
Week 8-9: The Inclusion-Exclusion Principle

March 31, 2005

1 The Inclusion-Exclusion Principle

Let S be a finite set, and let A,B, C be subsets of S. Then

|A ∪B| = |A|+ |B| − |A ∩B|,
|A ∪B ∪ C| = |A|+ |B|+ |C| − |A ∩B| − |A ∩ C| − |B ∩ C|+ |A ∩B ∩ C|.

Let P1, P2, . . . , Pn be properties referring to the objects in S. Let Ai be the set of all elements of S that have the
property Pi, i.e.,

Ai = {x ∈ S : x has the property Pi}, 1 ≤ i ≤ n.

The elements of Ai may possibly have properties other than Pi. In many occasions we need to find the number of
objects having none of the properties P1, P2, . . . , Pn.

Theorem 1.1. The number of objects of S which have none of the properties P1, P2, . . . , Pn is given by

|Ā1 ∩ Ā2 ∩ · · · ∩ Ān| = |S| −
∑

i

|Ai|+
∑

i<j

|Ai ∩Aj | −
∑

i<j<k

|Ai ∩Aj ∩Ak|+ · · ·

· · ·+ (−1)n|A1 ∩A2 ∩ · · · ∩An|. (1)

Proof. The left side of (1) counts the number of objects of S with none of the properties. We establish the identity
(1) by showing that an object with none the properties makes a net contribution of 1 to the right side of (1), and
for an object with at least one of the properties makes a net contribution of 0.

Let x be an object having none of the properties. Then the net contribution of x to the right side of (1) is

1− 0 + 0− 0 + · · ·+ (−1)n0 = 1.

Let x be an object of S having exactly r properties of P1, P2, . . . , Pn. The net contribution of x to the right side of
(1) is (r

0

)
−

(r

1

)
+

(r

2

)
−

(r

3

)
+ · · ·+ (−1)r

(r

r

)
= (1− 1)r = 0.

Corollary 1.2. The number of objects of S which have at least one of the properties P1, P2, . . . , Pn is given by

|A1 ∪A2 ∪ · · · ∪An| =
∑

i

|Ai| −
∑

i<j

|Ai ∩Aj |+
∑

i<j<k

|Ai ∩Aj ∩Ak| − · · ·

· · ·+ (−1)n+1|A1 ∩A2 ∩ · · · ∩An|. (2)

Proof. Note that the set A1 ∪ A2 ∪ · · · ∪ An consists of all those objects in S which possess at least one of the
properties, and

|A1 ∪A2 ∪ · · · ∪An| = |S| − |A1 ∪A2 ∪ · · · ∪An|.
Then by the DeMorgan law we have

A1 ∪A2 ∪ · · · ∪An = Ā1 ∩ Ā2 ∩ · · · ∩ Ān.

Thus
|A1 ∪A2 ∪ · · · ∪An| = |S| − |Ā1 ∩ Ā2 ∩ · · · ∩ Ān|.

Putting this into the identity (1), the identity (2) follows immediately.
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2 Combinations with Repetition

Let M be a multiset. Let x be an object of M and its repetition number is larger than r. Let M ′ be the multiset
whose objects have the same repetition numbers as those objects in M , except that the repetition number of x in
M ′ is exactly r. Then

#{r-combinations of M} = #{r-combinations of M ′}.
Example 2.1. Determine the number of 10-combinations of the multiset M = {3a, 4b, 5c}.

Let S be the set of 10-combinations of the multiset M ′ = {∞a,∞b,∞c}. Let P1 be the property that a 10-
combination of M ′ has more than 3 a’s, let P2 be the property that a 10-combination of M ′ has more than 4 b’s,
and let P3 be the property that a 10-combination of M ′ has more than 5 c’s. Then the number of 10-combinations
of M is the number of 10-combinations of M ′ which have none of the properties P1, P2, and P3. Let Ai be the
sets consisting of the 10-combinations of M ′ which have the property Pi, 1 ≤ i ≤ 3. Then by inclusion-exclusion
principle the number to be determined in the problem is given by

|Ā1 ∩ Ā2 ∩ Ā3| = |S| −
(
|A1|+ |A2|+ |A3|

)
+

(
|A1 ∩A2|+ |A1 ∩A3|+ |A2 ∩A3|

)
− |A1 ∩A2 ∩A3|.

Note that
|S| =

〈
3
10

〉
=

(
3+10−1

10

)
=

(
12
10

)
= 66,

|A1| =
〈

3
6

〉
=

(
3+6−1

6

)
=

(
8
6

)
= 28,

|A2| =
〈

3
5

〉
=

(
3+5−1

5

)
=

(
7
5

)
= 21,

|A3| =
〈

3
4

〉
=

(
3+4−1

4

)
=

(
6
4

)
= 15,

|A1 ∩A2| =
〈

3
1

〉
=

(
3+1−1

1

)
=

(
3
1

)
= 3,

|A1 ∩A3| =
〈

3
0

〉
=

(
3+0−1

0

)
=

(
2
0

)
= 1,

|A2 ∩A3| = 0,

|A1 ∩A2 ∩A3| = 0.

Putting all these results into the inclusion-exclusion formula, we have

|Ā1 ∩ Ā2 ∩ Ā3| = 66− (28 + 21 + 15) + (3 + 1 + 0)− 0 = 6.

The six 10-combinations are listed as

{3a, 4b, 3c}, {3a, 3b, 4c}, {3a, 2b, 5c}, {2a, 4b, 4c}, {2a, 3b, 5c}, {a, 4b, 5c}.
Example 2.2. Find the number of integral solutions of the equation

x1 + x2 + x3 + x4 = 15

which satisfy the conditions

2 ≤ x1 ≤ 6, −2 ≤ x2 ≤ 1, 0 ≤ x3 ≤ 6, 3 ≤ x4 ≤ 8.

Let y1 = x1 − 2, y2 = x2 + 2, y3 = x3, and y4 = x4 − 3. Then the problem becomes to find the number of
nonnegative integral solutions of the equation

y1 + y2 + y3 + y4 = 12

subject to
0 ≤ y1 ≤ 4, 0 ≤ y2 ≤ 3, 0 ≤ y3 ≤ 6, 0 ≤ y4 ≤ 5.

Let S be the set of all nonnegative integral solutions of the equation y1 + y2 + y3 + y4 = 12. Let P1 be the
property that y1 ≥ 5, P2 the property that y2 ≥ 4, P3 the property that y3 ≥ 7, and P4 the property that y4 ≥ 6.
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Let Ai denote the subset of S consisting of the solutions satisfying the property Pi, 1 ≤ i ≤ 4. Then the problem is
to find the cardinality |Ā1 ∩ Ā2 ∩ Ā3 ∩ Ā4| by the inclusion-exclusion principle. In fact,

|S| =
〈

4
12

〉
=

(
4 + 12− 1

12

)
=

(
15
12

)
= 455.

Similarly,

|A1| =
〈

4
7

〉
=

(
4 + 7− 1

7

)
=

(
10
7

)
= 120,

|A2| =
〈

4
8

〉
=

(
4 + 8− 1

8

)
=

(
11
8

)
= 165,

|A3| =
〈

4
5

〉
=

(
4 + 5− 1

5

)
=

(
8
5

)
= 56,

|A4| =
〈

4
6

〉
=

(
4 + 6− 1

6

)
=

(
9
6

)
= 84.

For the intersections of two sets, we have

|A1 ∩A2| =
〈

4
3

〉
=

(
4 + 3− 1

3

)
=

(
6
3

)
= 20,

|A1 ∩A3| = 1, |A1 ∩A4| = 4, |A2 ∩A3| = 4, |A2 ∩A4| = 10, |A3 ∩A4| = 0.

For the intersections of more sets,

|A1 ∩A2 ∩A3| = |A1 ∩A2 ∩A4| = |A1 ∩A3 ∩A4| = |A2 ∩A3 ∩A4| = |A1 ∩A2 ∩A3 ∩A4| = 0.

Thus the number required is given by

|Ā1 ∩ Ā2 ∩ Ā3 ∩ Ā4| = 455− (120 + 165 + 56 + 84) + (20 + 1 + 4 + 4 + 10) = 69.

3 Derangements

A permutation of {1, 2, . . . , n} is called a derangement if every integer i (1 ≤ i ≤ n) is not placed at the ith position.
We denote by Dn the number of derangements of {1, 2, . . . , n}.

Let S be the set of all permutations of {1, 2, . . . , n}. Then |S| = n!. Let Pi be the property that a permutation
of {1, 2, . . . , n} has the integer i in its ith position, and let Ai be the set of all permutations satisfying the property
Pi, where 1 ≤ i ≤ n. Then

Dn = |Ā1 ∩ Ā2 ∩ · · · ∩ Ān|.
For each (i1, i2, . . . , ik) such that 1 ≤ i1 < i2 < · · · < ik ≤ n, a permutation of {1, 2, . . . , n} with i1, i2, . . . , ik fixed at
the i1th, i2th, . . ., ikth position respectively can be identified as a permutation of the set {1, 2, . . . , n}−{i1, i2, . . . , ik}
of n− k objects. Thus

|Ai1 ∩Ai2 ∩ · · · ∩Aik | = (n− k)!.

By the inclusion-exclusion principle, we have

|Ā1 ∩ Ā2 ∩ · · · ∩ Ān| = |S|+
n∑

k=1

(−1)k
∑

i1<i2<···<ik

|Ai1 ∩Ai2 ∩ · · · ∩Aik |

= n! +
n∑

k=1

(−1)k
∑

i1<i2<···<ik

(n− k)!

=
n∑

k=0

(−1)k
(n

k

)
(n− k)!

= n!
n∑

k=0

(−1)k

k!
' n!

e
.
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Theorem 3.1. For n ≥ 1, the number Dn of derangements of {1, 2, . . . , n} is given by

Dn = n!
(

1− 1
1!

+
1
2!
− 1

3!
+ · · ·+ (−1)n 1

n!

)
. (3)

Corollary 3.2. The number of permutations of {1, 2, . . . , n} with exactly k numbers displaced equals
(n

k

)
Dk.

Here are a few derangement numbers:

D1 = 0, D2 = 1, D3 = 2, D4 = 9, D5 = 44.

Proposition 3.3. The derangement sequence Dn satisfies the recurrence relation

Dn = (n− 1)(Dn−1 + Dn−2), n ≥ 3

with the initial condition D1 = 0, D2 = 1. The sequence Dn satisfies the recurrence relation

Dn = nDn−1 + (−1)n, n ≥ 2.

Proof. The recurrence relations can be proved without using the formula (3). Let Sk be the set of derangements
ka2a3 · · · an of {1, 2, . . . , n} that have k at the beginning, k = 2, 3, . . . , n. The derangements in each Sk can be
partitioned into two types:

ka2a3 · · · ak · · · an (ak 6= 1) and ka2a3 · · · ak−11ak+1 · · · an

There are Dn−1 derangements of the first type and Dn−2 derangements of the second type. We thus obtain the
recurrence relation

Dn = (n− 1)(Dn−1 + Dn−2).

Let us rewrite the recurrence relations as

Dn − nDn−1 = −
(
Dn−1 − (n− 1)Dn−2

)
, n ≥ 3.

Applying this recurrence formula continuously, we have

Dn − nDn−1 = (−1)n−2(D2 −D1) = (−1)n.

Hence Dn = nDn−1 + (−1)n.

4 Surjective Functions

Let X be a set with m objects and let Y be a set with n objects. Then the number of functions from X to Y is

nm.

The number of injective functions from X to Y is
( n

m

)
m! = P (n,m).

Let C(m,n) denote the number of surjective functions from X to Y . What is C(m,n)?

Theorem 4.1. The number C(m,n) of surjective functions from a set of m objects to a set of n objects is given by

C(m,n) =
n∑

k=0

(−1)k
(n

k

)
(n− k)m.
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Proof. Let S be the set of all functions from X to Y , and write Y = {b1, b2, . . . , bn}. Let Ai be the set of all
functions f such that bi is not assigned to any element of X by f , i.e., bi 6∈ f(X), where 1 ≤ i ≤ n. Then

C(m,n) = |Ā1 ∩ Ā2 ∩ · · · ∩ Ān|.

For each (i1, i2, . . . , ik) such that 1 ≤ i1 < i2 < · · · < ik ≤ n, the set Ai1 ∩Ai2 ∩ · · · ∩Aik can be identified to the set
of all functions f from X to the complement Y − {i1, i2, . . . , ik}. Thus

|Ai1 ∩Ai2 ∩ · · · ∩Aik | = (n− k)m.

By the inclusion-exclusion principle, we have

|Ā1 ∩ Ā2 ∩ · · · ∩ Ān| = |S|+
n∑

k=1

(−1)k
∑

i1<i2<···<ik

|Ai1 ∩Ai2 ∩ · · · ∩Aik |

= nm +
n∑

k=1

(−1)k
∑

i1<i2<···<ik

(n− k)m

=
n∑

k=0

(−1)k
(n

k

)
(n− k)m.

Note that C(m,n) = 0 for m < n; we have

n∑

k=0

(−1)k
(n

k

)
(n− k)m = 0 if m < n.

Corollary 4.2. For integers m,n ≥ 1,

∑
i1+···+in=m

i1,...,in≥1

(
m

i1, . . . , in

)
=

n∑

k=0

(−1)k
(n

k

)
(n− k)m.

Proof. The integer C(m,n) can be interpreted as the number of ways to place the objects of X into n distinct boxes
such that no one is empty. We then have

C(m,n) =
∑

i1+···+in=m
i1,...,in≥1

(
m

i1, . . . , in

)
.

5 The Euler Phi Function

Let n be a positive integer. We denote by φ(n) the number of integers of [1, n] which are coprime to n. For example,

φ(1) = 1, φ(2) = 1, φ(3) = 2, φ(4) = 2, φ(5) = 5, φ(6) = 2.

The integer-valued function φ is defined on the set of positive integers, and is called the Euler phi function.

Theorem 5.1. Let n be a positive integer and be factorized into the form n = pe1
1 per

2 · · · per
r , where p1, p2, . . . , pr are

distinct primes and e1, e2, . . . , er ≥ 1. Then the Euler function φ(n) is given by

φ(n) = n

r∏

i=1

(
1− 1

pi

)
.
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Proof. Let S = {1, 2, . . . , n}. Let Pi be the property that an integer of S has pi as a factor, and let Ai be the set of
all integers in S that have the property Pi, where 1 ≤ i ≤ r. Then φ(n) is the number of integers that have none of
the properties P1, P2, . . . , Pr, i.e.,

φ(n) = |Ā1 ∩ Ā2 ∩ · · · ∩ Ār|.
Note that

Ai =
{

pi, 2pi, 3pi, . . . ,

(
n

pi

)
pi

}
, 1 ≤ i ≤ r.

More generally, if 1 ≤ i1 < i2 < · · · < ik ≤ r, then

Ai1 ∩Ai2 ∩ · · · ∩Aik =
{

q, 2q, 3q . . . ,

(
n

q

)
q

}
, where q = pi1pi2 · · · pik .

Thus
|Ai1 ∩Ai2 ∩ · · · ∩Aik | =

n

pi1pi2 · · · pik

.

By the inclusion-exclusion principle, we have

|Ā1 ∩ Ā2 ∩ · · · ∩ Ār| = |S|+
r∑

k=1

(−1)k
∑

i1<i2<···<ik

|Ai1 ∩Ai2 ∩ · · · ∩Aik |

= n +
r∑

k=1

(−1)k
∑

i1<i2<···<ik

n

pi1pi2 · · · pik

= n

[
1−

(
1
p1

+ · · ·+ 1
pr

)

+
(

1
p1p2

+
1

p1p3
+ · · ·+ 1

pr−1pr

)

−
(

1
p1p2p3

+
1

p1p2p4
+ · · ·+ 1

pr−2pr−1pr

)

+ · · ·+ (−1)r 1
p1p2 · · · pr

]

= n
r∏

i=1

(
1− 1

pi

)
.

Example 5.1. For the integer 36, since 2232 we have

φ(36) = 36
(

1− 1
2

)(
1− 1

3

)
= 12.

The following are the twelve specific integers of [1, 36] that are coprime to 36:

1, 5, 7, 11, 13, 17, 19, 23, 25, 29, 31, 35.

Corollary 5.2. For any prime number p,
φ(pk) = pk − pk−1.

Proof. The result can be directly proved without Theorem 5.1. An integer a of [1, pk] that is not coprime to pk

must be of the form a = ip, where 1 ≤ i ≤ pk−1. Thus the number of integers of [1, pk] that is coprime to pk equals
pk − pk−1. Therefore φ(pk) = pk − pk−1.

Lemma 5.3. Let m = m1m2. If gcd(m1,m2) = 1, then the function

f : {1, 2, . . . , m} −→ {1, 2, . . . , m1} × {1, 2, . . . , m2}, a 7→ f(a) = (r1, r2),
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is a bijection, where a = q1m1 + r1 = q2m2 + r2, 1 ≤ r1 ≤ m1, 1 ≤ r2 ≤ m2. Moreover, the restriction

f :
{

a ∈ [1,m] : gcd(a,m) = 1
}
−→

{
a ∈ [1,m1] : gcd(a,m1) = 1

}
×

{
a ∈ [1,m2] : gcd(a,m2) = 1

}

is also a bijection.

Proof. It suffices to show that f is surjective. Since gcd(m1,m2) = 1, there are integers x and y such that
xm1 + ym2 = 1. For any (r1, r2) ∈ [1,m1]× [1,m2], let r = r2xm1 + r1ym2. Then

r = (r2 − r1)xm1 + r1(xm1 + ym2) = (r1 − r2)ym2 + r2(xm1 + ym2).

Putting xm1 + ym2 = 1 into the above expression, we have

r = (r2 − r1)xm1 + r1 = (r1 − r2)ym2 + r2.

Modify r by adding an appropriate multiple qm of m to obtain a number a = qm + r so that 1 ≤ r ≤ m. We thus
have f(a) = (r1, r2). Hence f is surjective. Since [1,m] and [1,m1] × [1,m2] have the same cardinality, it follows
that f must be a bijection.

The second part follows from the fact that an integer a is coprime to m1m2 if and only if a is coprime to both
m1 and m2.

Theorem 5.4. If gcd(m,n) = 1, then
φ(mn) = φ(m)φ(n).

Moreover, if n = pe1
1 pe2

2 · · · per
r with e1, e2, . . . , er ≥ 1, then

φ(n) = n
r∏

i=1

(
1− 1

pi

)
.

Proof. The first part follows from Lemma 5.3. The second part follows from the first part, i.e.,

φ(n) =
r∏

i=1

φ(pei
i ) =

r∏

i=1

(
pei

i − pei−1
i

)
= n

r∏

i=1

(
1− 1

pi

)
.

6 Permutations with Forbidden Positions

Let S = {1, 2, . . . , n}. Let X1, X2, . . . , Xn be subsets (possibly empty) of S. We denote by P (X1, X2, . . . , Xn) the
set of all permutations a1a2 · · · an of S such that

a1 6∈ X1, a2 6∈ X2, . . . , an 6∈ Xn.

In other words, a permutation of S belongs to P (X1, X2, . . . , Xn) provided that no elements of X1 occupy the first
place, no elements of X2 occupy the second place, ..., and no elements of Xn occupy the nth place. We denote by
p(X1, X2, . . . , Xn) the number of permutations in P (X1, X2, . . . , Xn), i.e.,

p(X1, X2, . . . , Xn) = |P (X1, X2, . . . , Xn)|.

It is known that there is a one-to-one correspondence between permutations of {1, 2, . . . , n} and the placement
of n non-attacking, indistinguishable rooks on an n-by-n board. The permutation a1a2 · · · an of {1, 2, . . . , n} corre-
sponds to the placement of n rooks on the board in the squares with coordinates (1, a1), (2, a2), . . ., (n, an). The
permutations in P (x1, X2, . . . , Xn) corresponds to placements of n non-attacking rooks on an n-by-n board in which
certain squares are not allowed to be put a rook.

Let S be the set of all placements of n non-attacking rooks on an n× n-board. A rook placement in S is called
to satisfy the property Pi provided that the rook in the ith row is in a column that belongs to Xi (i = 1, 2, . . . , n).
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As usual let Ai denote the set of all rook placements satisfying the property Pi (i = 1, 2, . . . , n). Then by the
inclusion-exclusion principle we have

p(X1, X2, . . . , Xn) = |Ā1 ∩ Ā2 ∩ · · · ∩ Ān|
= |S| −

∑

i

|Ai|+
∑

i<j

|Ai ∩Aj | − · · ·+ (−1)n|A1 ∩A2 ∩ · · · ∩An|.

Let rk denote the number of ways to place k non-attacking rooks on an n× n-board where each of the k rooks is in
a forbidden position (k = 1, 2, . . . , n). Then

∑

1≤i1<i2<···<ik≤n

|Ai1 ∩Ai2 ∩ · · · ∩Aik | = rk(n− k)!.

Theorem 6.1. The number of ways to place n non-attacking rooks on an n × n-board with forbidden positions is
given by

p(X1, X2, . . . , Xn) =
n∑

k=0

(−1)krk(n− k)!.

Example 6.1. Let n = 5 and X1 = {1, 2}, X2 = {3, 4}, X3 = {1, 5}, X4 = {2, 3}, and X5 = {4, 5}.

× ×
× ×

× ×
× ×

× ×

Note that r1 = 10. Since

|A1 ∩A2| = |A2 ∩A3| = |A3 ∩A4| = |A4 ∩A5| = |A1 ∩A5| = 4 · 3!,

|A1 ∩A3| = |A1 ∩A4| = |A2 ∩A4| = |A2 ∩A5| = |A3 ∩A5| = 3 · 3!,

then r2 = 5(4 + 3) = 35. Using the symmetry between A1, A2, A3, A4, A5 and A5, A4, A3, A2, A1 respectively, we see
that

|A1 ∩A2 ∩A3| = |A3 ∩A4 ∩A5| = 6 · 2!,
|A1 ∩A2 ∩A4| = |A2 ∩A4 ∩A5| = 4 · 2!,
|A1 ∩A2 ∩A5| = |A1 ∩A4 ∩A5| = 4 · 2!,
|A1 ∩A3 ∩A4| = |A2 ∩A3 ∩A5| = 4 · 2!
|A1 ∩A3 ∩A5| = 3 · 2!,
|A2 ∩A3 ∩A4| = 6 · 2!.

These can be obtained by considering the following six patterns:

× ×
× ×

× ×

× ×
× ×

× ×

× ×
× ×

× ×

× ×
× ×

× ×

× ×
× ×

× ×

× ×
× ×

× ×
We then have r3 = 2 · 6 + 6 · 4 + 3 + 6 = 45. Using symmetric again, we see that

|A1 ∩A2 ∩A3 ∩A4| = |A1 ∩A2 ∩A3 ∩A5| = |A1 ∩A2 ∩A4 ∩A5|
= |A1 ∩A3 ∩A4 ∩A5| = |A2 ∩A3 ∩A4 ∩A4| = 5 · 1!.
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Thus r4 = 5 · 5 = 25. Finally, r5 = |A1 ∩A2 ∩A3 ∩A4 ∩A5| = 2. The answer is given by

5!− 10 · 4! + 35 · 3!− 45 · 2! + 25 · 1!− 2 = 23.

A permutation of {1, 2, . . . , n} is called nonconsecutive if 12, 23, . . . , (n − 1)n do not occur. We denote by Qn

the number of nonconsecutive permutations of {1, 2, . . . , n}.
Theorem 6.2. For n ≥ 1, the number of nonconsecutive permutations of {1, 2, . . . , n} is given by

Qn =
n−1∑

k=0

(−1)k

(
n− 1

k

)
(n− k)!.

Proof. Let S be the set of all permutations of {1, 2, . . . , n}. Let Pi be the property that in a permutation the pattern
i(i + 1) does occur, and let Ai be the set of all permutations satisfying the property Pi, 1 ≤ i ≤ n− 1. Then Qn is
equal to the number of permutations that satisfy none of the properties, i.e., Qn = |Ā1 ∩ Ā2 ∩ · · · ∩ Ān|. Note that

|Ai| = (n− 1)!, i = 1, 2, . . . , n− 1.

Similarly,
|Ai ∩Aj | = (n− 2)!, i < j.

More generally,
|Ai1 ∩Ai2 ∩ · · · ∩Aik | = (n− k)!.

Thus by the inclusion-exclusion principle,

Qn = |S|+
n−1∑

k=1

(−1)k
∑

1≤i1<i2<···<ik≤n−1

|Ai1 ∩Ai2 ∩ · · · ∩Aik | =
n−1∑

k=0

(−1)k

(
n− 1

k

)
(n− k)!.

Example 6.2. Suppose 8 persons line up in one column in such that way every person except the first one has
a person in front. What is the chance when the 8 persons reline up after a break so that everyone has a different
person in his front?

We assign numbers 1, 2, . . . , 8 to the 8 boys so that the number i is assigned to the ith boy (counted from the
front). Then the problem becomes to find the number of permutations of {1, 2, . . . , 8} in which the patterns 12, 23,
. . ., 78 do not occur. For instance, 31542876 is an allowed permutation, while 83475126 is not.

The answer is given by

P =
Q8

8!
=

7∑

k=0

(−1)k

(
7
k

)
(8− k)!

8!
.

Example 6.3. There are n persons seating at a round table. The n persons left the table and reseat after a break.
How many seating plans can be made in the second time so that each person has a different person seating on
his/her left comparing to the person before break.

This is equivalent to finding the number of circular nonconsecutive permutations of {1, 2, . . . , n}. A circular
nonconsecutive permutation of {1, 2, . . . , n} is circular permutation of {1, 2, . . . , n} such that 12, 23, . . ., (n − 1)n,
n1 do not occur in the counterclockwise direction.

Let S be the set of all circular permutation of {1, 2, . . . , n}. Let Ai denote the subset of all circular permutations
of {1, 2, . . . , n} such that i(i + 1) does not occur, 1 ≤ i ≤ n. We understand that An is the subset of all circular
permutations that n1 does not occur. Then the answer is |Ā1 ∩ Ā1 ∩ · · · ∩ Ān|. Note that

|Ai| = (n− 1)!/(n− 1) = (n− 2)!.

More generally,
|Ai1 ∩ · · · ∩Aik | = (n− k)!/(n− k) = (n− k − 1)!.

|Ā1 ∩ · · · ∩ Ān| =
n−1∑

k=0

(−1)k
(n

k

)
(n− k − 1)! + (−1)n.
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Theorem 6.3.
Qn = Dn + Dn−1, n ≥ 2.

Proof.

Dn + Dn−1 = n!
n∑

k=0

(−1)k

k!
+ (n− 1)!

n−1∑

k=0

(−1)k

k!

= (n− 1)!

(
n + n

n∑

k=1

(−1)k

k!
+

n∑

k=1

(−1)k−1

(k − 1)!

)

= n! + (n− 1)!
n∑

k=1

(−1)k

k!
(n− k)

= n! +
n−1∑

k=1

(−1)k

(
n− 1

k

)
(n− k)!

=
n−1∑

k=0

(−1)k

(
n− 1

k

)
(n− k)! = Qn.

Definition 6.4. Let C be a board. Let rk(C) be the number of ways to arrange k rooks on the board C so that
no one can take another; r0(C) = 1. The polynomial

R(C, x) =
∞∑

k=0

rk(C)xk

is called the rook polynomial of C.

Proposition 6.5. Let C be a board. Fix a square σ. Let Cσ denote the board obtained from C by deleting all
squares on the row and column that contains the square σ. Let C − σ denote the bard obtained from C by deleting
the square σ. Then

rk(C) = rk(C − σ) + rk−1(Cσ).

Equivalently,
R(C, x) = R(C − σ, x) + xR(Cσ, x).

Proof. The k rook arrangements on the board C can be divided into two kinds: the rook arrangements that the
square σ is occupied and the rook arrangements that the square is not occupied, i.e., the the rook arrangements on
the board C − σ and the rook arrangements on the board Cσ. Thus rk(C) = rk(C − σ) + rk−1(Cσ).

Two chessboards C1 and C2 are called independent if they have no common rows and common columns. If so
the boards C1 and C2 must be disjoint.

Proposition 6.6. Let C1 and C2 be independent chessboards, then

rk(C) =
k∑

i=0

ri(C1)rk−i(C2).

Equivalently,
R(C1 + C2, x) = R(C1, x)R(C2, x).

Proof. Since C1 and C2 have disjoint rows and columns, then each i rook arrangement of C1 and each j rook
arrangement of C2 will constitute a i + j rook arrangement of C1 + C2, and vice versa. Thus

rk(C1 + C2) =
∑

i+j=k
i,j≥0

ri(C1)rj(C2).
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Example 6.4. Find the rook polynomial of the board
¤¤¤¤¤¤¤¤ . We use ¡ (a square with dot) to denote a selected

square when applying the recurrence formula of rook polynomial.

R

(
¤¤¤¤¤¤¤¡ , x

)
= R

(
¤¤¤¤¡¤¤ , x

)
+ xR

(
¤¤¤¤¡ , x

)

=
[
R

(
¤¤¤¤¡¤ , x

)
+ xR

(
¤¡¤ , x

)]
+ x

[
R

(
¤¤¤¤ , x

)
+ xR (¤¤ , x)

]

=
{[

R

(
¤¤¤¤¤ , x

)
+ xR

(
¤¤ , x

)]
+ x

[
R

(
¤¤ , x

)
+ xR(∅, x)

]}

+x
[
R

(
¤¤¤¤ , x

)
+ xR (¤¤ , x)

]

=
{[

(1 + 4x + 2x2)(1 + x) + x(1 + 2x)
]

+ x
[
(1 + x)2 + x

]}

+x
[
(1 + 4x + 2x2) + x(1 + 2x)

]

= 1 + 8x + 16x2 + 7x3.

7 Weighted Version of Inclusion-Exclusion Principle

Let X be a set. The characteristic function of a subset A of X is a real-valued function 1A defined on X by

1A(x) =
{

1 if x ∈ A
0 if x 6∈ A.

For (real-valued) functions f, g and a real number c, we define functions f + g, cf , and fg as follows: For x ∈ X,

(f + g)(x) = f(x) + g(x),

(af)(x) = af(x),

fg(x) = f(x)g(x).

The size of a function f on S is the value
|f | =

∑

x∈X

f(x).

Clearly, for any functions fi and constants ci (1 ≤ i ≤ n), we have
∣∣∣∣∣

n∑

i=1

cifi

∣∣∣∣∣ =
n∑

i=1

ci|fi|.

Let A and B are subsets of X. Note that

1. 1A∩B = 1A1B,

2. 1Ā = 1S − 1A,

3. 1A∪B = 1A + 1B − 1A∩B,

4. 1∅f = 1∅ and 1Xf = f for any function f on S.

Proposition 7.1. Let Pi be some properties about the elements of a set S, and let Ai be the set of all elements of
S that satisfy the property Pi, 1 ≤ i ≤ n. Then the inclusion-exclusion principle can be stated as

1Ā1∩Ā2∩···∩Ān
= 1S +

n∑

k=1

(−1)k
∑

1≤i1<i2<···<ik≤n

1Ai1
∩Ai2

∩···∩Aik
. (4)
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Proof.

1Ā1∩Ā2∩···∩Ān
= 1Ā1

1Ā2
· · · 1Ān

= (1S − 1A1)(1S − 1A2) · · · (1S − 1An)

=
∑

f1f2 · · · fn (where fi = 1S or −1Ai , 1 ≤ i ≤ n)

= 1S · · · 1S︸ ︷︷ ︸
n

+
∑

i1<···<ik
1≤k≤n

1S · · · 1S︸ ︷︷ ︸
n−k

(−1Ai1
) · · · (−1Aik

)

= 1S +
n∑

k=1

(−1)k
∑

i1<i2<···<ik

1Ai1
∩Ai2

∩···∩Aik
.

Let w be a real-valued weight function on a set X. Then w can be extended to a function on the power set
P(X) of X by

w(A) =
∑

x∈A

w(x), A ⊆ X.

Let S = {1, 2, . . . , n}. We introduce two functions α and β on the power set P(S) of S as follows: For I ⊆ S,

α(I) =
{

w
(⋂

i∈I Ai

)
if I 6= ∅

0 if I = ∅,

β(I) =
{

w
(⋃

i∈I Ai

)
if I 6= ∅

0 if I = ∅.
Theorem 7.2. Let α and β be functions defined above. Then

β(J) =
∑

I⊆J

(−1)|I|−1α(I),

if and only if
α(J) =

∑

I⊆J

(−1)|I|−1β(I).
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