0, l-1]$, the two tuples

$$
(\underbrace{l, \ldots, l}_{\lambda}, \underbrace{x, \ldots, x}_{\mu-\lambda}, 0, \ldots, 0) \text { and }(\underbrace{l, \ldots, l}_{\lambda}, \underbrace{0, \ldots, 0}_{\mu-\lambda}, 0, \ldots, 0)
$$

of $[0, l]^{k}$ are l-equivalent. Thus the numbers $a+l \sum_{i=1}^{\lambda} d_{i}+x \sum_{i=\lambda+1}^{\mu} d_{i}$ for $x \in[0, l-1]$ have the same color by ϕ, i.e.,

$$
\phi\left(a+l \sum_{i=1}^{\lambda} d_{i}+x \sum_{i=\lambda+1}^{\mu} d_{i}\right)=\text { constant }, \quad x=0,1,2, \ldots, l-1
$$

Combining this with (5) we have

$$
\phi\left(a+l \sum_{i=1}^{\lambda} d_{i}+x \sum_{i=\lambda+1}^{\mu} d_{i}\right)=\text { constant }, \quad x=0,1,2, \ldots, l-1, l .
$$

Recall that our job is to prove the truth of $A(l+1,1)$. Let $b=a+l \sum_{i=1}^{\lambda} d_{i}$ and $d=\sum_{i=\lambda+1}^{\mu} d_{i}$. Then we have had the integers $b, d \geq 1$ such that
$b+(l+1) d=a+l \sum_{i=1}^{\lambda} d_{i}+(l+1) \sum_{i=\lambda+1}^{\mu} d_{i}=a+l \sum_{i=1}^{\mu} d_{i}+\sum_{i=\lambda+1}^{\mu} d_{i} \leq N(l, k, k)+N(l, k$,
and for the k-coloring ϕ of $[1, N]$, the l-equivalence class $\{0,1,2, \ldots, l\}$ of $[0, l+1]^{1}$ have the same color, i.e.,

$$
\phi(b+x d)=\text { constant }, \quad x=0,1,2, \ldots, l .
$$

This means that the statement $A(l+1,1)$ is true.

The truth of $A(l, m)$ for $m=1$ is called the Van der Waerden theorem. Corollary 5.4 (Van der Waerden Theorem). For any positive integers k and l there exists a smallest integer $N(l, k)$ such that, if $n \geq N(l, k)$ and $[1, n]$ is k-colored, then there is a monochromatic arithmetic sequence of length l in $[1, n]$.

Supplementary Exercises

1. For the game of Nim, let us restrict that each player can move one or two coins. Find the winning strategy for each player.
2. Let n be a positive integer. In the game of Nim let us restrict that each player can move only $i \in\{1,2, \ldots, n\}$ coins each time from one heap. Find the winning strategy for each player.
3. Given $m(m-1)^{2}+1$ integral points on a plane, where m is odd. Show that there exists m points whose center is also an integral point.
