Problems

Problem 1. A polytope of \mathbb{R}^{d} is a convex hull of some finite number of points of \mathbb{R}^{d}. A half-space of \mathbb{R}^{d} is a subset of the forms

$$
H^{-}(\ell, a)=\left\{x \in \mathbb{R}^{d}: \ell(x) \leq a\right\}, \quad H^{+}(\ell, a)=\left\{x \in \mathbb{R}^{d}: \ell(x) \geq a\right\}
$$

where $\ell(x)=a_{1} x_{1}+\cdots+a_{d} x_{d}$ is a linear function on \mathbb{R}^{d} and a is a constant real number. A polyhedral set is an intersection of finitely many half-spaces. Show that a subset $P \subset \mathbb{R}^{d}$ is a polytope if and only if P is bounded polyhedral set.

Problem 2. A polyhedron of \mathbb{R}^{d} is a subset obtained from half-spaces by taking intersections, unions, and relative complement finitely many times, i.e., a member of the relative Boolean algebra generated by polyhedral sets.
(a) Show that every polyhedron X can be written as the form

$$
X=\bigcup_{i \in I}\left(P_{i} \backslash \bigcup_{k \in I_{i}} P_{i, k}\right),
$$

where $P_{i}, P_{i, k}$ are polyhedral sets, the unions are finite and the union over I can be made disjoint.
(b) Let X be a bounded polyhedron. Let $X^{k}=X \times \cdots \times X$ (k times). ($\left.\begin{array}{c}X \\ k\end{array}\right)$ denote the set of all k-subsets of X. Then $\binom{X}{k}$ can be identified as the quotient set

$$
\left(X^{k} \backslash \bigcup_{i<j} X_{i, j}\right) / \sim,
$$

where $X_{i, j}=\left\{\left(x_{1}, \ldots, x_{k}\right) \in X^{k}: x_{i}=x_{j}\right\}$ with $i \neq j$, and \sim is an equivalence relation generated by $\left(x_{1}, \ldots, x_{k}\right) \sim\left(x_{\pi(1)}, \ldots, x_{\pi(k)}\right)$ with π a permutation of $\{1, \ldots, k\}$.
(c) Let \mathbb{R}^{d} be linearly ordered, say, by the lexicographic order. Then $X^{(k)}$ can be further identified as the polyhedron

$$
\left\{\left(x_{1}, \ldots, x_{k}\right) \in X^{k}: x_{1} \prec \cdots \prec x_{k}\right\}
$$

Prove the following identity

$$
\chi\left(\binom{X}{k}\right)=\binom{\chi(X)}{k}
$$

where $\binom{a}{k}=a(a-1) \cdots(a-k+1) / k$!.

