
Week 2

1 Pigeonhole Principle: Simple Form

Theorem 1.1. If n + 1 objects are put into n boxes, then at least one box

contains two or more objects.

Proof. Trivial.

Example 1.1. Among any 13 people there are two having their birthdays in

the same month.

Example 1.2. There are n married couples. How many of the 2n people must

be selected in order to guarantee that a married couple is selected?

Other principles related to the pigeonhole principle:

• If n objects are put into n boxes and no box is empty, then each box

contains exactly one object.

• If n objects are put into n boxes and no box gets more than one object,

then each box has an object.

The abstract formulation of the three principles: Let X and Y be finite sets

and let f : X → Y be a function.

• If X has more elements than Y , then f is not injective (one-to-one).

• If X and Y have the same number of elements and f is surjective (onto),

then f is injective (one-to-one).

• If X and Y have the same number of elements and f is injective (one-to-

one), then f is surjective (onto).

Example 1.3. In any group of n people there are at least two persons having

the same number of friends. (It is assumed that if a person x is a friend of y

then y is also a friend of x.)
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Proof. The number of friends of a person x is an integer k with 0 ≤ k ≤ n− 1.

If there is a person y whose number of friends is n − 1, then everyone is a

friend of y, that is, no one has 0 friend. This means that 0 and n− 1 can not

be simultaneously the numbers of friends of some people in the group. The

pigeonhole principle tells us that there are at least two people having the same

number of friends.

Example 1.4. Given n integers a1, a2, . . . , an, not necessarily distinct, there

exist some consecutive terms whose sum is a multiple of n, i.e., there exist

integers k and l with 0 ≤ k < l ≤ n such that ak+1 + ak+2 + · · · + al is a

multiple of n.

Proof. Consider the n integers

a1, a1 + a2, a1 + a2 + a3, . . . , a1 + a2 + · · · + an.

Dividing these integers by n, we have

a1 + a2 + · · · + ai = qin + ri, 0 ≤ ri ≤ n− 1, i = 1, 2, . . . , n.

If one of the remainders r1, r2, . . . , rn is zero, say, rk = 0, then a1+a2+ · · ·+ak

is a multiple of n. If none of r1, r2, . . . , rn is zero, then two of them must be

the same (since 1 ≤ ri ≤ n− 1 for all i), say, rk = rl with k < l. This means

that the two integers a1 + a2 + · · · + ak and a1 + a2 + · · · + al have the same

remainder. Thus ak+1 + ak+2 + · · · + al is a multiple of n.

Example 1.5. A chess master who has 11 weeks to prepare for a tournament

decides to play at least one game every day but, in order not to tire himself, he

decides not to play more than 12 games during any calendar week. Show that

there exists a succession of consecutive days during which the chess master will

have played exactly 21 games.

Proof. Let a1 be the number of games played on the first day, a2 the total

number of games played on the first and second days, a3 the total number

games played on the first, second, and third days, and so on. Since at least

one game is played each day, the sequence of numbers a1, a2, . . . , a77 is strictly

increasing, that is, a1 < a2 < · · · < a77 and a1 ≥ 1. Since at most 12 games
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are played during any one week, we have a77 ≤ 12× 11 = 132. Thus

1 ≤ a1 < a2 < · · · < a77 ≤ 132.

Note that the sequence a1 + 21, a2 + 21, . . . , a77 + 21 is also strictly increasing,

and

22 ≤ a1 + 21 < a2 + 21 < · · · < a77 + 21 ≤ 132 + 21 = 153.

Now consider the 154 numbers

a1, a2, . . . , a77, a1 + 21, a2 + 21, . . . , a77 + 21;

each of them is between 1 and 153. It follows that two of them must be equal.

Since a1, a2, . . . , a77 are distinct and a1 + 21, a2 + 21, . . . , a77 + 21 are also

distinct, the two equal numbers must be an ai and an aj + 21. Since the

number of games played up to the ith day is ai = aj + 21, we conclude that on

the days j + 1, j + 2, . . ., i the chess master played a total of 21 games.

Example 1.6. Given 101 integers from 1, 2, . . . , 200, there are at least two

integers such that one of them is divisible by the other.

Proof. By factoring out as many 2’s as possible, we see that any integer can be

written in the form 2k · a, where k ≥ 0 and a is odd. The number a can be one

of the 100 odd numbers 1, 3, 5, . . . , 199. Thus among the 101 integers chosen,

two of them must have the same a’s when they are written in the form, say,

2r · a and 2s · a. If r ≤ s, then the first one divides the second. If r > s, then

the second one divides the first one.

Example 1.7 (Chinese Remainder Theorem). Let m and n be positive inte-

gers and relatively prime, i.e., gcd(m,n) = 1. Then there exist solutions for

the system {
x ≡ a (mod m)

x ≡ b (mod n)

Proof. We may assume that 0 ≤ a < m and 0 ≤ b < n. Let us consider the n

integers

a, m + a, 2m + a, . . . , (n− 1)m + a.

Each of these integers has remainder a when divided by m. Suppose that two

of them had the same remainder r when divided by n. Let the two numbers be
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im + a and jm + a, where 0 ≤ i < j ≤ n − 1. Then there are integers qi, qj

such that

im + a = qin + r, jm + a = qjn + r.

Subtracting the first equation from the second, we obtain

(j − i)m = (qj − qi)n.

Since gcd(m,n) = 1, we conclude that n | (j− i). Note that 0 < j− i ≤ n−1.

This is a contradiction. Thus the n integers a,m+a, 2m+a, . . . , (n−1)m+a

have distinct remainders when divided by n. That is, each of the n numbers

0, 1, 2, . . . , n−1 occurs as a remainder. In particular, the number b does. Let p

be the integer with 0 ≤ p ≤ n− 1 such that the number pm+a has remainder

b when divided by n. Then pm + a = qn + b for some integer q. Thus the

integer

x = pm + a = qn + b

has the required property.

2 Pigeonhole Principle: Strong Form

Theorem 2.1. Let q1, q2, . . . , qn be positive integers. If

q1 + q2 + · · · + qn − n + 1

objects are put into n boxes, then either the 1st box contains at least q1

objects, or the 2nd box contains at least q2 objects, . . . , or the nth box

contains at least qn objects.

Proof. Suppose it is not true, that is, the ith box contains at most qi−1 objects,

i = 1, 2, . . . , n. Then the total number of objects contained in the n boxes can

be at most

(q1 − 1) + (q2 − 1) + · · · + (qn − 1) = q1 + q2 + · · · + qn − n,

which is one less than the number of objects distributed. This is a contradiction.
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The simple form of the pigeonhole principle is obtained from the strong form

by taking q1 = q2 = · · · = qn = 2. Then

q1 + q2 + · · · + qn − n + 1 = 2n− n + 1 = n + 1.

In elementary mathematics the strong form of the pigeonhole principle is

most often applied in the special case when q1 = q2 = · · · = qn = r. In this

case the principle becomes:

• If n(r− 1) + 1 objects are put into n boxes, then at least one of the boxes

contains r or more of the objects.

• If the average of n nonnegative integers a1, a2, . . . , an is greater than r−1,

i.e.,
a1 + a2 + · · · + an

n
> r − 1,

then at leats one of the integers is greater than or equal to r.

Example 2.1. A basket of fruit is being arranged out of apples, bananas, and

oranges. What is the smallest number of pieces of fruit that should be put in

the basket in order to guarantee that either there are at least 8 apples or at

least 6 bananas or at least 9 oranges?

Answer: 8 + 6 + 9− 3 + 1 = 21.

Example 2.2. Given two disks, one is smaller than the other. Each disk

is divided into 2N congruent sectors. In the larger disk, N sectors are chosen

arbitrarily and painted red; the other N sectors are painted blue. In the smaller

disk each sector is painted either red or blue with no stipulation on the number

of red and blue sectors. The smaller disk is placed on the larger disk so that

the centers and sectors coincide. Show that it is possible to align the two

disks so that the number of sectors of the smaller disk whose color matches the

corresponding sector of the larger disk is at least N .

Proof. We fix the larger disk first, then place the smaller disk on the top of the

larger disk so that the centers and sectors coincide. There 2N ways to place

the smaller disk in such a manner. For each such alignment, some sectors of

the two disks may have the same color. Since each sector of the smaller disk
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will match the same color sector of the larger disk N times among all the 2N

ways of alignment, and since there are 2N sectors in the smaller disk, the total

number of matched color sectors among the 2N ways of alignment is

N × 2N = 2N 2.

Note that there are only 2N ways. Then there is at least one way that the

number of matched color sectors is 2N2

2N (= N) or more.

Example 2.3. Show that every sequence a1, a2, . . . , an2+1 of n2 +1 real num-

bers contains either an increasing (including equal) subsequence of length n+1

or a decreasing subsequence of length n + 1.

Proof. Assume that there is no increasing subsequence of length n + 1. We

suffices to show that there must be a decreasing subsequence of length n + 1.

Let `k be the length of the longest increasing subsequence which begins with

ak, 1 ≤ k ≤ n2 +1. Since it is assumed that there is no increasing subsequence

of length n + 1, we have 1 ≤ `k ≤ n for all k. By the strong form of the

pigeonhole principle (if n(r − 1) + 1 objects are put into n boxes then at leat

one of the boxes contains at least r objects; take r = n+1), n+1 of the n2 +1

integers `1, `2, . . . , `n2+1 must be equal, say,

`k1 = `k2 = · · · = `kn+1,

where 1 ≤ k1 < k2 < · · · < kn+1 ≤ n2 + 1. If there is one ki (1 ≤ i ≤ n) such

that aki
< aki+1, then any increasing subsequence of length `ki+1 beginning with

aki+1 will result a subsequence of length `ki+1 + 1 beginning with aki
by adding

aki
in the front; so `ki

> `ki+1, which is contradictory to `ki
= `ki+1. Thus we

must have

ak1 ≥ ak2 ≥ · · · ≥ akn+1,

which is a decreasing subsequence of length n + 1.

3 Ramsey Theory

The following is the most popular and easily understood instance of the Ramsey

Theory:
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Of six (or more) people, either there are three who are mutually

acquainted, or there are three who are mutually unacquainted.

Let Kn denote the complete graph with n vertices v1, . . . , vn, i.e., every pair of

vertices are connected by an edge. Given a set V of n elements; we denote by

KV the complete graph whose vertex set is V . We adopt the following notation

K6 → K3, K3 (read “K6 implies K3, K3”).

This means that no matter how the edges of K6 are colored with two colors,

black and white, there is always a black triangle K3, or there is always a white

triangle K3; in other words there is a monochromatic triangle K3.

Proof. Let the edges of K6 be colored either black or white arbitrarily. Consider

the vertex v1 which connects the other 5 vertices v2, v3, . . . , v6 by 5 edges. By

the Pigeonhole Principle, among these 5 edges there are at least 3 edges colored

black or colored white, say, the three edges incident with v2, v3, v4 are black. If

there is one edge colored black between the pairs of v2, v3, v4, say, v2v3 is black,

then there is already a black triangle K3 with vertices v1, v2, v3. Otherwise,

all edges between the pairs of v2, v3, v4 are colored white; they form a white

triangle K3 already.

Let us consider the following slightly more general problem

Kp → Km, Kn,

which means the statement: given integers m,n ≥ 1, if the edges of Kp are

colored black or white arbitrarily, then there is either a black Km (m vertices

among them all edges are black) or there is a white Kn (n vertices among them

all edges are white). Of course, this may not be true always, for instance, it is

obviously not true when p = 2, and m,n ≥ 3. However,

If Kp → Km, Kn, then Kq → Km, Kn for all q ≥ p.

We shall see that Kp → Km, Kn is indeed true when p is large enough. The

smallest such integer p is called the Ramsey number of type (m,n), denoted

R(m,n). We easily see by definition that

R(m,n) = R(n,m).
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Example 3.1. R(3, 3) = 6. This is the case m = 3, n = 3. We have seen

that R(3, 3) ≤ 6. We need to show that K5 → K3, K3 is not true. It is clear

for the following coloring of K5 (dotted lines represent white edges).

Figure 1: K5 → K3, K3 is not true.

Example 3.2. R(2, n) = R(n, 2) = n.

Proof. It is clear that R(1, 2) = R(2, 1) = 1.

Assume n ≥ 2. Consider Kn and have its edges colored black or white

arbitrarily. If one of its edges is colored black, then a black K2 is already found.

Otherwise, all edges of Kn are colored white; then Kn itself is already a white

Kn. So R(2, n) ≤ n.

Consider Kn−1 and have its edges colored white. Then there is no black K2

and there is no white Kn. So R(2, n) > n− 1. Hence R(2, n) = n.

Instead of using two colors, we may use k colors c1, c2, . . . , ck with k ≥ 2.

Given integers n1, n2, . . . , nk ≥ 1, we consider the problem

Kp → Kn1, Kn2, . . . , Knk
.

This means that if the edges of Kp are colored with colors c1, c2, . . . , ck arbi-

trarily, then there is either a Kn1 of color c1 (existing n1 vertices between the

pairs of them all edges are colored c1), or a Kn2 of color c2 (existing n2 vertices

between the pairs of them all edges are colored c2), . . ., or a Knk
of color ck

(existing nk vertices between the pairs of them all edges are colored ck). It is

easy to see that

If Kp → Kn1, Kn2, . . . , Knk
, then Kq → Kn1, Kn2, . . . , Knk

for q ≥ p.
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Theorem 3.1 (Ramsey Theorem - Simplified Version). Given inte-

gers n1, n2, . . . , nk ≥ 1. There exists a smallest integer R(n1, n2, . . . , nk),

called the Ramsey number of type (n1, n2, . . . , nk), such that if p ≥
R(n1, n2, . . . , nk) then Kp → Kn1, Kn2, . . . , Knk

.

It is clear that if σ is a permutation of {1, 2, . . . , k} then

R(n1, n2, . . . , nk) = R
(
nσ(1), nσ(2), . . . , nσ(k)

)
.

Proposition 3.2. R(2, n1, . . . , nk)) = R(n1, . . . , nk, 2) = R(n1, . . . , nk),

k ≥ 1.

Proof. For k = 1, it is easy to see R(n1) = n1. Then R(2, n1) = R(n1, 2) =

n1 = R(n1) by Example 3.2.

Assume k ≥ 2, we set p := R(n1, . . . , nk). Let the edges of Kp be col-

ored arbitrarily with k + 1 colors c1, . . . , ck+1. We first claim that Kp →
Kn1, . . . , Knk

, K2.

If there is one edge of Kp colored ck+1, then a K2 of color ck+1 is found. Other-

wise, all edges of Kp are colored with colors c1, . . . , ck. Since p = R(n1, . . . , nk),

by definition of the Ramsey number there exists either a subgraph Kn1 whose

edges are colored c1, or a subgraph Kn2 whose edges are colored c2, . . ., or a

subgraph Knk
whose edges are colored ck. We thus have R(n1, . . . , nk, 2) ≤ p.

Next we claim that Kp−1 6→ Kn1, . . . , Knk
, K2. Since Kp−1 6→ Kn1, . . . , Knk

,

the edges of Kp−1 can be colored by c1, . . . , ck such that there is neither a sub-

graph Kn1 of color c1, nor a subgraph Kn2 of color c2, . . ., nor a subgraph Knk

of color ck. Of course such a k-coloring of Kp−1 can be viewed as a (k + 1)-

coloring with colors c1, c2, . . . , ck+1 that no edges are colored ck+1. It is clear

that within such (k+1)-coloring there is neither a subgraph Kn1 of color c1, nor

a subgraph Kn2 of color c2, . . ., nor a subgraph Knk
of color ck, nor a subgraph

K2 of color ck+1. Thus R(n1, . . . , nk, 2) ≥ p.

We have concluded that R(n1, . . . , nk, 2) = p.

W may view each edge of Kp with endpoints u, v as a subset {u, v} of two

elements. The collection of edges of Kp is the set of all 2-subsets of the vertex

set V of Kp, where |V | = p. Then Kp → Kn1, . . . , Knk
states that if all 2-

subsets of V are colored with colors c1, . . . , ck arbitrarily, then there is either
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an n1-subset V1 ⊆ V such that all 2-subsets of V1 have the color c1, or an

n2-subset V2 ⊆ V such that all 2-subsets of V2 have the color c2, . . ., or an

nk-subset Vk ⊆ V such that all 2-subsets of Vk have the color ck.

We are not necessarily restrict ourselves to consider only 2-subsets of V . Fix

an integer t ≥ 1 and integers q1, . . . , qk ≥ t. We may consider the problem:

Let all t-subsets of V be colored with colors c1, . . . , ck arbitrarily.

There is either a q1-subset V1 ⊆ V such that all t-subsets of V1 are

colored c1, or a q2-subset V2 ⊆ V such that all t-subsets of V2 are

colored c2, . . ., or a qk-subset Vk ⊆ V such that all t-subsets of Vk

are colored ck.

We use the notation
{p

t

}
→

{q1

t

}
,
{q2

t

}
, . . . ,

{qk

t

}

to denote the statement. It is easy to see that if q ≥ p, then
{p

t

}
→

{q1

t

}
,
{q2

t

}
, . . . ,

{qk

t

}
⇒

{q

t

}
→

{q1

t

}
,
{q2

t

}
, . . . ,

{qk

t

}
.

Let V be a set of p elements, called a p-set. A collection of 2-subsets of V

may be viewed as a symmetric binary relation on V . We may consdier ternary,

quaternary, quinary relations on V . Let Pt(V ) denote the set of all t-subsets

of V , called a complete t-family of size p.

3
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Figure 2: A triangle and a tetrahedron

An n-simplex is interpreted as the collection of all nonempty subsets of an

(n + 1)-set. For n = 0, 1, 2, 3, they are called vertex, edge, triangle, and

tetrahedron respectively.
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Definition 3.3. Let V be a set of n elements. Given a positive integer t

and integers q1, . . . , qk ≥ t. A k-coloring of Pt(V ) by colors c1, . . . , ck is said

to satisfy the Ramsey property of type (q1, . . . , qk), provided that there

exists either a q1-subset V1 ⊆ V such that all members of Pt(V1) are colored

c1, or a q2-subset V2 ⊆ V such that all members of Pt(V2) are colored c2, . . .,

or a qk-subset Vk ⊆ V such that all members of Pt(Vk) are colored ck.

A complete t-family of size n satisfies the Ramsey property of type

(q1, . . . , qk) if its every k-coloring satisfies the Ramsey property of type

(q1, . . . , qk). The smallest number n that its complete t-family satisfies the

Ramsey property of type (q1, . . . , qk) is called the Ramsey number of type

(q1, . . . , qk) and size t, denoted

Rt(q1, . . . , qk).

Ramsey numbers satisfy the following trivial properties:

(a) If σ is a permutation of {1, 2, . . . , k}, then

Rt(q1, q2, . . . , qk) = Rt

(
qσ(1), qσ(2), . . . , qσ(k)

)
.

(b) If a complete t-family of size n satisfies the Ramsey property of type

(q1, . . . , qk), then any complete t-family of size m ≥ n satisfies the Ramsey

property of type (q1, . . . , qk).

(c) If a k-coloring of a complete t-family satisfies the Ramsey property of

type (q1, . . . , qk), then the coloring can be considered as a (k + l)-coloring, and

satisfies the Ramsey property of type (q1, . . . , qk, p1, . . . , pl).

(d) If a k-coloring of a complete t-family does not satisfy the Ramsey property

of type (q1, . . . , qk), then the coloring can be considered as a (k + l)-coloring,

and does not satisfy the Ramsey property of type (q1, . . . , qk, p1, . . . , pl).

Theorem 3.4 (Ramsey Theorem – Complete Version). Given a

positive integer t and integers q1, . . . , qk ≥ t. There exists a smallest integer

Rt(q1, . . . , qk) such that if t-subsets of an n-set V are colored with colors

c1, . . . , ck arbitrarily, then there is either

(1) a q1-subset V1 ⊆ V such that all t-subsets of V1 are colored c1, or

(2) a q2-subset V2 ⊆ V such that all t-subsets of V2 are colored c2, or

. . . . . . . . . , or
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(k) a qk-subset Vk ⊆ V such that all t-subsets of Vk are colored ck.

The number Rt(q1, . . . , qk) is called the Ramsey number of size t and

type (q1, . . . , qk).

In the special case t = 1, the set of all 1-subsets of V may be considered

as the set V by identifying each 1-subset {v} to the element v itself. Then a

coloring of all 1-subsets of V is just a coloring of the set V . Given a subset

A ⊆ V ; all 1-subsets of A having the same color means all elements of A

are colored the same. Thus K1
p → K1

q1
, . . . , K1

qk
means that if p elements are

colored with k colors c1, . . . , ck, then there is either at least q1 elements colored

c1, or at least q2 elements colored c2, . . ., or at least qk elements colored ck.

Thus the Ramsey number of size 1 and of type (q1, . . . , qk) is

R1(q1, . . . , qk) = q1 + · · · + qk − k + 1.

Lemma 3.5. Rt(q) = q and

Rt(t, q1, . . . , qk) = Rt(q1, . . . , qk).

Proof. Let V be a q-set and members of Pt(V ) be colored into one class C1.

If q ≥ q1 ≥ t, take any q1-subset V1 ⊆ V , we have Pt(V1) ⊆ C1. Thus

Rt(q1) ≤ q1. Let V be a (q1−1)-set and members of Pt(V ) be colored into one

class C1. There is no q1-subset of V such that Pt(V1) ⊆ C1. So Rt(q1) > q1−1,

i.e., Rt(q1) ≥ q1. Therefore Rt(q1) = q1.

Let k ≥ 1 and set p := Rt(q1, . . . , qk). We claim Rt(t, q1, . . . , qk) ≤ p. Given

a p-set V . It suffices to show that Pt(V ) satisfies the Ramsey property of type

(t, q1, . . . , qk). Let Pt(V ) be colored arbitrarily by k + 1 colors c0, c1, . . . , ck.

Case 1: There exists a member V0 ∈ Pt(V ) such that V0 is colored

c0. Since V0 is a t-subset of V , we have Pt(V0) = {V0}, then all members of

Pt(V0) are colored c0. Thus the coloring satisfies the Ramsey property of type

(t, q1, . . . , qk).

Case 2: No members of Pt(V ) are colored c0, i.e., Pt(V ) is colored

by colors c1, . . . , ck. Now the (k + 1)-coloring becomes a k-coloring. Since

|V | = Rt(q1, . . . , qk), the k-coloring satisfies the Ramsey property of type

(q1, . . . , qk). The corresponding (k + 1)-coloring (without using the color c0)

satisfies the Ramsey property of type (t, q1, . . . , qk).
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We have shown that an arbitrary (k + 1)-coloring of Pt(V ) satisfies the

Ramsey property of type (t, q1, . . . , qk). By definition of Ramsey numbers,

Rt(t, q1, . . . , qk) ≤ p.

Next we claim Rt(t, q1, . . . , qk) ≥ p.

It suffices to show that there exists a (p−1)-set V and a coloring of Pt(V ) by

colors c0, c1, . . . , ck, such that the (k + 1)-coloring does not satisfy the Ramsey

property of type (t, q1, . . . , qk). Since p = Rt(q1, . . . , qk), there exists a t-family

of size p−1 such that one of its k-coloring does not satisfy the Ramsey property

of type (q1, . . . , qk), i.e., the t-family Pt(V ) with |V | = p− 1 has a k-coloring

(using colors c1, . . . , ck) which does not satisfy the Ramsey property of type

(q1, . . . , qk). Viewing this k-coloring as a (k + 1)-coloring of Pt(V ) by colors

c0, c1, . . . , ck (the color c0 is not used), then the (k + 1)-coloring of Pt(V ) does

not satisfy the Ramsey property of type (t, q1, . . . , qk).

Theorem 3.6 (Ramsey Theorem – Special Version). Given positive

integers p, q ≥ t. There exists a smallest integer Rt(p, q) such that, if

n ≥ Rt(p, q), V is an n-set, and if each member of Pt(V ) is colored either

black or white arbitrarily, then there exists either a p-subset X ⊆ V such

that all members of Pt(X) are colored black, or a q-subset Y ⊆ V such

that all members of Pt(Y ) are colored white.

Proof. We proceed by induction on p, q and t. For t = 1 and arbitrary p, q ≥ 1,

we have r1(p, q) = p + q − 1. Moreover, it has been shown in Lemma 3.5 that

for all t ≥ 1,

Rt(t, q) = q, Rt(p, t) = p,

which are the induction bases.

Now for integers p, q, t such that p, q ≥ t ≥ 2, we show that Rt(p, q) exists

under the existence of Rt(p− 1, q), Rt(p, q− 1), and the existence of Rt−1(a, b)

for arbitrary integers a, b ≥ t−1. This is achieved by establishing the following

upper bound recurrence relation:

Rt(p, q) ≤ Rt−1(p1, q1) + 1,

where p1 = Rt(p− 1, q) and q1 = Rt(p, q − 1).
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Let V be an n-set with n ≥ Rt−1(p1, q1) + 1. Fix an element v ∈ V and

consider the (n− 1)-set V ′ := V r {v}. Note that |V ′| ≥ Rt−1(p1, q1). Given

an arbitrary 2-coloring {B, W } of Pt(V ). Let

B(V ′) := B ∩ Pt(V
′), W (V ′) := W ∩ Pt(V

′).

Then {B(V ′), W (V ′)} forms a 2-coloring of Pt(V
′). Let

B′ : = {A ∈ Pt−1(V
′) | A ∪ v ∈ B},

W ′ : = {A ∈ Pt−1(V
′) | A ∪ v ∈ W }.

Then B′ and W ′ are disjoint. For each A ∈ Pt−1(V
′), we have either A∪v ∈ B

or A ∪ v ∈ W ; i.e., either A ∈ B′ or A ∈ W ′. Thus {B′, W ′} forms a 2-

coloring of Pt−1(V
′). Since |V ′| ≥ Rt−1(p1, q1), by induction on t there exists

(1) either a p1-subset X1 ⊆ V ′ such that Pt−1(X1) ⊆ B′,

(2) or a q1-subset Y1 ⊆ V ′ such that Pt−1(Y1) ⊆ W ′.

We elaborate each of the two cases.

Case (1): X1 ⊆ V ′, |X1| = p1 = Rt(p − 1, q), and Pt−1(X1) ⊆ B′. Since

{B, W } is a 2-coloring of Pt(V ), its restriction to Pt(X1) induces a 2-coloring

{B(X1), W (X1)} of Pt(X1), where

B(X1) := B ∩ Pt(X1), W (X1) := W ∩ Pt(X1).

By induction on p (when t is fixed), there exists

• either a (p− 1)-subset X2 ⊆ X1 such that Pt(X2) ⊆ B(X1) (⊆ B),

• or a q-subset Y2 ⊆ X1 such that Pt(Y2) ⊆ W (X1) (⊆ W ).

In the former case, consider the p-subset X := X2 ∪ v ⊆ V . For each t-subset

A ∈ Pt(X), if v 6∈ A, then A ⊆ X2, thus A ∈ Pt(X2) ⊆ B; if v ∈ A, then

Ar v is a (t− 1)-subset of X2 (⊆ X1), consequently, Ar v ∈ Pt−1(X1) ⊆ B′,
thus A = (Arv)∪v ∈ B by definition of B′. We have a p-subset X ⊆ V such

that Pt(X) ⊆ B. In the latter case, we already have a q-subset Y := Y2 ⊆ V

such that Pt(Y ) ⊆ W . We see that the coloring {B, W } of Pt(V ) satisfies

the Ramsey property of type (p, q).
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Case (2): Y1 ⊆ V ′, |Y1| = q1 = Rt(p, q − 1), and Pt−1(Y1) ⊆ W ′. Since

{B(V ′), W (V ′)} is a 2-coloring of Pt(V
′), its restriction to Pt(Y1) induces a

2-coloring {B(Y1), W (Y1)} of Pt(Y1), where

B(Y1) := B ∩ Pt(Y1), W (Y1) := W ∩ Pt(Y1).

By induction on q (when t is fixed), there exists

• either a p-subset X2 ⊆ Y1 such that Pt(X2) ⊆ B(Y1) (⊆ B),

• or a (q − 1)-subset Y2 ⊆ Y1 such that Pt(Y2) ⊆ W (Y1) (⊆ W ).

In the former case, we already have a p-subset

X := X2 ⊆ V such that Pt(X) ⊆ B.

In the latter case, consider the q-subset Y := Y2∪v ⊆ V . For each A ∈ Pt(Y ),

if v 6∈ A, then A ∈ Pt(Y2) ⊆ W ; if v ∈ A, then A r v ⊆ Y2 ⊆ Y1, i.e.,

Ar v ∈ Pt−1(Y1) ⊆ W ′, thus A = (Ar v)∪ v ∈ W by definition of W ′. So

we have Pt(Y ) ⊆ W . Now we see that the coloring {B, W } of Pt(V ) satisfies

the Ramsey property of type (p, q).

We have established the upper bound recurrence relation:

Rt(p, q) ≤ Rt−1

(
Rt(p− 1, q), Rt(p, q − 1)

)
+ 1.

Theorem 3.7 (Ramsey Theorem - General Version). Given positive

integers q1, q2, . . . , qk ≥ t. There exists a smallest integer Rt(q1, q2, . . . , qk)

such that, if n ≥ Rt(q1, q2, . . . , qk), V is an n-set, and Pt(V ) is arbitrarily

colored into k color classes C1, C2, . . . , Ck, then there is at least one i

(1 ≤ i ≤ k) and a qi-subset Vi ⊆ V such that Pt(Vi) ⊆ Ci.

Proof. We proceed by induction on k. For k = 1, let members of Pt(V ) be

colored into one class C1. If n ≥ n1, take any n1-subset V1 ⊆ V , we have

Pt(V1) ⊆ C1. Thus Rt(n1) ≤ n1. If n < n1, it is impossible to find an n1-

subset of V . So Rt(n1) ≥ n1. Hence Rt(n1) = n1. For k = 2, it is Theorem 3.6.

For k ≥ 3, fix integers q1, . . . , qk. By induction there exist the Ramsey

numbers q′k−1 := Rt(qk−1, qk) and (consequently) Rt(q1, . . . , qk−2, q
′
k−1). Let V

be an n-set with

n ≥ Rt(q1, . . . , qk−2, q
′
k−1).
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Let {C1, . . . , Ck} be an arbitrary k-coloring of Pt(V ). Consider the (k − 1)-

coloring {D1, . . . , Dk−1} of Pt(V ), where Di = Ci for i = 1, . . . , k − 2 and

Dk−1 = Ck−1 ∪Ck. By induction there is at least one qi-subset Vi ⊆ V with

1 ≤ i ≤ k − 2 such that Pt(Vi) ⊆ Di (= Ci), or a q′k−1-subset V ′
k−1 ⊆ V

such that Pt(V
′
k−1) ⊆ Dk−1 = Ck−1 ∪Ck. In the formal case, nothing is to be

proved. In the latter case, let

D′
k−1 := Pt(V

′
k−1) ∩Ck−1, D′

k := Pt(V
′
k−1) ∩Ck.

Then {D′
k−1, D

′
k} is a 2-coloring of Pt(V

′
k−1). Since |V ′

k−1| = q′k−1 = Rt(qk−1, qk),

there exists either a qk−1-subset Vk−1 ⊆ V ′
k−1 such that Pt(Vk−1) ⊆ D′

k−1

(⊆ Ck−1) or a qk-subset Vk ⊆ V ′
k−1 such that Pt(Vk) ⊆ D′

k (⊆ Ck). Thus

there exists either a qk−1-subset Vk−1 ⊆ V such that Pt(Vk−1) ⊆ Ck−1 or a

qk-subset Vk ⊆ V such that Pt(Vk) ⊆ Ck.

Summarizing the above argument we obtain the upper bound recurrence

relation:

Rt(q1, q2, . . . , qk) ≤ Rt

(
q1, q2, . . . , qk−2, q

′
k−1

)

= Rt

(
q1, q2, . . . , qk−2, Rt(qk−1, qk)

)
. (1)

Proposition 3.8 (Strong Form of Pigeonhole Principle). If t = 1, then the

Ramsey number r1(q1, q2, . . . , qk) is the smallest integer n such that if the

elements of an n-set are colored with k colors c1, c2, . . . , ck, then either

there are q1 elements of color c1, or q2 elements of color c2, ..., or qk

elements of color ck. Moreover,

R1(q1, q2, . . . , qk) = q1 + q2 + · · · + qk − k + 1.

The known Ramsey numbers:

R2(3, 3) = 6, R2(3, 4) = R2(4, 3) = 9, R2(3, 5) = R2(5, 3) = 14(or13?),

R2(3, 6) = R2(6, 3) = 18, R2(3, 7) = R2(7, 3) = 23,

R2(3, 8) = r2(8, 3) = 28, R2(3, 9) = R2(9, 3) = 36,

R2(4, 4) = 18, R2(4, 5) = R2(5, 4) = 25.

There are estimates: 40 ≤ R2(3, 10) = R2(10, 3) ≤ 43, 43 ≤ R2(5, 5) ≤ 49.
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Example 3.3. Consider V = {1, 2, 3, 4, 5}. Then

P3(V ) = {123, 124, 125, 134, 135, 145, 234, 235, 245, 345}
Many 2-colorings of P3(V ) does not satisfy the Ramsey property of type (4, 4).

For instance, the 2-coloring {C1, C2}, where

C1 = {123, 124, 125, 134, 135} and C2 = {145, 234, 235, 245, 345},
does not satisfy the Ramsey property of type (4, 5), since none of

P3(1234), P3(1235), P3(1245), P3(1345), P3(2345)

is contained in C1, and P (12345) is not contained in C2. So r3(4, 5) > 5.

The 2-coloring {C1, C2} of the following does not satisfy the Ramsey prop-

erty of type (4, 4), where

C1 = {123, 124, 125, 134} and C2 = {135, 145, 234, 235, 245, 345}.
So r3(4, 4) > 5. However, the 2-coloring {C1, C2}, where

C1 = {123, 124, 134, 234, 125} and C2 = {135, 145, 235, 245, 345},
does satisfy the Ramsey property of type (4, 4), since P3(1234) is contained in

C1. The Ramsey number r3(4, 4) can be estimated as follows: Since r2(4, 4) =

18, we have

r3(4, 4) ≤ r2(r3(3, 4), r3(4, 3)) + 1 = r2(4, 4) + 1 = 18 + 1 = 19.

So 6 ≤ r3(4, 4) ≤ 19.

4 Applications of the Ramsey Theorem

Theorem 4.1. For positive integers q1, . . . , qk there exists a smallest pos-

itive integer R(q1, . . . , qk) such that, if n ≥ R(q1, . . . , qk) and for any edge

coloring of the complete graph Kn with k colors c1, . . . , ck, there is at least

one i (1 ≤ i ≤ k) such that Kn contains a complete subgraph Kqi
of the

color ci.

Proof. Each edge of Kn can be considered as a 2-subset of its vertices.
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Theorem 4.2 (Erdös-Szekeres). For any integer k ≥ 3 there exists a small-

est integer N(k) such that, if n ≥ N(k) and for any n points on a plane

having no three points through a line, then there is a convex k-gon whose

vertices are among the given n points.

Before proving the theorem we prove the following two lemmas.

Lemma 4.3. Among any 5 points on a plane, no three points through a

line, 4 of them must form a convex quadrangle.

Proof. Join every pair of two points by a segment to have a configuration of

10 segments. The circumference of the configuration forms a convex polygon.

If the convex polygon is a pentagon or a quadrangle, the problem is done.

Otherwise the polygon must be a triangle, and the other two points must be

located inside the triangle. Draw a straight line through the two points; two

of the three vertices must be located in one side of the straight line. The

two vertices on the same side and the two points inside the triangle form a

quadrangle.

Lemma 4.4. Given k ≥ 4 points on a plane, no 3 points through a line.

If any 4 points are vertices of a convex quadrangle, then the k points are

actually the vertices of a convex k-gon.

Proof. Join every pair of two points by a segment to have a configuration of

k(k − 1)/2 segments. The circumference of the configuration forms a convex

l-polygon. If l = k, the problem is solved. If l < k, there must be at least

one point inside the l-polygon. Let v1, v2, . . . , vl be the vertices of the con-

vex l-polygon, and draw segments between v1 and v3, v4, . . . , vl−1 respectively.

The point inside the convex l-polygon must be located in one of the triangles

4v1v2v3,4v1v3v4, . . . ,4v1vl−1vl. Obviously, the three vertices of the triangle

with a given point inside together with the given point do not form a convex

quadrangle. This is a contradiction.

Proof of Theorem 4.2. We apply the Ramsey theorem to prove Theorem 4.2.

For k = 3, it is obviously true. Now for k ≥ 4, if n ≥ r4(k, 5), we divide the

4-subsets of the n points into a class C of 4-subsets whose points are vertices

of a convex quadrangle, and another class D of 4-subsets whose points are not
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vertices of any convex quadrangle. By the Ramsey theorem, there is either k

points whose any 4-subset belongs to C, or 5 points whose any 4-subset belongs

to D. In the formal case, the problem is solved by Lemma 4.4. In the latter

case, it is impossible by Lemma 4.3. ¤
Theorem 4.5 (Schur). For any positive integer k there exists a smallest

integer Nk such that, if n ≥ Nk and for any k-coloring of [1, n], there is a

monochromatic sequence x1, x2, . . . , xl (l ≥ 2) such that xl =
∑l−1

i=1 xi.

Proof. Let n ≥ R(l, . . . , l) and let {A1, . . . , Ak} be a k-coloring of [1, n]. Let

{C1, . . . , Ck} be a k-coloring of P2([1, n]) defined by

{a, b} ∈ Ci if and only if |a− b| ∈ Ai, where 1 ≤ i ≤ k.

By the Ramsey theorem, there is one r (1 ≤ r ≤ k) and an l-subset A =

{a1, a2, . . . , al} ⊆ [1, n] such that P2(A) ⊆ Cr. We may assume a1 < a2 <

· · · < al. Then

{ai, aj} ∈ Cr and aj − ai ∈ Ar for all i < j.

Let xi = ai+1 − ai for 1 ≤ i ≤ l − 1 and xl = al − a1. Then xi ∈ Ar for all

1 ≤ i ≤ l and xl =
∑l−1

i=1 xi.

5 Van der Waerden Theorem

The Van der Waerden theorem states that for any k-coloring of Z+, the set of

positive integers, there always exists a monochromatic arithmetic progression

of arbitrary length. An arithmetic progression (AP) (or arithmetic

sequence) is a finite sequence of numbers such that the difference between

the consecutive terms is constant. For instance, 3, 7, 11, 15, 19, 23, 27, 31, 35 is

an arithmetic progression of difference 4 and length 9. The following statements

are equivalent.

Theorem 5.1. (a) If Z+ = C1 ∪ C2 ∪ · · · ∪ Ck, then some Ci contains

arbitrarily long arithmetic progression.

(b) Given positive integers k and l. There exists a constant N(k, l),

known as Van der Waerden number, such that if n ≥ N(k, l) and
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{1, 2, . . . , n} ⊆ C1 ∪ C2 ∪ · · · ∪ Ck, then some Ci contains an arithmetic

progression of length l.

(c) Let a0, a1, a2, . . . be an infinite sequence such that 0 < ai+1 − ai < r

for all i, where r is a fixed number. Then the sequence contains arbitrarily

long arithmetic progressions.

(d) For integers k, r ≥ 1, there exists a constant M(k, r) such that if

m ≥ M(k, l) and a1, . . . , am is a sequence satisfying 0 < ai+1 − ai ≤ r for

all i, then k of the numbers a1, . . . , am are in arithmetic progression.

Let [a, b] denote the set of integers x such that a ≤ x ≤ b. Two tuples

(x1, . . . , xm) and (y1, . . . , ym) of [1, l]m are said to be l-equivalent, written

(x1, . . . , xm) ∼ (y1, . . . , ym),

if all entries before the last l in each tuple are the same. For instance, for l = 5

and m = 4,

(3, 5, 2, 5) ∼ (3, 5, 2, 5), (2, 4, 5, 2) ∼ (2, 4, 5, 4),

(4, 3, 1, 4) ∼ (2, 3, 2, 1), (3, 5, 5, 1) 6∼ (3, 5, 2, 4).

Obviously, l-equivalence is an equivalence relation on [0, l]m. All tuples of

[0, l − 1]m are l-equivalent.

Definition 5.2. For integers l,m ≥ 1, let A(l,m) denote the statement: For

any integer k ≥ 1 there exists a smallest integer N(l, m, k) such that, if n ≥
N(l,m, k) and [1, n] is k-colored, then there are integers a, d1, d2, . . . , dm ≥ 1

such that a + l
∑m

i=1 di ≤ n and for each l-equivalence class E of [0, l]m,
{

a +

m∑
i=1

xidi : (x1, . . . , xm) ∈ E

}

is monochromatic (having the same color).

When m = 1, there are only two l-equivalence classes for [0, l]m, i.e.,

{0, 1, 2, . . . , l − 1} and {l}.
The statement A(l, 1) means that for any integer k ≥ 1 there exists a smallest

integer N(l, 1, k) such that, if n ≥ N(l, 1, k) and [1, n] is k-colored, then there
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are integers a, d ≥ 1 such that a + ld ≤ n and the sequence, a, a + d, a +

2d, . . . , a + (l − 1)d, is monochromatic.

Theorem 5.3 (Graham-Rothschild). The statement A(l,m) is true for all

integers l, m ≥ 1.

Proof. We proceed induction on l and m. For l = m = 1, the 1-equivalence

classes of [0, 1] are {0} and {1}; the statement A(1, 1) states that for any integer

k ≥ 1 there exists a smallest integer N(1, 1; k) such that, if n ≥ N(1, 1; k) and

[1, n] is k-colored, then there are integers a, d ≥ 1 such that a+d ≤ n, and both

{a} and {a+d} are monochromatic. This is obviously true and N(1, 1; k) = 2.

We divide the induction argument into two statements:

(I) If A(l, m) is true for some m ≥ 1 then A(l,m + 1) is true.

(II) If A(l, m) is true for all m ≥ 1 then A(l + 1, 1) is true.

The induction goes as follows: The truth of A(1, 1) implies the truth of A(1,m)

for all m ≥ 1 by (I). Then by (II) the statement A(2, 1) is true. Again by (I)

the statement A(2,m) is true for all m ≥ 1. Continuing this procedure we

obtain that A(l, m) is true for all l, m ≥ 1.

First Proof. Let the integer k ≥ 1 be fixed. Since A(l, m) is true,

the integer N(l,m, k) exists and set p = N(l, m, k). Since A(l, 1) is true, the

integer N(l, 1, kp) exists and we set q = N(l, 1, kp), N = pq. Let φ : [1, N ] −→
[1, k] be a k-coloring of [1, N ]. Let ψ : [1, q] −→ [1, k]p be a kp-coloring of [1, q]

defined by

ψ(i) =
(
φ((i− 1)p + 1), φ((i− 1)p + 2), . . . , φ((i− 1)p + p)

)
, 1 ≤ i ≤ q.

(2)

Since A(l, 1) is true, then for the kp-coloring ψ of [1, q] there are integers a, d ≥ 1

such that

a + ld ≤ q

and

{a + xd : x = 0, 1, 2, . . . , l − 1}
is monochromatic, i.e.,

ψ(a + xd) = constant, x = 0, 1, 2, . . . , l − 1. (3)
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Note that [(a − 1)p + 1, ap] ⊆ [1, pq] because a ≤ q. Since A(l, m) is true,

then when φ is restricted to the p-set [(a − 1)p + 1, ap] there are integers

b, d1, d2, . . . , dm ≥ 1 such that

(a− 1)p + 1 ≤ b, b + l

m∑
i=1

di ≤ ap,

and for each l-equivalence class E of [0, l]m,
{

b +

m∑
i=1

xidi : (x1, . . . , xm) ∈ E

}

is monochromatic, i.e.,

φ

(
b +

m∑
i=1

xidi

)
= constant, (x1, . . . , xm) ∈ E. (4)

Recall that our job is to prove that A(l, m + 1) is true. For the k-coloring φ of

[1, N ], we have had the integers

b, d1, d2, . . . , dm+1 ≥ 1, where dm+1 = dp.

Since b + l
∑m

i=1 di ≤ ap and a + ld ≤ q, we have

b + l

m+1∑
i=1

di ≤ ap + ldp = (a + dl)p ≤ pq = N.

Now for any two l-equivalent tuples (x1, . . . , xm+1) and (y1, . . . , ym+1) of [0, l]m+1,

consider the numbers

α = b +
∑m+1

i=1 xidi, β = b +
∑m+1

i=1 yidi,

α0 = b +
∑m

i=1 xidi, β0 = b +
∑m

i=1 yidi.

Notice that our job is to show that α and β have the same color, i.e., φ(α) =

φ(β). We divide the job into three cases:

Case 1. xm+1 = ym+1 = l. Then xi = yi for all 1 ≤ i ≤ m. Thus α = β,

and obviously, φ(α) = φ(β).
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Case 2. xm+1 = l and ym+1 ≤ l − 1, or, xm+1 ≤ l − 1 and ym+1 = l. This

implies that (x1, . . . , xm+1) and (y1, . . . , ym+1) are not l-equivalent. This is a

contradiction.

Case 3. xm+1, ym+1 ∈ [0, l − 1]. Then (x1, . . . , xm) and (y1, . . . , ym) are

l-equivalent. It follows from (3) that ψ(a) = ψ(a + xm+1d), and by definition

(2) of ψ, the corresponding coordinates of ψ(a) and ψ(a + xm+1d) are equal,

i.e.,

φ
(
(a− 1)p + i

)
= φ

(
(a + xm+1d− 1)p + i

)
, i = 1, 2, . . . , p.

Since (a− 1)p + 1 ≤ b ≤ α0 ≤ b + l
∑m

i=1 di ≤ ap = (a− 1)p + p, there exists

j ∈ [1, p] such that α0 = (a− 1)p + j. We then have

α = α0 + xm+1dp = (a− 1)p + j + xm+1dp = (a + xm+1d− 1)p + j.

Thus

φ(α) = φ
(
(a + xm+1d− 1)p + j

)
= φ

(
(a− 1)p + j

)
= φ(α0).

Similarly, φ(β) = φ(β0). Since (x1, . . . , xm) and (y1, . . . , ym) are l-equivalent,

it follows from (4) that φ(α0) = φ(β0). Therefore φ(α) = φ(β). This means

that A(l,m + 1) is true and

N(l, m + 1, k) ≤ N(l, m, k) ·N
(
l, 1, kN(l,m,k)

)
.

Second Proof. Fix an integer k ≥ 1. Since A(l,m) is true for all m ≥ 1,

the statement A(l, k) is true and N(l, k, k) exists. Let N = 2N(l, k, k) and let

φ be a k-coloring of [1, N ]. Notice that the restriction of φ on [1, N(l, k, k)] is

a k-coloring. Then there are integers a, d1, d2, . . . , dk ≥ 1 such that

a + l

k∑
i=1

di ≤ N(l, k, k),

and for l-equivalent tuples (x1, . . . , xk), (y1, . . . , yk) ∈ [0, l]k,

φ

(
a +

k∑
i=1

xidi

)
= φ

(
a +

k∑
i=1

yidi

)
.
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Consider the k + 1 tuples (none of them are l-equivalent)

(0, 0, . . . , 0), (l, 0, . . . , 0), (l, l, . . . , 0), . . . , (l, l, . . . , l)

of [0, l]k to have k + 1 distinct integers

a, a + ld1, a + l(d1 + d2), . . . , a + l(d1 + d2 + · · · + dk).

At least two of them, say a + l(d1 + · · · + dλ) and a + l(d1 + · · · + dµ) with

λ < µ, must have the same color, i.e.,

φ

(
a + l

λ∑
i=1

di

)
= φ

(
a + l

µ∑
i=1

di

)
. (5)

For any x ∈ [0, l − 1], the two tuples

(l, . . . , l︸ ︷︷ ︸
λ

, x, . . . , x︸ ︷︷ ︸
µ−λ

, 0, . . . , 0) and (l, . . . , l︸ ︷︷ ︸
λ

, 0, . . . , 0︸ ︷︷ ︸
µ−λ

, 0, . . . , 0)

of [0, l]k are l-equivalent. Thus the numbers a + l
∑λ

i=1 di + x
∑µ

i=λ+1 di for

x ∈ [0, l − 1] have the same color by φ, i.e.,

φ

(
a + l

λ∑
i=1

di + x

µ∑

i=λ+1

di

)
= constant, x = 0, 1, 2, . . . , l − 1.

Combining this with (5) we have

φ

(
a + l

λ∑
i=1

di + x

µ∑

i=λ+1

di

)
= constant, x = 0, 1, 2, . . . , l − 1, l.

Recall that our job is to prove the truth of A(l + 1, 1). Let b = a + l
∑λ

i=1 di

and d =
∑µ

i=λ+1 di. Then we have had the integers b, d ≥ 1 such that

b+(l+1)d = a+l
λ∑

i=1

di+(l+1)

µ∑

i=λ+1

di = a+l

µ∑
i=1

di+

µ∑

i=λ+1

di ≤ N(l, k, k)+N(l, k, k) = N

and for the k-coloring φ of [1, N ], the l-equivalence class {0, 1, 2, . . . , l} of

[0, l + 1]1 have the same color, i.e.,

φ(b + xd) = constant, x = 0, 1, 2, . . . , l.

This means that the statement A(l + 1, 1) is true.
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The truth of A(l, m) for m = 1 is called the Van der Waerden theorem.

Corollary 5.4 (Van der Waerden Theorem). For any positive integers k

and l there exists a smallest integer N(l, k) such that, if n ≥ N(l, k) and

[1, n] is k-colored, then there is a monochromatic arithmetic sequence of

length l in [1, n].

Supplementary Exercises

1. For the game of Nim, let us restrict that each player can move one or two

coins. Find the winning strategy for each player.

2. Let n be a positive integer. In the game of Nim let us restrict that each

player can move only i ∈ {1, 2, . . . , n} coins each time from one heap.

Find the winning strategy for each player.

3. Given m(m − 1)2 + 1 integral points on a plane, where m is odd. Show

that there exists m points whose center is also an integral point.
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