Week 8-9: The Inclusion-Exclusion Principle

March 31, 2005

1 The Inclusion-Exclusion Principle

Let S be a finite set, and let A, B, C be subsets of S. Then

$$
\begin{gathered}
|A \cup B|=|A|+|B|-|A \cap B|, \\
|A \cup B \cup C|=|A|+|B|+|C|-|A \cap B|-|A \cap C|-|B \cap C|+|A \cap B \cap C| .
\end{gathered}
$$

Let $P_{1}, P_{2}, \ldots, P_{n}$ be properties referring to the objects in S. Let A_{i} be the set of all elements of S that have the property P_{i}, i.e.,

$$
A_{i}=\left\{x \in S: x \text { has the property } P_{i}\right\}, \quad 1 \leq i \leq n .
$$

The elements of A_{i} may possibly have properties other than P_{i}. In many occasions we need to find the number of objects having none of the properties $P_{1}, P_{2}, \ldots, P_{n}$.
Theorem 1.1. The number of objects of S which have none of the properties $P_{1}, P_{2}, \ldots, P_{n}$ is given by

$$
\begin{align*}
\left|\bar{A}_{1} \cap \bar{A}_{2} \cap \cdots \cap \bar{A}_{n}\right|= & |S|-\sum_{i}\left|A_{i}\right|+\sum_{i<j}\left|A_{i} \cap A_{j}\right|-\sum_{i<j<k}\left|A_{i} \cap A_{j} \cap A_{k}\right|+\cdots \\
& \cdots+(-1)^{n}\left|A_{1} \cap A_{2} \cap \cdots \cap A_{n}\right| . \tag{1}
\end{align*}
$$

Proof. The left side of (1) counts the number of objects of S with none of the properties. We establish the identity (1) by showing that an object with none the properties makes a net contribution of 1 to the right side of (1), and for an object with at least one of the properties makes a net contribution of 0 .

Let x be an object having none of the properties. Then the net contribution of x to the right side of (1) is

$$
1-0+0-0+\cdots+(-1)^{n} 0=1 .
$$

Let x be an object of S having exactly r properties of $P_{1}, P_{2}, \ldots, P_{n}$. The net contribution of x to the right side of (1) is

$$
\binom{r}{0}-\binom{r}{1}+\binom{r}{2}-\binom{r}{3}+\cdots+(-1)^{r}\binom{r}{r}=(1-1)^{r}=0 .
$$

Corollary 1.2. The number of objects of S which have at least one of the properties $P_{1}, P_{2}, \ldots, P_{n}$ is given by

$$
\begin{align*}
\left|A_{1} \cup A_{2} \cup \cdots \cup A_{n}\right|= & \sum_{i}\left|A_{i}\right|-\sum_{i<j}\left|A_{i} \cap A_{j}\right|+\sum_{i<j<k}\left|A_{i} \cap A_{j} \cap A_{k}\right|-\cdots \\
& \cdots+(-1)^{n+1}\left|A_{1} \cap A_{2} \cap \cdots \cap A_{n}\right| . \tag{2}
\end{align*}
$$

Proof. Note that the set $A_{1} \cup A_{2} \cup \cdots \cup A_{n}$ consists of all those objects in S which possess at least one of the properties, and

$$
\left|A_{1} \cup A_{2} \cup \cdots \cup A_{n}\right|=|S|-\left|\overline{A_{1} \cup A_{2} \cup \cdots \cup A_{n}}\right| .
$$

Then by the DeMorgan law we have

$$
\overline{A_{1} \cup A_{2} \cup \cdots \cup A_{n}}=\bar{A}_{1} \cap \bar{A}_{2} \cap \cdots \cap \bar{A}_{n} .
$$

Thus

$$
\left|A_{1} \cup A_{2} \cup \cdots \cup A_{n}\right|=|S|-\left|\bar{A}_{1} \cap \bar{A}_{2} \cap \cdots \cap \bar{A}_{n}\right| .
$$

Putting this into the identity (1), the identity (2) follows immediately.

2 Combinations with Repetition

Let M be a multiset. Let x be an object of M and its repetition number is larger than r. Let M^{\prime} be the multiset whose objects have the same repetition numbers as those objects in M, except that the repetition number of x in M^{\prime} is exactly r. Then

$$
\#\{r \text {-combinations of } M\}=\#\left\{r \text {-combinations of } M^{\prime}\right\} .
$$

Example 2.1. Determine the number of 10 -combinations of the multiset $M=\{3 a, 4 b, 5 c\}$.
Let S be the set of 10 -combinations of the multiset $M^{\prime}=\{\infty a, \infty b, \infty c\}$. Let P_{1} be the property that a 10 combination of M^{\prime} has more than $3 a$'s, let P_{2} be the property that a 10 -combination of M^{\prime} has more than $4 b$'s, and let P_{3} be the property that a 10 -combination of M^{\prime} has more than $5 c$'s. Then the number of 10 -combinations of M is the number of 10 -combinations of M^{\prime} which have none of the properties P_{1}, P_{2}, and P_{3}. Let A_{i} be the sets consisting of the 10 -combinations of M^{\prime} which have the property $P_{i}, 1 \leq i \leq 3$. Then by inclusion-exclusion principle the number to be determined in the problem is given by

$$
\left|\bar{A}_{1} \cap \bar{A}_{2} \cap \bar{A}_{3}\right|=|S|-\left(\left|A_{1}\right|+\left|A_{2}\right|+\left|A_{3}\right|\right)+\left(\left|A_{1} \cap A_{2}\right|+\left|A_{1} \cap A_{3}\right|+\left|A_{2} \cap A_{3}\right|\right)-\left|A_{1} \cap A_{2} \cap A_{3}\right| .
$$

Note that

$$
\begin{aligned}
|S| & =\left\langle\begin{array}{l}
3 \\
10
\end{array}\right\rangle=\binom{3+10-1}{10}=\binom{12}{10}=66, \\
\left|A_{1}\right| & =\left\langle\begin{array}{c}
3 \\
6
\end{array}\right\rangle=\binom{3+6-1}{6}=\binom{8}{6}=28, \\
\left|A_{2}\right| & =\left\langle\begin{array}{l}
3 \\
5
\end{array}\right\rangle=\binom{3+5-1}{5}=\binom{7}{5}=21, \\
\left|A_{3}\right| & =\left\langle\begin{array}{c}
3 \\
4
\end{array}\right\rangle=\binom{3+4-1-1}{4}=\binom{6}{4}=15, \\
\left|A_{1} \cap A_{2}\right| & =\left\langle\begin{array}{c}
3 \\
1
\end{array}\right\rangle=\binom{3+1-1}{1}=\binom{3}{1}=3, \\
\left|A_{1} \cap A_{3}\right| & =\left\langle\begin{array}{c}
3 \\
0
\end{array}\right\rangle=\binom{3+0-1}{0}=\binom{2}{0}=1, \\
\left|A_{2} \cap A_{3}\right| & =0, \\
\left|A_{1} \cap A_{2} \cap A_{3}\right| & =0 .
\end{aligned}
$$

Putting all these results into the inclusion-exclusion formula, we have

$$
\left|\bar{A}_{1} \cap \bar{A}_{2} \cap \bar{A}_{3}\right|=66-(28+21+15)+(3+1+0)-0=6 .
$$

The six 10-combinations are listed as

$$
\{3 a, 4 b, 3 c\}, \quad\{3 a, 3 b, 4 c\}, \quad\{3 a, 2 b, 5 c\}, \quad\{2 a, 4 b, 4 c\}, \quad\{2 a, 3 b, 5 c\}, \quad\{a, 4 b, 5 c\} .
$$

Example 2.2. Find the number of integral solutions of the equation

$$
x_{1}+x_{2}+x_{3}+x_{4}=15
$$

which satisfy the conditions

$$
2 \leq x_{1} \leq 6, \quad-2 \leq x_{2} \leq 1, \quad 0 \leq x_{3} \leq 6, \quad 3 \leq x_{4} \leq 8 .
$$

Let $y_{1}=x_{1}-2, y_{2}=x_{2}+2, y_{3}=x_{3}$, and $y_{4}=x_{4}-3$. Then the problem becomes to find the number of nonnegative integral solutions of the equation

$$
y_{1}+y_{2}+y_{3}+y_{4}=12
$$

subject to

$$
0 \leq y_{1} \leq 4, \quad 0 \leq y_{2} \leq 3, \quad 0 \leq y_{3} \leq 6, \quad 0 \leq y_{4} \leq 5 .
$$

Let S be the set of all nonnegative integral solutions of the equation $y_{1}+y_{2}+y_{3}+y_{4}=12$. Let P_{1} be the property that $y_{1} \geq 5, P_{2}$ the property that $y_{2} \geq 4, P_{3}$ the property that $y_{3} \geq 7$, and P_{4} the property that $y_{4} \geq 6$.

Let A_{i} denote the subset of S consisting of the solutions satisfying the property $P_{i}, 1 \leq i \leq 4$. Then the problem is to find the cardinality $\left|\bar{A}_{1} \cap \bar{A}_{2} \cap \bar{A}_{3} \cap \bar{A}_{4}\right|$ by the inclusion-exclusion principle. In fact,

$$
|S|=\left\langle\begin{array}{c}
4 \\
12
\end{array}\right\rangle=\binom{4+12-1}{12}=\binom{15}{12}=455
$$

Similarly,

$$
\begin{aligned}
\left|A_{1}\right|=\left\langle\begin{array}{l}
4 \\
7
\end{array}\right\rangle=\binom{4+7-1}{7}=\binom{10}{7}=120, \\
\left|A_{2}\right|=\left\langle\begin{array}{l}
4 \\
8
\end{array}\right\rangle=\binom{4+8-1}{8}=\binom{11}{8}=165, \\
\left|A_{3}\right|=\left\langle\begin{array}{l}
4 \\
5
\end{array}\right\rangle=\binom{4+5-1}{5}=\binom{8}{5}=56, \\
\left|A_{4}\right|=\left\langle\begin{array}{l}
4 \\
6
\end{array}\right\rangle=\binom{4+6-1}{6}=\binom{9}{6}=84 .
\end{aligned}
$$

For the intersections of two sets, we have

$$
\begin{gathered}
\left|A_{1} \cap A_{2}\right|=\left\langle\begin{array}{l}
4 \\
3
\end{array}\right\rangle=\binom{4+3-1}{3}=\binom{6}{3}=20 \\
\left|A_{1} \cap A_{3}\right|=1, \quad\left|A_{1} \cap A_{4}\right|=4, \quad\left|A_{2} \cap A_{3}\right|=4, \quad\left|A_{2} \cap A_{4}\right|=10, \quad\left|A_{3} \cap A_{4}\right|=0 .
\end{gathered}
$$

For the intersections of more sets,

$$
\left|A_{1} \cap A_{2} \cap A_{3}\right|=\left|A_{1} \cap A_{2} \cap A_{4}\right|=\left|A_{1} \cap A_{3} \cap A_{4}\right|=\left|A_{2} \cap A_{3} \cap A_{4}\right|=\left|A_{1} \cap A_{2} \cap A_{3} \cap A_{4}\right|=0
$$

Thus the number required is given by

$$
\left|\bar{A}_{1} \cap \bar{A}_{2} \cap \bar{A}_{3} \cap \bar{A}_{4}\right|=455-(120+165+56+84)+(20+1+4+4+10)=69
$$

3 Derangements

A permutation of $\{1,2, \ldots, n\}$ is called a derangement if every integer $i(1 \leq i \leq n)$ is not placed at the i th position. We denote by D_{n} the number of derangements of $\{1,2, \ldots, n\}$.

Let S be the set of all permutations of $\{1,2, \ldots, n\}$. Then $|S|=n$!. Let P_{i} be the property that a permutation of $\{1,2, \ldots, n\}$ has the integer i in its i th position, and let A_{i} be the set of all permutations satisfying the property P_{i}, where $1 \leq i \leq n$. Then

$$
D_{n}=\left|\bar{A}_{1} \cap \bar{A}_{2} \cap \cdots \cap \bar{A}_{n}\right| .
$$

For each $\left(i_{1}, i_{2}, \ldots, i_{k}\right)$ such that $1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n$, a permutation of $\{1,2, \ldots, n\}$ with i_{1}, i_{2}, \ldots, i_{k} fixed at the i_{1} th, i_{2} th, \ldots, i_{k} th position respectively can be identified as a permutation of the set $\{1,2, \ldots, n\}-\left\{i_{1}, i_{2}, \ldots, i_{k}\right\}$ of $n-k$ objects. Thus

$$
\left|A_{i_{1}} \cap A_{i_{2}} \cap \cdots \cap A_{i_{k}}\right|=(n-k)!
$$

By the inclusion-exclusion principle, we have

$$
\begin{aligned}
\left|\bar{A}_{1} \cap \bar{A}_{2} \cap \cdots \cap \bar{A}_{n}\right| & =|S|+\sum_{k=1}^{n}(-1)^{k} \sum_{i_{1}<i_{2}<\cdots<i_{k}}\left|A_{i_{1}} \cap A_{i_{2}} \cap \cdots \cap A_{i_{k}}\right| \\
& =n!+\sum_{k=1}^{n}(-1)^{k} \sum_{i_{1}<i_{2}<\cdots<i_{k}}(n-k)! \\
& =\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}(n-k)! \\
& =n!\sum_{k=0}^{n} \frac{(-1)^{k}}{k!} \simeq \frac{n!}{e} .
\end{aligned}
$$

Theorem 3.1. For $n \geq 1$, the number D_{n} of derangements of $\{1,2, \ldots, n\}$ is given by

$$
\begin{equation*}
D_{n}=n!\left(1-\frac{1}{1!}+\frac{1}{2!}-\frac{1}{3!}+\cdots+(-1)^{n} \frac{1}{n!}\right) . \tag{3}
\end{equation*}
$$

Corollary 3.2. The number of permutations of $\{1,2, \ldots, n\}$ with exactly k numbers displaced equals

$$
\binom{n}{k} D_{k} .
$$

Here are a few derangement numbers:

$$
D_{1}=0, \quad D_{2}=1, \quad D_{3}=2, \quad D_{4}=9, \quad D_{5}=44 .
$$

Proposition 3.3. The derangement sequence D_{n} satisfies the recurrence relation

$$
D_{n}=(n-1)\left(D_{n-1}+D_{n-2}\right), \quad n \geq 3
$$

with the initial condition $D_{1}=0, D_{2}=1$. The sequence D_{n} satisfies the recurrence relation

$$
D_{n}=n D_{n-1}+(-1)^{n}, \quad n \geq 2 .
$$

Proof. The recurrence relations can be proved without using the formula (3). Let S_{k} be the set of derangements $k a_{2} a_{3} \cdots a_{n}$ of $\{1,2, \ldots, n\}$ that have k at the beginning, $k=2,3, \ldots, n$. The derangements in each S_{k} can be partitioned into two types:

$$
k a_{2} a_{3} \cdots a_{k} \cdots a_{n}\left(a_{k} \neq 1\right) \quad \text { and } \quad k a_{2} a_{3} \cdots a_{k-1} 1 a_{k+1} \cdots a_{n}
$$

There are D_{n-1} derangements of the first type and D_{n-2} derangements of the second type. We thus obtain the recurrence relation

$$
D_{n}=(n-1)\left(D_{n-1}+D_{n-2}\right) .
$$

Let us rewrite the recurrence relations as

$$
D_{n}-n D_{n-1}=-\left(D_{n-1}-(n-1) D_{n-2}\right), \quad n \geq 3 .
$$

Applying this recurrence formula continuously, we have

$$
D_{n}-n D_{n-1}=(-1)^{n-2}\left(D_{2}-D_{1}\right)=(-1)^{n} .
$$

Hence $D_{n}=n D_{n-1}+(-1)^{n}$.

4 Surjective Functions

Let X be a set with m objects and let Y be a set with n objects. Then the number of functions from X to Y is

$$
n^{m}
$$

The number of injective functions from X to Y is

$$
\binom{n}{m} m!=P(n, m) .
$$

Let $C(m, n)$ denote the number of surjective functions from X to Y. What is $C(m, n)$?
Theorem 4.1. The number $C(m, n)$ of surjective functions from a set of m objects to a set of n objects is given by

$$
C(m, n)=\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}(n-k)^{m} .
$$

Proof. Let S be the set of all functions from X to Y, and write $Y=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$. Let A_{i} be the set of all functions f such that b_{i} is not assigned to any element of X by f, i.e., $b_{i} \notin f(X)$, where $1 \leq i \leq n$. Then

$$
C(m, n)=\left|\bar{A}_{1} \cap \bar{A}_{2} \cap \cdots \cap \bar{A}_{n}\right| .
$$

For each $\left(i_{1}, i_{2}, \ldots, i_{k}\right)$ such that $1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n$, the set $A_{i_{1}} \cap A_{i_{2}} \cap \cdots \cap A_{i_{k}}$ can be identified to the set of all functions f from X to the complement $Y-\left\{i_{1}, i_{2}, \ldots, i_{k}\right\}$. Thus

$$
\left|A_{i_{1}} \cap A_{i_{2}} \cap \cdots \cap A_{i_{k}}\right|=(n-k)^{m} .
$$

By the inclusion-exclusion principle, we have

$$
\begin{aligned}
\left|\bar{A}_{1} \cap \bar{A}_{2} \cap \cdots \cap \bar{A}_{n}\right| & =|S|+\sum_{k=1}^{n}(-1)^{k} \sum_{i_{1}<i_{2}<\cdots<i_{k}}\left|A_{i_{1}} \cap A_{i_{2}} \cap \cdots \cap A_{i_{k}}\right| \\
& =n^{m}+\sum_{k=1}^{n}(-1)^{k} \sum_{i_{1}<i_{2}<\cdots<i_{k}}(n-k)^{m} \\
& =\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}(n-k)^{m} .
\end{aligned}
$$

Note that $C(m, n)=0$ for $m<n$; we have

$$
\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}(n-k)^{m}=0 \quad \text { if } \quad m<n
$$

Corollary 4.2. For integers $m, n \geq 1$,

$$
\sum_{\substack{i_{1}+\ldots+i n=m \\ i_{1}, \ldots, i n \geq 1}}\binom{m}{i_{1}, \ldots, i_{n}}=\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}(n-k)^{m} .
$$

Proof. The integer $C(m, n)$ can be interpreted as the number of ways to place the objects of X into n distinct boxes such that no one is empty. We then have

$$
C(m, n)=\sum_{\substack{i_{1}+\ldots+i n=m \\ i_{1}, \ldots, i n \geq 1}}\binom{m}{i_{1}, \ldots, i_{n}} .
$$

5 The Euler Phi Function

Let n be a positive integer. We denote by $\phi(n)$ the number of integers of $[1, n]$ which are coprime to n. For example,

$$
\phi(1)=1, \quad \phi(2)=1, \quad \phi(3)=2, \quad \phi(4)=2, \quad \phi(5)=5, \quad \phi(6)=2 .
$$

The integer-valued function ϕ is defined on the set of positive integers, and is called the Euler phi function.
Theorem 5.1. Let n be a positive integer and be factorized into the form $n=p_{1}^{e_{1}} p_{2}^{e_{r}} \cdots p_{r}^{e_{r}}$, where $p_{1}, p_{2}, \ldots, p_{r}$ are distinct primes and $e_{1}, e_{2}, \ldots, e_{r} \geq 1$. Then the Euler function $\phi(n)$ is given by

$$
\phi(n)=n \prod_{i=1}^{r}\left(1-\frac{1}{p_{i}}\right) .
$$

Proof. Let $S=\{1,2, \ldots, n\}$. Let P_{i} be the property that an integer of S has p_{i} as a factor, and let A_{i} be the set of all integers in S that have the property P_{i}, where $1 \leq i \leq r$. Then $\phi(n)$ is the number of integers that have none of the properties $P_{1}, P_{2}, \ldots, P_{r}$, i.e.,

$$
\phi(n)=\left|\bar{A}_{1} \cap \bar{A}_{2} \cap \cdots \cap \bar{A}_{r}\right| .
$$

Note that

$$
A_{i}=\left\{p_{i}, 2 p_{i}, 3 p_{i}, \ldots,\left(\frac{n}{p_{i}}\right) p_{i}\right\}, \quad 1 \leq i \leq r .
$$

More generally, if $1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq r$, then

$$
A_{i_{1}} \cap A_{i_{2}} \cap \cdots \cap A_{i_{k}}=\left\{q, 2 q, 3 q \ldots,\left(\frac{n}{q}\right) q\right\}, \quad \text { where } \quad q=p_{i_{1}} p_{i_{2}} \cdots p_{i_{k}} .
$$

Thus

$$
\left|A_{i_{1}} \cap A_{i_{2}} \cap \cdots \cap A_{i_{k}}\right|=\frac{n}{p_{i_{1}} p_{i_{2}} \cdots p_{i_{k}}} .
$$

By the inclusion-exclusion principle, we have

$$
\begin{aligned}
\left|\bar{A}_{1} \cap \bar{A}_{2} \cap \cdots \cap \bar{A}_{r}\right|= & |S|+\sum_{k=1}^{r}(-1)^{k} \sum_{i_{1}<i_{2}<\cdots<i_{k}}\left|A_{i_{1}} \cap A_{i_{2}} \cap \cdots \cap A_{i_{k}}\right| \\
= & n+\sum_{k=1}^{r}(-1)^{k} \sum_{i_{1}<i_{2}<\cdots<i_{k}} \frac{n}{p_{i_{1}} p_{i_{2}} \cdots p_{i_{k}}} \\
= & n\left[1-\left(\frac{1}{p_{1}}+\cdots+\frac{1}{p_{r}}\right)\right. \\
& +\left(\frac{1}{p_{1} p_{2}}+\frac{1}{p_{1} p_{3}}+\cdots+\frac{1}{p_{r-1} p_{r}}\right) \\
& -\left(\frac{1}{p_{1} p_{2} p_{3}}+\frac{1}{p_{1} p_{2} p_{4}}+\cdots+\frac{1}{p_{r-2} p_{r-1} p_{r}}\right) \\
& \left.+\cdots+(-1)^{r} \frac{1}{p_{1} p_{2} \cdots p_{r}}\right] \\
= & n \prod_{i=1}^{r}\left(1-\frac{1}{p_{i}}\right) .
\end{aligned}
$$

Example 5.1. For the integer 36, since $2^{2} 3^{2}$ we have

$$
\phi(36)=36\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)=12 .
$$

The following are the twelve specific integers of $[1,36]$ that are coprime to 36 :

$$
1,5,7,11,13,17,19,23,25,29,31,35 .
$$

Corollary 5.2. For any prime number p,

$$
\phi\left(p^{k}\right)=p^{k}-p^{k-1} .
$$

Proof. The result can be directly proved without Theorem 5.1. An integer a of $\left[1, p^{k}\right]$ that is not coprime to p^{k} must be of the form $a=i p$, where $1 \leq i \leq p^{k-1}$. Thus the number of integers of $\left[1, p^{k}\right]$ that is coprime to p^{k} equals $p^{k}-p^{k-1}$. Therefore $\phi\left(p^{k}\right)=p^{k}-p^{k-1}$.

Lemma 5.3. Let $m=m_{1} m_{2}$. If $\operatorname{gcd}\left(m_{1}, m_{2}\right)=1$, then the function

$$
f:\{1,2, \ldots, m\} \longrightarrow\left\{1,2, \ldots, m_{1}\right\} \times\left\{1,2, \ldots, m_{2}\right\}, \quad a \mapsto f(a)=\left(r_{1}, r_{2}\right),
$$

is a bijection, where $a=q_{1} m_{1}+r_{1}=q_{2} m_{2}+r_{2}, 1 \leq r_{1} \leq m_{1}, 1 \leq r_{2} \leq m_{2}$. Moreover, the restriction

$$
f:\{a \in[1, m]: \operatorname{gcd}(a, m)=1\} \longrightarrow\left\{a \in\left[1, m_{1}\right]: \operatorname{gcd}\left(a, m_{1}\right)=1\right\} \times\left\{a \in\left[1, m_{2}\right]: \operatorname{gcd}\left(a, m_{2}\right)=1\right\}
$$

is also a bijection.
Proof. It suffices to show that f is surjective. Since $\operatorname{gcd}\left(m_{1}, m_{2}\right)=1$, there are integers x and y such that $x m_{1}+y m_{2}=1$. For any $\left(r_{1}, r_{2}\right) \in\left[1, m_{1}\right] \times\left[1, m_{2}\right]$, let $r=r_{2} x m_{1}+r_{1} y m_{2}$. Then

$$
r=\left(r_{2}-r_{1}\right) x m_{1}+r_{1}\left(x m_{1}+y m_{2}\right)=\left(r_{1}-r_{2}\right) y m_{2}+r_{2}\left(x m_{1}+y m_{2}\right) .
$$

Putting $x m_{1}+y m_{2}=1$ into the above expression, we have

$$
r=\left(r_{2}-r_{1}\right) x m_{1}+r_{1}=\left(r_{1}-r_{2}\right) y m_{2}+r_{2} .
$$

Modify r by adding an appropriate multiple $q m$ of m to obtain a number $a=q m+r$ so that $1 \leq r \leq m$. We thus have $f(a)=\left(r_{1}, r_{2}\right)$. Hence f is surjective. Since $[1, m]$ and $\left[1, m_{1}\right] \times\left[1, m_{2}\right]$ have the same cardinality, it follows that f must be a bijection.

The second part follows from the fact that an integer a is coprime to $m_{1} m_{2}$ if and only if a is coprime to both m_{1} and m_{2}.

Theorem 5.4. If $\operatorname{gcd}(m, n)=1$, then

$$
\phi(m n)=\phi(m) \phi(n)
$$

Moreover, if $n=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{r}^{e_{r}}$ with $e_{1}, e_{2}, \ldots, e_{r} \geq 1$, then

$$
\phi(n)=n \prod_{i=1}^{r}\left(1-\frac{1}{p_{i}}\right)
$$

Proof. The first part follows from Lemma 5.3. The second part follows from the first part, i.e.,

$$
\phi(n)=\prod_{i=1}^{r} \phi\left(p_{i}^{e_{i}}\right)=\prod_{i=1}^{r}\left(p_{i}^{e_{i}}-p_{i}^{e_{i}-1}\right)=n \prod_{i=1}^{r}\left(1-\frac{1}{p_{i}}\right) .
$$

6 Permutations with Forbidden Positions

Let $S=\{1,2, \ldots, n\}$. Let $X_{1}, X_{2}, \ldots, X_{n}$ be subsets (possibly empty) of S. We denote by $P\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ the set of all permutations $a_{1} a_{2} \cdots a_{n}$ of S such that

$$
a_{1} \notin X_{1}, \quad a_{2} \notin X_{2}, \quad \ldots, \quad a_{n} \notin X_{n} .
$$

In other words, a permutation of S belongs to $P\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ provided that no elements of X_{1} occupy the first place, no elements of X_{2} occupy the second place, \ldots, and no elements of X_{n} occupy the nth place. We denote by $p\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ the number of permutations in $P\left(X_{1}, X_{2}, \ldots, X_{n}\right)$, i.e.,

$$
p\left(X_{1}, X_{2}, \ldots, X_{n}\right)=\left|P\left(X_{1}, X_{2}, \ldots, X_{n}\right)\right| .
$$

It is known that there is a one-to-one correspondence between permutations of $\{1,2, \ldots, n\}$ and the placement of n non-attacking, indistinguishable rooks on an n-by- n board. The permutation $a_{1} a_{2} \cdots a_{n}$ of $\{1,2, \ldots, n\}$ corresponds to the placement of n rooks on the board in the squares with coordinates $\left(1, a_{1}\right),\left(2, a_{2}\right), \ldots,\left(n, a_{n}\right)$. The permutations in $P\left(x_{1}, X_{2}, \ldots, X_{n}\right)$ corresponds to placements of n non-attacking rooks on an n-by- n board in which certain squares are not allowed to be put a rook.

Let S be the set of all placements of n non-attacking rooks on an $n \times n$-board. A rook placement in S is called to satisfy the property P_{i} provided that the rook in the i th row is in a column that belongs to $X_{i}(i=1,2, \ldots, n)$.

As usual let A_{i} denote the set of all rook placements satisfying the property $P_{i}(i=1,2, \ldots, n)$. Then by the inclusion-exclusion principle we have

$$
\begin{aligned}
p\left(X_{1}, X_{2}, \ldots, X_{n}\right) & =\left|\bar{A}_{1} \cap \bar{A}_{2} \cap \cdots \cap \bar{A}_{n}\right| \\
& =|S|-\sum_{i}\left|A_{i}\right|+\sum_{i<j}\left|A_{i} \cap A_{j}\right|-\cdots+(-1)^{n}\left|A_{1} \cap A_{2} \cap \cdots \cap A_{n}\right| .
\end{aligned}
$$

Let r_{k} denote the number of ways to place k non-attacking rooks on an $n \times n$-board where each of the k rooks is in a forbidden position $(k=1,2, \ldots, n)$. Then

$$
\sum_{1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n}\left|A_{i_{1}} \cap A_{i_{2}} \cap \cdots \cap A_{i_{k}}\right|=r_{k}(n-k)!.
$$

Theorem 6.1. The number of ways to place n non-attacking rooks on an $n \times n$-board with forbidden positions is given by

$$
p\left(X_{1}, X_{2}, \ldots, X_{n}\right)=\sum_{k=0}^{n}(-1)^{k} r_{k}(n-k)!.
$$

Example 6.1. Let $n=5$ and $X_{1}=\{1,2\}, X_{2}=\{3,4\}, X_{3}=\{1,5\}, X_{4}=\{2,3\}$, and $X_{5}=\{4,5\}$.

\times	\times			
		\times	\times	
\times				\times
	\times	\times		
			\times	\times

Note that $r_{1}=10$. Since

$$
\begin{aligned}
\left|A_{1} \cap A_{2}\right| & =\left|A_{2} \cap A_{3}\right|=\left|A_{3} \cap A_{4}\right|=\left|A_{4} \cap A_{5}\right|=\left|A_{1} \cap A_{5}\right|=4 \cdot 3! \\
\left|A_{1} \cap A_{3}\right| & =\left|A_{1} \cap A_{4}\right|=\left|A_{2} \cap A_{4}\right|=\left|A_{2} \cap A_{5}\right|=\left|A_{3} \cap A_{5}\right|=3 \cdot 3!
\end{aligned}
$$

then $r_{2}=5(4+3)=35$. Using the symmetry between $A_{1}, A_{2}, A_{3}, A_{4}, A_{5}$ and $A_{5}, A_{4}, A_{3}, A_{2}, A_{1}$ respectively, we see that

$$
\begin{aligned}
\left|A_{1} \cap A_{2} \cap A_{3}\right| & =\left|A_{3} \cap A_{4} \cap A_{5}\right|=6 \cdot 2!, \\
\left|A_{1} \cap A_{2} \cap A_{4}\right| & =\left|A_{2} \cap A_{4} \cap A_{5}\right|=4 \cdot 2!, \\
\left|A_{1} \cap A_{2} \cap A_{5}\right| & =\left|A_{1} \cap A_{4} \cap A_{5}\right|=4 \cdot 2!, \\
\left|A_{1} \cap A_{3} \cap A_{4}\right| & =\left|A_{2} \cap A_{3} \cap A_{5}\right|=4 \cdot 2! \\
\left|A_{1} \cap A_{3} \cap A_{5}\right| & =3 \cdot 2!, \\
\left|A_{2} \cap A_{3} \cap A_{4}\right| & =6 \cdot 2!.
\end{aligned}
$$

These can be obtained by considering the following six patterns:

\times	\times			
		\times	\times	
\times				\times

\times	\times			
		\times	\times	
	\times	\times		

\times	\times			
		\times	\times	
			\times	\times

\times	\times			
\times				\times
	\times	\times		

\times	\times			
\times				\times
			\times	\times

		\times	\times	
\times				\times
	\times	\times		

We then have $r_{3}=2 \cdot 6+6 \cdot 4+3+6=45$. Using symmetric again, we see that

$$
\begin{aligned}
\left|A_{1} \cap A_{2} \cap A_{3} \cap A_{4}\right| & =\left|A_{1} \cap A_{2} \cap A_{3} \cap A_{5}\right|=\left|A_{1} \cap A_{2} \cap A_{4} \cap A_{5}\right| \\
& =\left|A_{1} \cap A_{3} \cap A_{4} \cap A_{5}\right|=\left|A_{2} \cap A_{3} \cap A_{4} \cap A_{4}\right|=5 \cdot 1!.
\end{aligned}
$$

Thus $r_{4}=5 \cdot 5=25$. Finally, $r_{5}=\left|A_{1} \cap A_{2} \cap A_{3} \cap A_{4} \cap A_{5}\right|=2$. The answer is given by

$$
5!-10 \cdot 4!+35 \cdot 3!-45 \cdot 2!+25 \cdot 1!-2=23
$$

A permutation of $\{1,2, \ldots, n\}$ is called nonconsecutive if $12,23, \ldots,(n-1) n$ do not occur. We denote by Q_{n} the number of nonconsecutive permutations of $\{1,2, \ldots, n\}$.

Theorem 6.2. For $n \geq 1$, the number of nonconsecutive permutations of $\{1,2, \ldots, n\}$ is given by

$$
Q_{n}=\sum_{k=0}^{n-1}(-1)^{k}\binom{n-1}{k}(n-k)!
$$

Proof. Let S be the set of all permutations of $\{1,2, \ldots, n\}$. Let P_{i} be the property that in a permutation the pattern $i(i+1)$ does occur, and let A_{i} be the set of all permutations satisfying the property $P_{i}, 1 \leq i \leq n-1$. Then Q_{n} is equal to the number of permutations that satisfy none of the properties, i.e., $Q_{n}=\left|\bar{A}_{1} \cap \bar{A}_{2} \cap \cdots \cap \bar{A}_{n}\right|$. Note that

$$
\left|A_{i}\right|=(n-1)!, \quad i=1,2, \ldots, n-1
$$

Similarly,

$$
\left|A_{i} \cap A_{j}\right|=(n-2)!, \quad i<j
$$

More generally,

$$
\left|A_{i_{1}} \cap A_{i_{2}} \cap \cdots \cap A_{i_{k}}\right|=(n-k)!.
$$

Thus by the inclusion-exclusion principle,

$$
Q_{n}=|S|+\sum_{k=1}^{n-1}(-1)^{k} \sum_{1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n-1}\left|A_{i_{1}} \cap A_{i_{2}} \cap \cdots \cap A_{i_{k}}\right|=\sum_{k=0}^{n-1}(-1)^{k}\binom{n-1}{k}(n-k)!.
$$

Example 6.2. Suppose 8 persons line up in one column in such that way every person except the first one has a person in front. What is the chance when the 8 persons reline up after a break so that everyone has a different person in his front?

We assign numbers $1,2, \ldots, 8$ to the 8 boys so that the number i is assigned to the i th boy (counted from the front). Then the problem becomes to find the number of permutations of $\{1,2, \ldots, 8\}$ in which the patterns 12,23 , $\ldots, 78$ do not occur. For instance, 31542876 is an allowed permutation, while 83475126 is not.

The answer is given by

$$
P=\frac{Q_{8}}{8!}=\sum_{k=0}^{7}(-1)^{k}\binom{7}{k} \frac{(8-k)!}{8!} .
$$

Example 6.3. There are n persons seating at a round table. The n persons left the table and reseat after a break. How many seating plans can be made in the second time so that each person has a different person seating on his/her left comparing to the person before break.

This is equivalent to finding the number of circular nonconsecutive permutations of $\{1,2, \ldots, n\}$. A circular nonconsecutive permutation of $\{1,2, \ldots, n\}$ is circular permutation of $\{1,2, \ldots, n\}$ such that $12,23, \ldots,(n-1) n$, $n 1$ do not occur in the counterclockwise direction.

Let S be the set of all circular permutation of $\{1,2, \ldots, n\}$. Let A_{i} denote the subset of all circular permutations of $\{1,2, \ldots, n\}$ such that $i(i+1)$ does not occur, $1 \leq i \leq n$. We understand that A_{n} is the subset of all circular permutations that $n 1$ does not occur. Then the answer is $\left|\bar{A}_{1} \cap \bar{A}_{1} \cap \cdots \cap \bar{A}_{n}\right|$. Note that

$$
\left|A_{i}\right|=(n-1)!/(n-1)=(n-2)!.
$$

More generally,

$$
\begin{gathered}
\left|A_{i_{1}} \cap \cdots \cap A_{i_{k}}\right|=(n-k)!/(n-k)=(n-k-1)!. \\
\left|\bar{A}_{1} \cap \cdots \cap \bar{A}_{n}\right|=\sum_{k=0}^{n-1}(-1)^{k}\binom{n}{k}(n-k-1)!+(-1)^{n} .
\end{gathered}
$$

Theorem 6.3.

$$
Q_{n}=D_{n}+D_{n-1}, \quad n \geq 2
$$

Proof.

$$
\begin{aligned}
D_{n}+D_{n-1} & =n!\sum_{k=0}^{n} \frac{(-1)^{k}}{k!}+(n-1)!\sum_{k=0}^{n-1} \frac{(-1)^{k}}{k!} \\
& =(n-1)!\left(n+n \sum_{k=1}^{n} \frac{(-1)^{k}}{k!}+\sum_{k=1}^{n} \frac{(-1)^{k-1}}{(k-1)!}\right) \\
& =n!+(n-1)!\sum_{k=1}^{n} \frac{(-1)^{k}}{k!}(n-k) \\
& =n!+\sum_{k=1}^{n-1}(-1)^{k}\binom{n-1}{k}(n-k)! \\
& =\sum_{k=0}^{n-1}(-1)^{k}\binom{n-1}{k}(n-k)!=Q_{n} .
\end{aligned}
$$

Definition 6.4. Let C be a board. Let $r_{k}(C)$ be the number of ways to arrange k rooks on the board C so that no one can take another; $r_{0}(C)=1$. The polynomial

$$
R(C, x)=\sum_{k=0}^{\infty} r_{k}(C) x^{k}
$$

is called the rook polynomial of C.
Proposition 6.5. Let C be a board. Fix a square σ. Let C_{σ} denote the board obtained from C by deleting all squares on the row and column that contains the square σ. Let $C-\sigma$ denote the bard obtained from C by deleting the square σ. Then

$$
r_{k}(C)=r_{k}(C-\sigma)+r_{k-1}\left(C_{\sigma}\right)
$$

Equivalently,

$$
R(C, x)=R(C-\sigma, x)+x R\left(C_{\sigma}, x\right)
$$

Proof. The k rook arrangements on the board C can be divided into two kinds: the rook arrangements that the square σ is occupied and the rook arrangements that the square is not occupied, i.e., the the rook arrangements on the board $C-\sigma$ and the rook arrangements on the board C_{σ}. Thus $r_{k}(C)=r_{k}(C-\sigma)+r_{k-1}\left(C_{\sigma}\right)$.

Two chessboards C_{1} and C_{2} are called independent if they have no common rows and common columns. If so the boards C_{1} and C_{2} must be disjoint.

Proposition 6.6. Let C_{1} and C_{2} be independent chessboards, then

$$
r_{k}(C)=\sum_{i=0}^{k} r_{i}\left(C_{1}\right) r_{k-i}\left(C_{2}\right)
$$

Equivalently,

$$
R\left(C_{1}+C_{2}, x\right)=R\left(C_{1}, x\right) R\left(C_{2}, x\right)
$$

Proof. Since C_{1} and C_{2} have disjoint rows and columns, then each i rook arrangement of C_{1} and each j rook arrangement of C_{2} will constitute a $i+j$ rook arrangement of $C_{1}+C_{2}$, and vice versa. Thus

$$
r_{k}\left(C_{1}+C_{2}\right)=\sum_{\substack{i+j=k \\ i, j \geq 0}} r_{i}\left(C_{1}\right) r_{j}\left(C_{2}\right)
$$

Example 6.4. Find the rook polynomial of the board \square(a square with dot) to denote a selected square when applying the recurrence formula of rook polynomial.

$$
\begin{aligned}
R(\square, x)= & R(\square, x)+x R(\square, x) \\
= & {[R(\square, x)+x R(\square, x)]+x[R(\square, x)+x R(\square, x)] } \\
= & \{[R(\square, x)+x R(\square, x)]+x[R(\square, x)+x R(\emptyset, x)]\} \\
& +x[R(\square, x)+x R(\square, x)] \\
= & \left\{\left[\left(1+4 x+2 x^{2}\right)(1+x)+x(1+2 x)\right]+x\left[(1+x)^{2}+x\right]\right\} \\
& +x\left[\left(1+4 x+2 x^{2}\right)+x(1+2 x)\right] \\
= & 1+8 x+16 x^{2}+7 x^{3} .
\end{aligned}
$$

7 Weighted Version of Inclusion-Exclusion Principle

Let X be a set. The characteristic function of a subset A of X is a real-valued function 1_{A} defined on X by

$$
1_{A}(x)= \begin{cases}1 & \text { if } x \in A \\ 0 & \text { if } x \notin A .\end{cases}
$$

For (real-valued) functions f, g and a real number c, we define functions $f+g, c f$, and $f g$ as follows: For $x \in X$,

$$
\begin{gathered}
(f+g)(x)=f(x)+g(x), \\
(a f)(x)=a f(x), \\
f g(x)=f(x) g(x) .
\end{gathered}
$$

The size of a function f on S is the value

$$
|f|=\sum_{x \in X} f(x)
$$

Clearly, for any functions f_{i} and constants $c_{i}(1 \leq i \leq n)$, we have

$$
\left|\sum_{i=1}^{n} c_{i} f_{i}\right|=\sum_{i=1}^{n} c_{i}\left|f_{i}\right| .
$$

Let A and B are subsets of X. Note that

1. $1_{A \cap B}=1_{A} 1_{B}$,
2. $1_{\bar{A}}=1_{S}-1_{A}$,
3. $1_{A \cup B}=1_{A}+1_{B}-1_{A \cap B}$,
4. $1_{\emptyset} f=1_{\emptyset}$ and $1_{X} f=f$ for any function f on S.

Proposition 7.1. Let P_{i} be some properties about the elements of a set S, and let A_{i} be the set of all elements of S that satisfy the property $P_{i}, 1 \leq i \leq n$. Then the inclusion-exclusion principle can be stated as

$$
\begin{equation*}
1_{\bar{A}_{1} \cap \bar{A}_{2} \cap \cdots \cap \bar{A}_{n}}=1_{S}+\sum_{k=1}^{n}(-1)^{k} \sum_{1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n} 1_{A_{i_{1}} \cap A_{i_{2}} \cap \cdots \cap A_{i_{k}}} . \tag{4}
\end{equation*}
$$

Proof.

$$
\begin{aligned}
1_{\bar{A}_{1} \cap \bar{A}_{2} \cap \cdots \cap \bar{A}_{n}} & =1_{\bar{A}_{1}} 1_{\bar{A}_{2}} \cdots 1_{\bar{A}_{n}}=\left(1_{S}-1_{A_{1}}\right)\left(1_{S}-1_{A_{2}}\right) \cdots\left(1_{S}-1_{A_{n}}\right) \\
& =\sum_{n} f_{1} f_{2} \cdots f_{n} \quad\left(\text { where } f_{i}=1_{S} \text { or }-1_{A_{i}}, 1 \leq i \leq n\right) \\
& =\underbrace{1_{S} \cdots 1_{S}}_{n}+\sum_{i_{1}<\cdots<i_{k}} \underbrace{1_{S} \cdots 1_{S}}_{n-k}\left(-1_{A_{i_{1}}}\right) \cdots\left(-1_{A_{i_{k}}}\right) \\
& =1_{S}+\sum_{k=1}^{n}(-1)^{k} \sum_{i_{1}<i_{2}<\cdots<i_{k}} 1_{A_{i_{1} \cap A_{i_{2}} \cap \cdots \cap A_{i_{k}}} .} .
\end{aligned}
$$

Let w be a real-valued weight function on a set X. Then w can be extended to a function on the power set $\mathcal{P}(X)$ of X by

$$
w(A)=\sum_{x \in A} w(x), \quad A \subseteq X
$$

Let $S=\{1,2, \ldots, n\}$. We introduce two functions α and β on the power set $\mathcal{P}(S)$ of S as follows: For $I \subseteq S$,

$$
\begin{aligned}
& \alpha(I)=\left\{\begin{array}{lll}
w\left(\bigcap_{i \in I} A_{i}\right) & \text { if } & I \neq \emptyset \\
0 & \text { if } & I=\emptyset,
\end{array}\right. \\
& \beta(I)=\left\{\begin{array}{lll}
w\left(\bigcup_{i \in I} A_{i}\right) & \text { if } & I \neq \emptyset \\
0 & \text { if } & I=\emptyset .
\end{array}\right.
\end{aligned}
$$

Theorem 7.2. Let α and β be functions defined above. Then

$$
\beta(J)=\sum_{I \subseteq J}(-1)^{|I|-1} \alpha(I),
$$

if and only if

$$
\alpha(J)=\sum_{I \subseteq J}(-1)^{|I|-1} \beta(I) .
$$

