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Preface
What follows are my lecture notes for Math 4333: Mathematical Biology, taught

at the Hong Kong University of Science and Technology. This applied mathematics
course is primarily for final year mathematics major and minor students. Other
students are also welcome to enroll, but must have the necessary mathematical
skills.

My main emphasis is on mathematical modeling, with biology the sole applica-
tion area. I assume that students have no knowledge of biology, but I hope that they
will learn a substantial amount during the course. Students are required to know
differential equations and linear algebra, and this usually means having taken two
courses in these subjects. I also touch on topics in stochastic modeling, which re-
quires some knowledge of probability. A full course on probability, however, is not
a prerequisite though it might be helpful.

Biology, as is usually taught, requires memorizing a wide selection of facts and
remembering them for exams, sometimes forgetting them soon after. For students
exposed to biology in secondary school, my course may seem like a different sub-
ject. The ability to model problems using mathematics requires almost no rote
memorization, but it does require a deep understanding of basic principles and a
wide range of mathematical techniques. Biology offers a rich variety of topics that
are amenable to mathematical modeling, and I have chosen specific topics that I
have found to be the most interesting.

If, as a UST student, you have not yet decided if you will take my course, please
browse these lecture notes to see if you are interested in these topics. Other web
surfers are welcome to download these notes from

http://www.math.ust.hk/~machas/mathematical-biology.pdf
and to use them freely for teaching and learning. I welcome any comments, sugges-
tions, or corrections sent to me by email (jeffrey.chasnov@ust.hk). Although most
of the material in my notes can be found elsewhere, I hope that some of it will be
considered to be original.

Jeffrey R. Chasnov

Hong Kong
May 2009
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Chapter 1

Population Dynamics
Populations grow in size when the birth rate exceeds the death rate. Thomas

Malthus, in An Essay on the Principle of Population (1798), used unchecked population
growth to famously predict a global famine unless governments regulated family
size—an idea later echoed by Mainland China’s one-child policy. The reading of
Malthus is said by Charles Darwin in his autobiography to have inspired his dis-
covery of what is now the cornerstone of modern biology: the principle of evolution
by natural selection.

The Malthusian growth model is the granddaddy of all population models, and
we begin this chapter with a simple derivation of the famous exponential growth
law. Unchecked exponential growth obviously does not occur in nature, and pop-
ulation growth rates may be regulated by limited food or other environmental re-
sources, and by competition among individuals within a species or across species.
We will develop models for three types of regulation. The first model is the well-
known logistic equation, a model that will also make an appearance in subsequent
chapters. The second model is an extension of the logistic model to species compe-
tition. And the third model is the famous Lotka-Volterra predator-prey equations.
Because all these mathematical models are nonlinear differential equations, mathe-
matical methods to analyze such equations will be developed.

1.1 The Malthusian growth model

View tutorial on YouTube

Let N(t) be the number of individuals in a population at time t, and let b and d
be the average per capita birth rate and death rate, respectively. In a short time ∆t,
the number of births in the population is b∆tN, and the number of deaths is d∆tN.
An equation for N at time t + ∆t is then determined to be

N(t + ∆t) = N(t) + b∆tN(t)− d∆tN(t),

which can be rearranged to

N(t + ∆t)− N(t)
∆t

= (b− d)N(t);

and as ∆t→ 0,
dN
dt

= (b− d)N.

With an initial population size of N0, and with r = b− d positive, the solution for
N = N(t) grows exponentially:

N(t) = N0ert.

With population size replaced by the amount of money in a bank, the exponential
growth law also describes the growth of an account under continuous compounding
with interest rate r.

1
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1.2. THE LOGISTIC EQUATION

1.2 The Logistic equation

View tutorial on YouTube

The exponential growth law for population size is unrealistic over long times.
Eventually, growth will be checked by the over-consumption of resources. We as-
sume that the environment has an intrinsic carrying capacity K, and populations
larger than this size experience heightened death rates.

To model population growth with an environmental carrying capacity K, we
look for a nonlinear equation of the form

dN
dt

= rNF(N),

where F(N) provides a model for environmental regulation. This function should
satisfy F(0) = 1 (the population grows exponentially with growth rate r when N
is small), F(K) = 0 (the population stops growing at the carrying capacity), and
F(N) < 0 when N > K (the population decays when it is larger than the carrying
capacity). The simplest function F(N) satisfying these conditions is linear and given
by F(N) = 1− N/K. The resulting model is the well-known logistic equation,

dN
dt

= rN(1− N/K), (1.1)

an important model for many processes besides bounded population growth.
Although (1.1) is a nonlinear equation, an analytical solution can be found by

separating the variables. Before we embark on this algebra, we first illustrate some
basic concepts used in analyzing nonlinear differential equations.

Fixed points, also called equilibria, of a differential equation such as (1.1) are
defined as the values of N where dN/dt = 0. Here, we see that the fixed points of
(1.1) are N = 0 and N = K. If the initial value of N is at one of these fixed points,
then N will remain fixed there for all time. Fixed points, however, can be stable
or unstable. A fixed point is stable if a small perturbation from the fixed point
decays to zero so that the solution returns to the fixed point. Likewise, a fixed point
is unstable if a small perturbation grows exponentially so that the solution moves
away from the fixed point. Calculation of stability by means of small perturbations
is called linear stability analysis. For example, consider the general one-dimensional
differential equation (using the notation ẋ = dx/dt)

ẋ = f (x), (1.2)

with x∗ a fixed point of the equation, that is f (x∗) = 0. To determine analytically
if x∗ is a stable or unstable fixed point, we perturb the solution. Let us write our
solution x = x(t) in the form

x(t) = x∗ + ε(t), (1.3)

where initially ε(0) is small but different from zero. Substituting (1.3) into (1.2), we
obtain

ε̇ = f (x∗ + ε)

= f (x∗) + ε f ′(x∗) + . . .

= ε f ′(x∗) + . . . ,

2 CHAPTER 1. POPULATION DYNAMICS

https://youtu.be/EBC7ds3A7Gk


1.2. THE LOGISTIC EQUATION

0

x

f(
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unstable stable unstable

Figure 1.1: Determining one-dimensional stability using a graphical approach.

where the second equality uses a Taylor series expansion of f (x) about x∗ and the
third equality uses f (x∗) = 0. If f ′(x∗) 6= 0, we can neglect higher-order terms in ε
for small times, and integrating we have

ε(t) = ε(0)e f ′(x∗)t.

The perturbation ε(t) to the fixed point x∗ goes to zero as t→ ∞ provided f ′(x∗) <
0. Therefore, the stability condition on x∗ is

x∗ is
{

a stable fixed point if f ′(x∗) < 0,
an unstable fixed point if f ′(x∗) > 0.

Another equivalent but sometimes simpler approach to analyzing the stability
of the fixed points of a one-dimensional nonlinear equation such as (1.2) is to plot
f (x) versus x. We show a generic example in Fig. 1.1. The fixed points are the
x-intercepts of the graph. Directional arrows on the x-axis can be drawn based on
the sign of f (x). If f (x) < 0, then the arrow points to the left; if f (x) > 0, then the
arrow points to the right. The arrows show the direction of motion for a particle at
position x satisfying ẋ = f (x). As illustrated in Fig. 1.1, fixed points with arrows
on both sides pointing in are stable, and fixed points with arrows on both sides
pointing out are unstable.

In the logistic equation (1.1), the fixed points are N∗ = 0, K. A sketch of F(N) =
rN(1− N/K) versus N, with r, K > 0 in Fig. 1.2 immediately shows that N∗ = 0 is
an unstable fixed point and N∗ = K is a stable fixed point. The analytical approach
computes F′(N) = r(1− 2N/K), so that F′(0) = r > 0 and F′(K) = −r < 0. Again
we conclude that N∗ = 0 is unstable and N∗ = K is stable.

We now solve the logistic equation analytically. Although this relatively sim-
ple equation can be solved as is, we first nondimensionalize to illustrate this very
important technique that will later prove to be most useful. Perhaps here one can
guess the appropriate unit of time to be 1/r and the appropriate unit of population
size to be K. However, we prefer to demonstrate a more general technique that may

CHAPTER 1. POPULATION DYNAMICS 3
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Figure 1.2: Determining stability of the fixed points of the logistic equation.

be usefully applied to equations for which the appropriate dimensionless variables
are difficult to guess. We begin by nondimensionalizing time and population size:

τ = t/t∗, η = N/N∗,

where t∗ and N∗ are unknown dimensional units. The derivative Ṅ is computed as

dN
dt

=
d(N∗η)

dτ

dτ

dt
=

N∗
t∗

dη

dτ
.

Therefore, the logistic equation (1.1) becomes

dη

dτ
= rt∗η

(
1− N∗η

K

)
,

which assumes the simplest form with the choices t∗ = 1/r and N∗ = K. Therefore,
our dimensionless variables are

τ = rt, η = N/K,

and the logistic equation, in dimensionless form, becomes

dη

dτ
= η (1− η) , (1.4)

with the dimensionless initial condition η(0) = η0 = N0/K, where N0 is the initial
population size. Note that the dimensionless logistic equation (1.4) has no free
parameters, while the dimensional form of the equation (1.1) contains r and K.
Reduction in the number of free parameters (here, two: r and K) by the number of
independent units (here, also two: time and population size) is a general feature
of nondimensionalization. The theoretical result is known as the Buckingham Pi
Theorem. Reducing the number of free parameters in a problem to the absolute
minimum is especially important before proceeding to a numerical solution. The
parameter space that must be explored may be substantially reduced.

4 CHAPTER 1. POPULATION DYNAMICS



1.2. THE LOGISTIC EQUATION

Solving the dimensionless logistic equation (1.4) can proceed by separating the
variables. Separating and integrating from τ = 0 to τ and η0 to η yields∫ η

η0

dη

η(1− η)
=
∫ τ

0
dτ.

The integral on the left-hand-side can be performed using the method of partial
fractions:

1
η(1− η)

=
A
η
+

B
1− η

=
A + (B− A)η

η(1− η)
;

and by equating the coefficients of the numerators proportional to η0 and η1, we
find that A = 1 and B = 1. Therefore,∫ η

η0

dη

η(1− η)
=
∫ η

η0

dη

η
+
∫ η

η0

dη

(1− η)

= ln
η

η0
− ln

1− η

1− η0

= ln
η(1− η0)

η0(1− η)

= τ.

Solving for η, we first exponentiate both sides and then isolate η:

η(1− η0)

η0(1− η)
= eτ , or η(1− η0) = η0eτ − ηη0eτ ,

or η(1− η0 + η0eτ) = η0eτ , or η =
η0

η0 + (1− η0)e−τ
.

Returning to the dimensional variables, we finally have

N(t) =
N0

N0/K + (1− N0/K)e−rt . (1.5)

There are several ways to write the final result given by (1.5). The presentation of a
mathematical result requires a good aesthetic sense and is an important element of
mathematical technique. When deciding how to write (1.5), I considered if it was
easy to observe the following limiting results: (1) N(0) = N0; (2) limt→∞ N(t) = K;
and (3) limK→∞ N(t) = N0 exp (rt).

In Fig. 1.3, we plot the solution to the dimensionless logistic equation for initial
conditions η0 = 0.02, 0.2, 0.5, 0.8, 1.0, and 1.2. The lowest curve is the character-
istic ‘S-shape’ usually associated with the solution of the logistic equation. This
sigmoidal curve appears in many other types of models. The MATLAB script to
produce Fig. 1.3 is shown below.

eta0=[0.02 .2 .5 .8 1 1.2];
tau=linspace(0,8);
for i=1:length(eta0)

eta=eta0(i)./(eta0(i)+(1-eta0(i)).*exp(-tau));
plot(tau,eta);hold on

end
axis([0 8 0 1.25]);
xlabel(’\tau’); ylabel(’\eta’); title(’Logistic Equation’);

CHAPTER 1. POPULATION DYNAMICS 5
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Figure 1.3: Solutions of the dimensionless logistic equation.

1.3 A model of species competition

Suppose that two species compete for the same resources. To build a model, we can
start with logistic equations for both species. Different species would have different
growth rates and different carrying capacities. If we let N1 and N2 be the number
of individuals of species one and species two, then

dN1

dt
= r1N1(1− N1/K1),

dN2

dt
= r2N2(1− N2/K2).

These are uncoupled equations so that asymptotically, N1 → K1 and N2 → K2.
How do we model the competition between species? If N1 is much smaller than
K1, and N2 much smaller than K2, then resources are plentiful and populations
grow exponentially with growth rates r1 and r2. If species one and two compete,
then the growth of species one reduces resources available to species two, and vice-
versa. Since we do not know the impact species one and two have on each other,
we introduce two additional parameters to model the competition. A reasonable
modification that couples the two logistic equations is

dN1

dt
= r1N1

(
1− N1 + α12N2

K1

)
, (1.6a)

dN2

dt
= r2N2

(
1− α21N1 + N2

K2

)
, (1.6b)

where α12 and α21 are dimensionless parameters that model the consumption of
species one’s resources by species two, and vice-versa. For example, suppose that
both species eat exactly the same food, but species two consumes twice as much as
species one. Since one individual of species two consumes the equivalent of two
individuals of species one, the correct model is α12 = 2 and α21 = 1/2.

6 CHAPTER 1. POPULATION DYNAMICS



1.4. THE LOTKA-VOLTERRA PREDATOR-PREY MODEL

Another example supposes that species one and two occupy the same niche,
consume resources at the same rate, but may have different growth rates and car-
rying capacities. Can the species coexist, or does one species eventually drive the
other to extinction? It is possible to answer this question without actually solving
the differential equations. With α12 = α21 = 1 as appropriate for this example, the
coupled logistic equations (1.6) become

dN1

dt
= r1N1

(
1− N1 + N2

K1

)
,

dN2

dt
= r2N2

(
1− N1 + N2

K2

)
. (1.7)

For sake of argument, we assume that K1 > K2. The only fixed points other than the
trivial one (N1, N2) = (0, 0) are (N1, N2) = (K1, 0) and (N1, N2) = (0, K2). Stability
can be computed analytically by a two-dimensional Taylor-series expansion, but
here a simpler argument can suffice. We first consider (N1, N2) = (K1, ε), with ε
small. Since K1 > K2, observe from (1.7) that Ṅ2 < 0 so that species two goes extinct.
Therefore (N1, N2) = (K1, 0) is a stable fixed point. Now consider (N1, N2) =
(ε, K2), with ε small. Again, since K1 > K2, observe from (1.7) that Ṅ1 > 0 and
species one increases in number. Therefore, (N1, N2) = (0, K2) is an unstable fixed
point. We have thus found that, within our coupled logistic model, species that
occupy the same niche and consume resources at the same rate cannot coexist and
that the species with the largest carrying capacity will survive and drive the other
species to extinction. This is the so-called principle of competitive exclusion, also
called K-selection since the species with the largest carrying capacity wins. In fact,
ecologists also talk about r-selection; that is, the species with the largest growth
rate wins. Our coupled logistic model does not model r-selection, demonstrating
the potential limitations of a too simple mathematical model.

For some values of α12 and α21, our model admits a stable equilibrium solution
where two species coexist. The calculation of the fixed points and their stability is
more complicated than the calculation just done, and I present only the results. The
stable coexistence of two species within our model is possible only if α12K2 < K1
and α21K1 < K2.

1.4 The Lotka-Volterra predator-prey model

Pelt-trading records (Fig. 1.4) of the Hudson Bay company from over almost a
century display a near-periodic oscillation in the number of trapped snowshoe
hares and lynxes. With the reasonable assumption that the recorded number of
trapped animals is proportional to the animal population, these records suggest
that predator-prey populations—as typified by the hare and the lynx—can oscillate
over time. Lotka and Volterra independently proposed in the 1920s a mathematical
model for the population dynamics of a predator and prey, and these Lotka-Volterra
predator-prey equations have since become an iconic model of mathematical biol-
ogy.

To develop these equations, suppose that a predator population feeds on a prey
population. We assume that the number of prey grow exponentially in the absence
of predators (there is unlimited food available to the prey), and that the number of
predators decay exponentially in the absence of prey (predators must eat prey or
starve). Contact between predators and prey increases the number of predators and
decreases the number of prey.

Let U(t) and V(t) be the number of prey and predators at time t. To develop
a coupled differential equation model, we consider population sizes at time t + ∆t.

CHAPTER 1. POPULATION DYNAMICS 7
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Figure 1.4: Pelt-trading records of the Hudson Bay Company for the snowshoe hare and its
predator the lynx. [From E.P. Odum, Fundamentals of Ecology, 1953.]

Exponential growth of prey in the absence of predators and exponential decay of
predators in the absence of prey can be modeled by the usual linear terms. The cou-
pling between prey and predator must be modeled with two additional parameters.
We write the population sizes at time t + ∆t as

U(t + ∆t) = U(t) + α∆tU(t)− γ∆tU(t)V(t),
V(t + ∆t) = V(t) + eγ∆tU(t)V(t)− β∆tV(t).

The parameters α and β are the average per capita birthrate of the prey and the
deathrate of the predators, in the absence of the other species. The coupling terms
model contact between predators and prey. The parameter γ is the fraction of prey
caught per predator per unit time; the total number of prey caught by predators
during time ∆t is γ∆tUV. The prey eaten is then converted into newborn predators
(view this as a conversion of biomass), with conversion factor e, so that the number
of predators during time ∆t increases by eγ∆tUV.

Converting these equations into differential equations by letting ∆t → 0, we
obtain the well-known Lotka-Volterra predator-prey equations

dU
dt

= αU − γUV,
dV
dt

= eγUV − βV. (1.8)

Before analyzing the Lotka-Volterra equations, we first review fixed point and
linear stability analysis applied to what is called an autonomous system of dif-
ferential equations. For simplicity, we consider a system of only two differential
equations of the form

ẋ = f (x, y), ẏ = g(x, y), (1.9)

though our results can be generalized to larger systems. The system given by (1.9) is
said to be autonomous since f and g do not depend explicitly on the independent
variable t. Fixed points of this system are determined by setting ẋ = ẏ = 0 and
solving for x and y. Suppose that one fixed point is (x∗, y∗). To determine its
linear stability, we consider initial conditions for (x, y) near the fixed point with

8 CHAPTER 1. POPULATION DYNAMICS
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small independent perturbations in both directions, i.e., x(0) = x∗ + ε(0), y(0) =
y∗ + δ(0). If the initial perturbation grows in time, we say that the fixed point is
unstable; if it decays, we say that the fixed point is stable. Accordingly, we let

x(t) = x∗ + ε(t), y(t) = y∗ + δ(t), (1.10)

and substitute (1.10) into (1.9) to determine the time-dependence of ε and δ. Since
x∗ and y∗ are constants, we have

ε̇ = f (x∗ + ε, y∗ + δ), δ̇ = g(x∗ + ε, y∗ + δ).

The linear stability analysis proceeds by assuming that the initial perturbations ε(0)
and δ(0) are small enough to truncate the two-dimensional Taylor-series expansion
of f and g about ε = δ = 0 to first-order in ε and δ. Note that in general, the
two-dimensional Taylor series of a function F(x, y) about the origin is given by

F(x, y) = F(0, 0) + xFx(0, 0) + yFy(0, 0)

+
1
2

[
x2Fxx(0, 0) + 2xyFxy(0, 0) + y2Fyy(0, 0)

]
+ . . . ,

where the terms in the expansion can be remembered by requiring that all of the
partial derivatives of the series agree with that of F(x, y) at the origin. We now
Taylor-series expand f (x∗ + ε, y∗ + δ) and g(x∗ + ε, y∗ + δ) about (ε, δ) = (0, 0).
The constant terms vanish since (x∗, y∗) is a fixed point, and we neglect all terms
with higher orders than ε and δ. Therefore,

ε̇ = ε fx(x∗, y∗) + δ fy(x∗, y∗), δ̇ = εgx(x∗, y∗) + δgy(x∗, y∗),

which may be written in matrix form as

d
dt

(
ε
δ

)
=

(
f ∗x f ∗y
g∗x g∗y

)(
ε
δ

)
, (1.11)

where f ∗x = fx(x∗, y∗), etc. Equation (1.11) is a system of linear ode’s, and its
solution proceeds by assuming the form(

ε
δ

)
= eλtv. (1.12)

Upon substitution of (1.12) into (1.11), and canceling eλt, we obtain the linear alge-
bra eigenvalue problem

J∗v = λv, with J∗ =
(

f ∗x f ∗y
g∗x g∗y

)
,

where λ is the eigenvalue, v the corresponding eigenvector, and J∗ the Jacobian
matrix evaluated at the fixed point. The eigenvalue is determined from the charac-
teristic equation

det (J∗ − λI) = 0,

which for a two-by-two Jacobian matrix results in a quadratic equation for λ. From
the form of the solution (1.12), the fixed point is stable if for all eigenvalues λ,
Re{λ} < 0, and unstable if for at least one λ, Re{λ} > 0. Here Re{λ} means the
real part of the (possibly) complex eigenvalue λ.
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We now reconsider the Lotka-Volterra equations. Fixed point solutions are
found by solving U̇ = V̇ = 0, and we have from (1.8)

U(α− γV) = 0, V(eγU − β) = 0.

Evidently the only two possible solutions are

(U∗, V∗) = (0, 0) or (
β

eγ
,

α

γ
).

The trivial fixed point (0, 0) is unstable since the prey population grows exponen-
tially if it is initially small. To determine the stability of the second fixed point, we
write the Lotka-Volterra equation in the form

dU
dt

= F(U, V),
dV
dt

= G(U, V),

with
F(U, V) = αU − γUV, G(U, V) = eγUV − βV.

The partial derivatives are then computed to be

FU = α− γV, FV = −γU
GU = eγV, GV = eγU − β.

The Jacobian at the fixed point (U∗, V∗) = (β/eγ, α/γ) is

J∗ =
(

0 −β/e
eα 0

)
;

and

det(J∗ − λI) =
∣∣∣∣−λ −β/e

eα −λ

∣∣∣∣
= λ2 + αβ

= 0

has the solutions λ± = ±i
√

αβ, which are pure imaginary. When the eigenvalues
of the two-by-two Jacobian are pure imaginary, the fixed point is called a center
and the perturbation neither grows nor decays, but oscillates. Here, the angular
frequency of oscillation is ω =

√
αβ, and the period of the oscillation is 2π/ω.

We plot U and V versus t (time series plot), and V versus U (phase portraits) to
see how the solutions behave. For a nonlinear system of equations such as (1.8), a
numerical solution is required.

The Lotka-Volterra equations has four free parameters α, β, γ and e. The relevant
units here are time, the number of prey, and the number of predators. The Bucking-
ham Pi Theorem predicts that nondimensionalizing the equations can reduce the
number of free parameters by three to a manageable single dimensionless grouping
of parameters. We choose to nondimensionalize time using the angular frequency
of oscillation and the number of prey and predators using their fixed point values.
With carets denoting the dimensionless variables, we let

t̂ =
√

αβt, Û = U/U∗ =
eγ

β
U, V̂ = V/V∗ =

γ

α
V. (1.13)
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Substitution of (1.13) into the Lotka-Volterra equations (1.8) results in the dimen-
sionless equations

dÛ
dt̂

= r(Û − ÛV̂),
dV̂
dt̂

=
1
r
(ÛV̂ − V̂),

with single dimensionless grouping r =
√

α/β. Specification of r together with
initial conditions completely determines the solution. It should be noted here that
the long-time solution of the Lotka-Volterra equations depends on the initial condi-
tions. This asymptotic dependence on the initial conditions is usually considered a
flaw of the model.

A numerical solution uses MATLAB’s ode45.m built-in function to integrate the
differential equations. The code below produces Fig. 1.5. Notice how the preda-
tor population lags the prey population: an increase in prey numbers results in a
delayed increase in predator numbers as the predators eat more prey. The phase
portraits clearly show the periodicity of the oscillation. Note that the curves move
counterclockwise: prey numbers increase when predator numbers are minimal, and
prey numbers decrease when predator numbers are maximal.
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function lotka_volterra
% plots time series and phase space diagrams
clear all; close all;
t0=0; tf=6*pi; eps=0.1; delta=0;
r=[1/2, 1, 2];
options = odeset(’RelTol’,1e-6,’AbsTol’,1.e-9);
%time series plots
for i=1:length(r);

[t,UV]=ode45(@(t,UV) lv_eq(t,UV,r(i)),[t0,tf],[1+eps 1+delta],options);
U=UV(:,1); V=UV(:,2);
subplot(3,1,i); plot(t,U,t,V,’ --’);
axis([0 6*pi,0.8 1.25]); ylabel(’predator,prey’);
text(3,1.15,[’r=’,num2str(r(i))]);

end
xlabel(’t’);
subplot(3,1,1); legend(’prey’, ’predator’);
%phase space plot
xpos=[2.5 2.5 2.5]; ypos=[3.5 3.5 3.5];%for annotating graph
for i=1:length(r);

for eps=0.1:0.1:1.0;
[t,UV]=ode45(@(t,UV) lv_eq(t,UV,r(i)),[t0,tf],[1+eps 1+delta],options);
U=UV(:,1); V=UV(:,2);
figure(2);subplot(1,3,i); plot(U,V); hold on;

end
axis equal; axis([0 4 0 4]);
text(xpos(i),ypos(i),[’r=’,num2str(r(i))]);
if i==1; ylabel(’predator’); end;
xlabel(’prey’);

end

function dUV=lv_eq(t,UV,r)
dUV=zeros(2,1);
dUV(1) = r*(UV(1)-UV(1)*UV(2));
dUV(2) = (1/r)*(UV(1)*UV(2)-UV(2));
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Figure 1.5: Solutions of the dimensionless Lotka-Volterra equations. Upper plots: time-
series solutions; lower plots: phase portraits.
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Chapter 2

Age-structured Populations
Determining the age-structure of a population helps governments plan economic

development. Age-structure theory can also help evolutionary biologists better un-
derstand a species’s life-history. An age-structured population occurs because off-
spring are born to mothers at different ages. If average per capita birth and death
rates at different ages are constant, then a stable age-structure arises. However, a
rapid change in birth or death rates can cause the age-structure to shift distribu-
tions. In this section, we develop the theory of age-structured populations using
both discrete- and continuous-time models. We also present two interesting appli-
cations: (1) modeling age-structure changes in China and other countries as these
populations age, and; (2) modeling the life cycle of a hermaphroditic worm. We
begin this section, however, with one of the oldest problems in mathematical biol-
ogy: Fibonacci’s rabbits. This will lead us to a brief digression about the golden
mean, rational approximations and flower development, before returning to our
main topic.

2.1 Fibonacci’s rabbits

In 1202, Fibonacci proposed the following puzzle, which we paraphrase here:

A man put a male-female pair of newly born rabbits in a field. Rabbits
take a month to mature before mating. One month after mating, females
give birth to one male-female pair and then mate again. No rabbits die.
How many rabbit pairs are there after one year?

The growth of Fibonacci’s rabbit population is presented in Table 2.1. At the
start of each month, the number of juvenile, adult, and total number of rabbits are
shown. At the start of January, one pair of juvenile rabbits is introduced into the
population. At the start of February, this pair of rabbits have matured and mate. At
the start of March, this original pair of rabbits give birth to a new pair of juvenile
rabbits. And so on.

If we let Fn be the total number of rabbit pairs at the start of the nth month,
then the number of rabbits pairs at the start of the 13th month will be the solution
to Fibonacci’s puzzle. Examining the total number of rabbit pairs in Table 2.1, it is
evident that

Fn+1 = Fn + Fn−1. (2.1)

This second-order linear difference equation requires two initial conditions, which
are given by F1 = F2 = 1. The first thirteen Fibonacci numbers, read from the table,

month J F M A M J J A S O N D J
juvenile 1 0 1 1 2 3 5 8 13 21 34 55 89
adult 0 1 1 2 3 5 8 13 21 34 55 89 144
total 1 1 2 3 5 8 13 21 34 55 89 144 233

Table 2.1: Fibonacci’s rabbit population.
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are given by
1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, . . .

where F13 = 233 is the solution to Fibonacci’s puzzle.
Let us solve (2.1) for all the Fn’s. To solve this equation, we look for a solution

of the form Fn = λn. Substitution into (2.1) yields

λn+1 = λn + λn−1,

or after division by λn−1:
λ2 − λ− 1 = 0,

with solution

λ± =
1±
√

5
2

.

Define

Φ =
1 +
√

5
2

= 1.61803 . . . ,

and

φ =

√
5− 1
2

= Φ− 1 = 0.61803 . . . .

Then λ+ = Φ and λ− = −φ. Also, notice that since Φ2 −Φ− 1 = 0, division by Φ
yields 1/Φ = Φ− 1, so that

φ =
1
Φ

.

As in the solution of linear homogeneous differential equations, the two values of
λ can be used to construct a general solution to the linear difference equation using
the principle of linear superposition:

Fn = c1Φn + c2(−φ)n.

Extending the Fibonacci sequence to F0 = 0 (since F0 = F2 − F1), we satisfy the
conditions F0 = 0 and F1 = 1:

c1 + c2 = 0,
c1Φ− c2φ = 1.

Therefore, c2 = −c1, and c1(Φ + φ) = 1, or c1 = 1/
√

5, c2 = −1/
√

5. We can
rewrite the solution as

Fn =
Φn − (−φ)n
√

5
. (2.2)

Since φn → 0 as n→ ∞, we see that Fn → Φn/
√

5, and Fn+1/Fn → Φ.

2.2 The golden ratio Φ

The number Φ is known as the golden ratio. Two positive numbers x and y, with
x > y, are said to be in the golden ratio if the ratio between the sum of those
numbers and the larger one is the same as the ratio between the larger one and the
smaller; that is,

x + y
x

=
x
y

. (2.3)
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Solution of (2.3) yields x/y = Φ. In some well-defined way, Φ can also be called
the most irrational of the irrational numbers.

To understand why Φ has this distinction as the most irrational number, we
need first to understand continued fractions. Recall that a rational number is any
number that can be expressed as the quotient of two integers, and an irrational
number is any number that is not rational. Rational numbers have finite continued
fractions; irrational numbers have infinite continued fractions.

A finite continued fraction represents a rational number x as

x = a0 +
1

a1 +
1

a2 +
1

. . . +
1
an

, (2.4)

where a1, a2, . . . , an are positive integers and a0 is any integer. The convenient
shorthand form of (2.4) is

x = [a0; a1, a2, . . . , an].

If x is irrational, then n→ ∞.
Now for some examples. To construct the continued fraction of the rational

number x = 3/5, we can write

3/5 =
1

5/3
=

1
1 + 2/3

=
1

1 +
1

3/2

=
1

1 +
1

1 + 1/2

,

which is of the form (2.4), so that 3/5 = [0; 1, 1, 2].
To construct the continued fraction of the irrational number

√
2, we can make

use of a trick and write
√

2 = 1 + (
√

2− 1)

= 1 +
1

1 +
√

2
.

We now have a recursive definition that can be continued as

√
2 = 1 +

1

1 +
(

1 + 1
1+
√

2

)
= 1 +

1
2 + 1

1+
√

2

,

and so on, which yields the infinite continued fraction

√
2 = [1; 2].

Another example we will use later is the continued fraction for π, whose first

CHAPTER 2. AGE-STRUCTURED POPULATIONS 17
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few terms can be calculated from

π = 3 + 0.14159 . . .

= 3 +
1

7.06251 . . .

= 3 +
1

7 +
1

15.99659 . . .

,

and so on, yielding the beginning sequence π = [3; 7, 15, . . . ]. The historically
important first-order approximation is given by π = [3; 7] = 22/7 = 3.142857 . . . ,
which was already known by Archimedes in ancient times.

Finally, to determine the continued fraction for the golden ratio Φ, we can write

Φ = 1 +
1
Φ

,

which is another recursive defintion that can be continued as

Φ = 1 +
1

1 +
1
Φ

,

and so on, yielding the remarkably simple form

Φ = [1; 1].

Because the trailing ai’s are all equal to one, the continued fraction for the golden
ratio (and other related numbers with trailing ones) converges especially slowly.
Furthermore, the successive rational approximations to the golden ratio are just the
ratio of consecutive Fibonacci numbers, that is, 1/1, 2/1, 3/2, 5/3, etc.. Because
of the very slow convergence of this sequence, we say that the golden ratio is most
difficult to approximate by a rational number. More poetically, the golden ratio has
been called the most irrational of the irrational numbers.

Because the golden ratio is the most irrational number, it has a way of appearing
unexpectedly in nature. One well-known example is the florets in a sunflower head,
which we discuss in the next section.

2.3 The Fibonacci numbers in a sunflower

Consider the photo of a sunflower shown in Fig. 2.1, and notice the apparent spirals
in the florets radiating out from the center to the edge. These spirals appear to rotate
both clockwise and counterclockwise. By counting them, one finds 34 clockwise
spirals and 21 counterclockwise spirals. The numbers 21 and 34 are notable as they
are consecutive numbers in the Fibonacci sequence.

Why do Fibonacci numbers appear in the sunflower head? To answer this ques-
tion, we construct a very simple model for the way that the florets develop. Suppose
that during development, florets first appear close to the center of the head and sub-
sequently move radially out with constant speed as the sunflower head grows. To
fill the circular sunflower head, we suppose that as each new floret is created at
the center, it is rotated through a constant angle before moving radially. We will
further assume that the angle of rotation is optimum in the sense that the resulting
sunflower head consists of florets that are well-spaced.
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Figure 2.1: The flowering head of a sunflower.

Let us denote the rotation angle by 2πα. We first consider the possibility that α
is a rational number, say n/m, where n and m are positive integers with no common
factors, and n < m. Since after m rotations florets will return to the radial line on
which they started, the resulting sunflower head consists of florets lying along m
straight lines. Such a sunflower head for α = 1/7 is shown in Fig. 2.2a, where one
observes seven straight lines. Evidently, rational values for α do not result in well-
spaced florets. This figure and subsequent ones were produced using MATLAB,
and the simulation code is shown at the end of this subsection.

What about irrational values? No matter how many rotations, the florets will
never return to their starting radial line. Nevertheless, the resulting sunflower head
may not have well-spaced florets. For example, if α = π − 3, then the resulting
sunflower head looks like Fig. 2.2b. There, one can see seven counterclockwise
spirals. Recall that a good rational approximation to π is 22/7, which is slightly
larger than π. On every seventh counterclockwise rotation, then, the new floret falls
just short of the radial line followed by the floret from seven rotations ago.

The irrational numbers that are most likely to construct a sunflower head with
well-spaced florets are those that can not be well-approximated by rational num-
bers. Here, we choose the so-called golden angle, taking α = 1 − φ, so that
2π(1 − φ) ≈ 137.5◦, and perform clockwise rotations. The rational approxima-
tions to 1− φ are given by Fn/Fn+2, so that the number of spirals observed will
correspond to the Fibonacci numbers.

Two simulations of the sunflower head with α = 1− φ are shown in Fig. 2.3.
These simulations differ only by the choice of radial velocity. In Fig. 2.3a, there can
be counted 13 clockwise spirals and 21 counterclockwise spirals; in Fig. 2.3b, there
are 21 counter clockwise spirals and 34 clockwise spirals, just like the sunflower
head shown in Fig. 2.1.
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(a) (b)

Figure 2.2: Simulation of a sunflower head for (a) α = 1/7; (b) α = π − 3.

(a) (b)

Figure 2.3: Simulation of a sunflower head for α = 1− φ. (a) v0 = 1/2; (b) v0 = 1/4.
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function flower(alpha)
%draws points moving radially but rotated an angle 2*pi*num
figure
angle=2*pi*alpha; r0=0;
v0=1.0; %for higher Fibonacci numbers try v0=0.5, 0.25, 0.1
npts=100/v0;
theta=(0:npts-1)*angle; %all the angles of the npts
r=r0*ones(1,npts); %starting radius of the npts
for i=1:npts % i is total number of points to be plotted (also time)

for j=1:i %find coordinates of all i points; j=i is newest point
r(j)=r(j)+v0; %*(i-j);
x(j)=r(j)*cos(theta(j)); y(j)=r(j)*sin(theta(j));

end
plot(x,y,’.’,’MarkerSize’,5.0);
axis equal;
axis([-npts*v0-r0 npts*v0+r0 -npts*v0-r0 npts*v0+r0]);
pause(0.1);

end
%draw a circle at the center
hold on; phi=linspace(0,2*pi); x=r0*cos(phi); y=r0*sin(phi);
fill(x,y,’r’)

2.4 Rabbits are an age-structured population

Fibonacci’s rabbits form an age-structured population and we can use this simple
case to illustrate the more general approach. Fibonacci’s rabbits can be categorized
into two meaningful age classes: juveniles and adults. Here, juveniles are the new-
born rabbits that can not yet mate; adults are those rabbits at least one month old.
Beginning with a newborn pair at the beginning of the first month, we census the
population at the beginning of each subsequent month after mated females have
given birth. At the start of the nth month, let u1,n be the number of newborn rabbit
pairs, and let u2,n be the number of rabbit pairs at least one month old. Since each
adult pair gives birth to a juvenile pair, the number of juvenile pairs at the start of
the (n + 1)-st month is equal to the number of adult pairs at the start of the n-th
month. And since the number of adult pairs at the start of the (n + 1)-st month is
equal to the sum of adult and juvenile pairs at the start of the n-th month, we have

u1,n+1 = u2,n,
u2,n+1 = u1,n + u2,n;

or written in matrix form (
u1,n+1
u2,n+1

)
=

(
0 1
1 1

)(
u1,n
u2,n

)
. (2.5)

Rewritten in vector form, we have

un+1 = Lun, (2.6)

where the definitions of the vector un and the matrix L are obvious. The initial
conditions, with one juvenile pair and no adults, are given by(

u1,1
u2,1

)
=

(
1
0

)
.
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The solution of this system of coupled, first-order, linear, difference equations, (2.6),
proceeds similarly to that of coupled, first-order, linear, differential equations. With
the ansatz, un = λnv, we obtain upon substitution into (2.6) the eigenvalue problem

Lv = λv,

whose solution yields two eigenvalues λ1 and λ2, with corresponding eigenvectors
v1 and v2. The general solution to (2.6) is then

un = c1λn
1 v1 + c2λn

2 v2, (2.7)

with c1 and c2 determined from the initial conditions. Now suppose that |λ1| > |λ2|.
If we rewrite (2.7) in the form

un = λn
1

(
c1v1 + c2

(
λ2

λ1

)n
v2

)
,

then because |λ2/λ1| < 1, un → c1λn
1 v1 as n→ ∞. The long-time asymptotics of the

population, therefore, depends only on λ1 and the corresponding eigenvector v1.
For our Fibonacci’s rabbits, the eigenvalues are obtained by solving det (L− λI) =
0, and we find

det
(−λ 1

1 1− λ

)
= −λ(1− λ)− 1

= 0,

or λ2 − λ − 1 = 0, with solutions Φ and −φ. Since Φ > φ, the eigenvalue Φ
and its corresponding eigenvector determine the long-time asymptotic population
age-structure. The eigenvector may be found by solving

(L−ΦI)v1 = 0,

or (−Φ 1
1 1−Φ

)(
v11
v12

)
=

(
0
0

)
.

The first equation is just −Φ times the second equation (use Φ2 − Φ− 1 = 0), so
that v12 = Φv11. Taking v11 = 1, we have

v1 =

(
1
Φ

)
.

The asymptotic age-structure obtained from v1 shows that the ratio of adults to
juveniles approaches the golden mean; that is,

lim
n→∞

u2,n

u1,n
= v12/v11

= Φ.

2.5 Discrete age-structured populations

In a discrete model, population censuses occur at discrete times and individuals
are assigned to age classes, spanning a range of ages. For model simplicity, we
assume that the time between censuses is equal to the age span of all age classes.
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ui,n number of females in age class i at census n
si fraction of females surviving from age class i− 1 to i
mi expected number of female offspring from a female in age class i
li = s1 · · · si fraction of females surviving from birth to age class i
fi = mili
R0 = ∑i fi basic reproductive ratio

Table 2.2: Definitions needed in an age-structured, discrete-time population model

An example is a country that censuses its population every five years, and assigns
individuals to age classes spanning five years (e.g., 0-4 years old, 5-9 years old, etc.).
Although country censuses commonly count both females and males separately, we
will only count females and ignore males.

There are several new definitions in this Section and I place these in Table 2.2 for
easy reference. We define ui,n to be the number of females in age class i at census
n. We assume that i = 1 represents the first age class and i = ω the last. No female
survives past the last age class. We also assume that the first census takes place
when n = 1. We define si as the fraction of females that survive from age class i− 1
to age class i (with s1 the fraction of newborns that survive to their first census),
and define mi as the expected number of female births per female in age class i.

We construct difference equations for {ui,n+1} in terms of {ui,n}. First, newborns
at census n + 1 were born between census n and n + 1 to different aged females,
with differing fertilities. Also, only a faction of these newborns survive to their
first census. Second, only a fraction of females in age class i that were counted in
census n survive to be counted in age class i + 1 in census n + 1. Putting these two
ideas together with the appropriately defined parameters, the difference equations
for {ui,n+1} are determined to be

u1,n+1 = s1 (m1u1,n + m2u2,n + · · ·+ mωuω,n) ,
u2,n+1 = s2u1,n,
u3,n+1 = s3u2,n,

...
uω,n+1 = sωuω−1,n,

which can be rewritten as the matrix equation
u1,n+1
u2,n+1
u3,n+1

...
uω,n+1

 =


s1m1 s1m2 . . . s1mω−1 s1mω

s2 0 . . . 0 0
0 s3 . . . 0 0
...

...
...

...
...

0 0 . . . sω 0




u1,n
u2,n
u3,n

...
uω,n

 ;

or in compact vector form as
un+1 = Lun, (2.8)

where L is called the Leslie Matrix.
This system of linear equations can be solved by determining the eigenvalues

and associated eigenvectors of the Leslie Matrix. One can solve directly the char-
acteristic equation, det (L− λI) = 0, or reduce the system of first-order difference
equations (2.8) to a single high-order equation for the number of females in the first
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age class. Following the latter approach, and beginning with the second row of
(2.8), we have

u2,n+1 = s2u1,n,
u3,n+1 = s3u2,n

= s3s2u1,n−1,
...

uω,n+1 = sωuω−1,n

= sωsω−1uω−2,n−1

...
= sωsω−1 · · · s2u1,n−ω+2.

If we define li = s1s2 · · · si to be the fraction of females that survive from birth to
age class i, and fi = mili to be the number of female offspring expected from a
newborn female upon reaching age class i (taking into account that she may not
survive to age class i), then the first row of (2.8) becomes

u1,n+1 = f1u1,n + f2u1,n−1 + f3u1,n−2 + · · ·+ fωu1,n−ω+1. (2.9)

Here, we have made the simplifying assumption that n ≥ ω so that all the females
counted in the n + 1 census were born after the first census.

The high-order linear difference equation (2.9) may be solved using the ansatz
u1,n = λn. Direct substitution and division by λn+1 results in the discrete Euler-
Lotka equation

ω

∑
j=1

f jλ
−j = 1, (2.10)

which may have both real and complex-conjugate roots.
Once an eigenvalue λ is determined from (2.10), the corresponding eigenvector

v can be computed using the Leslie matrix. We have
s1m1 − λ s1m2 . . . s1mω−1 s1mω

s2 −λ . . . 0 0
0 s3 . . . 0 0
...

...
...

...
...

0 0 . . . sω −λ




v1
v2
v3
...

vω

 =


0
0
0
...
0

 .

Taking vω = lω/λω, and beginning with the last row and working backwards, we
have:

vω−1 = lω−1/λω−1,

vω−2 = lω−2/λω−2,
...

v1 = l1/λ,

so that
vi = li/λi, for i = 1, 2, . . . , ω.
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We can obtain an interesting implication of this result by forming the ratio of two
consecutive age classes. If λ is the dominant eigenvalue (and is real and positive,
as is the case for human populations), then asymptotically,

ui+1,n/ui,n ∼ vi+1/vi

= si+1/λ.

With the survival fractions {si} fixed, increasing λ implies a decreasing ratio: a
faster growing population has relatively more younger people than a slower grow-
ing population. In fact, we are now living through a time when developed countries,
particularly Japan and those in Western Europe, as well as Hong Kong and Singa-
pore, have substantially lowered their population growth rates and are increasing
the average age of their citizens.

If we want to simply determine if a population grows or decays, we can calculate
the basic reproduction ratio R0, defined as the net expectation of female offspring to a
newborn female. Stasis is obtained if the female only replaces herself before dying.
If R0 > 1, then the population grows, and if R0 < 1 then the population decays.
R0 is equal to the number of female offspring expected from a newborn when she
is in age class i, summed over all age classes, or

R0 =
ω

∑
i=1

fi.

For a population with approximately equal numbers of males and females, R0 = 1
means a newborn female must produce on average two children over her lifetime.
News stories in the western press frequently state that for zero population growth,
women need to have 2.1 children. The term women used in these stories presumably
means women of child-bearing age. Since girls who die young have no children,
the statistic of 2.1 children implies that 0.1/2.1, or about 5% of children die before
reaching adulthood.

A useful application of the mathematical model developed in this Section is to
predict the future age structure within various countries. This can be important
for economic planning—for instance, determining the tax revenues that can pay for
the rising costs of health care as a population ages. For accurate predictions on the
future age-structure of a given country, immigration and migration must also be
modeled. An interesting website to browse is at

http://www.census.gov/ipc/www/idb.

This website, created by the US census bureau, provides access to the International
Data Base (IDB), a computerized source of demographic and socioeconomic statis-
tics for 227 countries and areas of the world. In class, we will look at and discuss
the dynamic output of some of the population pyramids, including those for Hong
Kong and China.

2.6 Continuous age-structured populations

We can derive a continuous-time model by considering the discrete model in the
limit as the age span ∆a of an age class (also equal to the time between censuses)
goes to zero. For n > ω, (2.9) can be rewritten as

u1,n =
ω

∑
i=1

fiu1,n−i. (2.11)
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The first age class in the discrete model consists of females born between two con-
secutive censuses. The corresponding function in the continuous model is the fe-
male birth rate of the population as a whole, B(t), satisfying

u1,n = B(tn)∆a.

If we assume that the nth census takes place at a time tn = n∆a, we also have

u1,n−i = B(tn−i)∆a
= B(tn − ti)∆a.

To determine the continuous analogue of the parameter fi = mili, we define the age-
specific survival function l(a) to be the fraction of newborn females that survive to
age a, and define the age-specific maternity function m(a), multiplied by ∆a, to be
the average number of females born to a female between the ages of a and a + ∆a.
With the definition of the age-specific net maternity function, f (a) = m(a)l(a), and
ai = i∆a, we have

fi = f (ai)∆a.

With these new definitions, (2.11) becomes

B(tn)∆a =
ω

∑
i=1

f (ai)B(tn − ti)(∆a)2.

Canceling one factor of ∆a, and using ti = ai, the right-hand side becomes a Rie-
mann sum. Taking tn = t and assigning f (a) = 0 when a is greater than the
maximum age of female fertility, the limit ∆a→ 0 transforms (2.11) to

B(t) =
∫ ∞

0
B(t− a) f (a)da. (2.12)

Equation (2.12) states that the population-wide female birth rate at time t has con-
tributions from females of all ages, and that the contribution to this birth rate from
females between the ages of a and a + da is determined from the population-wide
female birth rate at the earlier time t− a times the fraction of females that survive to
age a times the number of female births to females between the ages of a and a+ da.
Equation (2.12) is a linear homogeneous integral equation, valid for t greater than
the maximum age of female fertility. A more complete but inhomogeneous equation
valid for smaller t can also be derived.

Equation (2.12) can be solved by the ansatz B(t) = ert. Direct substitution yields

ert =
∫ ∞

0
f (a)er(t−a)da,

which upon canceling ert results in the continuous Euler-Lotka equation∫ ∞

0
f (a)e−rada = 1. (2.13)

Equation (2.13) is an integral equation for r given the age-specific net maternity
function f (a). It is possible to prove that for f (a) a continuous non-negative func-
tion, (2.13) has exactly one real root r∗, and that the population grows (r∗ > 0) or
decays (r∗ < 0) asymptotically as er∗t. The population growth rate r∗ has been called
the intrinsic rate of increase, the intrinsic growth rate, or the Malthusian parameter.
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Typically, (2.13) is solved numerically for r using a root-finding algorithm such as
Newton’s method.

After asymptotically attaining a stable age structure, the population grows like
er∗t, and our previous discussion of the Malthusian growth model suggests that
r∗ may be found from the constant per capita birth rate b and death rate d. By
determining expressions for b and d, we will indeed show that r∗ = b− d.

Because females that have survived to age a at time t were born earlier at time
t− a, B(t− a)l(a)da represents the number of females at time t that are between the
ages of a and a + da. The total number of females N(t) at time t is therefore given
by

N(t) =
∫ ∞

0
B(t− a)l(a)da. (2.14)

The per capita birth rate b(t) equals the population-wide birth rate B(t) divided by
the population size N(t), and using (2.12) and (2.14),

b(t) = B(t)/N(t)

=

∫ ∞
0 B(t− a) f (a)da∫ ∞
0 B(t− a)l(a)da

.

Similarly, the per capita death rate d(t) equals the population-wide death rate
D(t) divided by N(t). To derive D(t), we first define the age-specific mortality
function µ(a), multiplied by ∆a, to be the fraction of females of age a that die before
attaining the age a + ∆a. The relationship between the age-specific mortality func-
tion µ(a) and the age-specific survival function l(a) may be obtained by computing
the fraction of females that survive to age a + ∆a. This fraction is equal to the frac-
tion of females that survive to age a times the fraction of females 1− µ(a)∆a that
do not die in the next small interval of time ∆a; that is,

l(a + ∆a) = l(a)(1− µ(a)∆a),

or
l(a + ∆a)− l(a)

∆a
= −µ(a)l(a);

and as ∆a→ 0,
l′(a) = −µ(a)l(a). (2.15)

The age-specific mortality function µ(a) is analogous to the age-specific mater-
nity function m(a), and we define the age-specific net mortality function g(a) =
µ(a)l(a) in analogy to the age-specific net maternity function f (a) = m(a)l(a). The
population-wide birth rate B(t) is determined from f (a) using (2.12), and in anal-
ogy, the population-wide death rate D(t) is determined from g(a) using

D(t) =
∫ ∞

0
B(t− a)g(a)da, (2.16)

where the integrand represents the contribution to the death rate from females that
die between the ages of a and a + da. The per capita death rate is therefore

d(t) = D(t)/N(t)

=

∫ ∞
0 B(t− a)g(a)da∫ ∞
0 B(t− a)l(a)da

;
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Figure 2.4: Caenorhabditis elegans, a nematode worm used by biologists as a simple
animal model of a multicellular organism. (Photo by Amy Pasquinelli.)

and the difference between the per capita birth and death rates is calculated from

b(t)− d(t) =

∫ ∞
0 B(t− a) [ f (a)− g(a)] da∫ ∞

0 B(t− a)l(a)da
. (2.17)

Asymptotically, a stable age structure is established and the population-wide birth
rate grows as B(t) ∼ er∗t. Substitution of this expression for B(t) into (2.17) and
cancelation of er∗t results in

b− d =

∫ ∞
0 [ f (a)− g(a)] e−r∗ada∫ ∞

0 l(a)e−r∗ada

=
1 +

∫ ∞
0 l′(a)e−r∗ada∫ ∞

0 l(a)e−r∗ada
,

where use has been made of (2.13) and (2.15). Simplifying the numerator using
integration by parts,∫ ∞

0
l′(a)e−r∗ada = l(a)e−r∗a|∞0 + r∗

∫ ∞

0
l(a)e−r∗ada

= −1 + r∗
∫ ∞

0
l(a)e−r∗ada,

produces the desired result,
r∗ = b− d.

It is usually supposed that evolution by natural selection will result in pop-
ulations with the largest value of the Malthusian parameter r∗, and that natural
selection would favor those females that constitute such a population. We will ex-
ploit this idea in the next section to compute the brood size of the self-fertilizing
hermaphroditic worm of the species Caenorhabditis elegans.

2.7 The brood size of a hermaphroditic worm

Caenorhabditis elegans, a soil-dwelling nematode worm about 1 mm in length, is a
widely studied model organism in biology. With a body made up of approximately
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0 g g + s g + s + e

�sperm-� eggs -

� juvenile - � adult -

Figure 2.5: A simplified timeline of a hermaphrodite’s life.

1000 cells, it is one of the simplest multicellular organisms under study. Advances in
understanding the development of this multicellular organism led to the awarding
of the 2002 Nobel prize in Physiology or Medicine to the three C. elegans biologists
Sydney Brenner, H. Robert Horvitz and John E. Sulston.

The worm C. elegans has two sexes: hermaphrodites, which are essentially fe-
males that can produce internal sperm and self-fertilize their own eggs, and males,
which must mate with hermaphrodites to produce offspring. In laboratory cul-
tures, males are rare and worms generally propagate by self-fertilization. Typically,
a hermaphrodite lays about 250-350 self-fertilized eggs before becoming infertile.
It is reasonable to assume that the forces of natural selection have shaped the life-
history of C. elegans, and that the number of offspring produced by a selfing her-
maphrodite must be in some sense optimal. Here, we show how an age-structured
model applied to C. elegans yields theoretical insights into the brood size of a selfing
hermaphrodite.

To develop a mathematical model for C. elegans, we need to know some details
of its life history. As a first approximation (Barker, 1992), a simplified timeline of
a hermaphrodite’s life is shown in Fig. 2.5. The fertilized egg is laid at time t = 0.
During a juvenile growth period, the immature worm develops through four larval
stages (L1-L4). Towards the end of L4 and for a short while after its final molt to
adulthood, the hermaphrodite produces sperm, which is then stored for later use.
Then the hermaphrodite produces eggs, self-fertilizes them using her internally
stored sperm, and lays them. In the absence of males, egg production ceases after
all the sperm are utilized. We assume that the juvenile growth period occurs during
0 < t < g, spermatogenesis occurs during g < t < g + s, and egg-production, self-
fertilization, and egg laying occurs during g + s < t < g + s + e.

Here, we want to understand why hermaphrodites limit their sperm produc-
tion. Biologists define males and females from the size and metabolic cost of their
gametes: sperm are small and cheap and eggs are large and expensive. So on first
look, it is puzzling why the total number of offspring produced by a hermaphro-
dite is limited by the number of sperm produced, rather than by the number of
eggs. There must be a hidden cost to the hermaphrodite of producing additional
sperm other than metabolic. To understand the basic biology, it is instructive to
consider two limiting cases: (1) no sperm production; (2) infinite sperm production.
In both cases, the hermaphrodite produces no offspring—in the first case because
there are no sperm, and in the second case because there are no eggs. The number
of sperm produced by a hermaphrodite before laying eggs is therefore a compro-
mise; although more sperm means more offspring, more sperm also means delayed
egg production.

Our main theoretical assumption is that natural selection will favor worms with
the ability to establish populations with the largest Malthusian parameter r. Worms
containing a genetic mutation resulting in a larger value for r will eventually out-
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g growth period 72 h
s sperm production period 11.9 h
e egg production period 65 h
p sperm production rate 24 h−1

m egg production rate 4.4 h−1

B brood size 286

Table 2.3: Parameters in a life-history model of C. elegans, with experimental esti-
mates.

number all other worms.
The parameters we need for our mathematical model are listed in Table 2.3, to-

gether with estimated experimental values (Cutter, 2004). In addition to the growth
period g, sperm production period s, and egg production period e (all in units of
hours), we need the sperm production rate p and the egg production rate m (both
in units of inverse hours). We also define the brood size B as the total number
of fertilized eggs laid by a selfing hermaphrodite. The brood size is equal to the
number of sperm produced, and also equal to the number of eggs laid, so that

B = ps = me. (2.18)

We may use (2.18) to eliminate s and e in favor of B:

s = B/p, e = B/m. (2.19)

The continuous Euler-Lotka equation (2.13) for r requires a model for f (a) =
m(a)l(a), where m(a) is the age-specific maternity function and l(a) is the age-
specific survival function. The function l(a) satisfies the differential equation (2.15),
and here we make the simplifying assumption that the age-specific mortality func-
tion µ(a) = d, where d is the age-independent per capita death rate. Implicitly, we
are assuming that worms do not die of old age during egg-laying, but rather die of
predation, starvation, disease, or other age-independent causes. Such an assump-
tion is reasonable since worms can live in the laboratory for several weeks after
sperm depletion. Solving (2.15) with the initial condition l(0) = 1 results in

l(a) = exp (−d · a). (2.20)

The age-specific maternity function m(a) is defined such that m(a)∆a is the ex-
pected number of offspring produced over the age interval ∆a. We assume that a
hermaphrodite lays eggs at a constant rate m over the ages g + s < a < g + s + e;
therefore,

m(a) =

{
m for g + s < a < g + s + e,
0 otherwise.

(2.21)

Using (2.19), (2.20) and (2.21), the continuous Euler-Lotka equation (2.13) for the
Malthusian parameter r becomes

∫ g+B/p+B/m

g+B/p
m exp

[
−(r + d)a

]
da = 1. (2.22)
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Integrating,

1 =
∫ g+B/p+B/m

g+B/p
m exp

[
−(r + d)a

]
da

=
m

r + d

{
exp

[
−(g + B/p)(r + d)

]
− exp

[
−(g + B/p + B/m)(r + d)

]}
=

m
r + d

exp
[
−(g + B/p)(r + d)

]{
1− exp

[
−(B/m)(r + d)

]}
,

which may be rewritten as

(r + d) exp
[
(g + B/p)(r + d)

]
= m

{
1− exp

[
−(B/m)(r + d)

]}
. (2.23)

With the parameters d, g, p, and m fixed, the integrated Euler-Lotka equation (2.23)
is an implicit equation for r = r(B).

To demonstrate that r = r(B) has a maximum at some value of B, we numerically
solve (2.23) for r with the parameter values of g, p and m obtained from Table 2.3.
Since r + d is maximum at the same value of B that r is maximum, and d only enters
(2.23) in the form r + d, without loss of generality we can take d = 0. To solve (2.23),
it is best to make use of Newton’s method. We let

F(r) = (r + d) exp
[
(g + B/p)(r + d)

]
−m

{
1− exp

[
−(B/m)(r + d)

]}
,

and differentiate with respect to r to obtain

F′(r) =
[
1 + (g + B/p)(r + d)

]
exp

[
(g + B/p)(r + d)

]
− B exp

[
−(B/m)(r + d)

]
.

For a given B, we then solve F(r) = 0 by iterating

rn+1 = rn −
F(rn)

F′(rn)
.

Using appropriate starting values for r, the function r = r(B) can be computed and
is presented in Fig. 2.6. Evidently, r is maximum near the value B = 152, which is
53% of the experimental value for B shown in Table 2.3.

We can also directly determine a single equation for the value of B at which r
is maximum. We implicitly differentiate (2.23) with respect to B—with r the only
parameter that depends on B—and apply the condition dr/dB = 0. We find

(r + d) exp
[
(g + B/p)(r + d)

]
= p exp

[
−(B/m)(r + d)

]
. (2.24)

Taking the ratio of (2.23) to (2.24) results in

1 =
m
p

{
exp

[
(B/m)(r + d)

]
− 1
}

, (2.25)

from which we can find
r + d =

m
B

ln (1 + p/m). (2.26)

Substituting (2.26) back into either (2.23) or (2.24) results in

m
B

(
1 +

p
m

)m
p +

mg
B ln

(
1 +

p
m

)
=

pm
p + m

. (2.27)
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Figure 2.6: A plot of r = r(B), which demonstrates that the Malthusian growth rate
r is maximum near a brood size of B = 152.

Equation (2.27) contains the four parameters p, m, g and B, which can be further
reduced to three parameters by dimensional analysis. The brood size B is already
dimensionless. The rate m at which eggs are produced and laid may be multiplied
by the sperm production period s = B/p to form the dimensionless parameter
x = mB/p. The parameter x represents the number of eggs forgone because of the
adult sperm production period and is a measure of the cost of producing sperm.
Similarly, m may be multiplied by the larval growth period g to form the dimen-
sionless parameter y = mg. The parameter y represents the number of eggs forgone
because of the juvenile growth period and is a measure of the cost of development.
With B, x and y as our three dimensionless parameters, (2.27) becomes

1
B

(
1 +

B
x

) x+y
B

ln
(

1 +
B
x

)
=

B
B + x

. (2.28)

Given values for two of the three dimensionless parameters x, y and B, (2.28) may
be solved for the remaining parameter, either explicitly for the case of y = y(x, B),
or by Newton’s method.

The values of x and y obtained from Table 2.3 are x = 52.5 and y = 317. With
B = 286, the solution y = y(x) is shown in Fig. 2.7, with the experimental value of
(x, y) plotted as a cross.

The seemingly large disagreement between the theoretical result and the experi-
mental data leads us to question the underlying assumptions of the model. Indeed,
Cutter (2004) first suggested that the sperm produced precociously as a juvenile
does not delay egg production and should be considered cost free. One possibility
is to fix the absolute number of sperm produced precociously and to optimize the
number of sperm produced as an adult. Another possibility is to fix the fraction of
sperm produced precociously and to optimize the total number of sperm produced.
This latter assumption was made by Cutter (2004) and seems to best improve the
model agreement with the experimental data.

We therefore split the total sperm production period s into juvenile and adult
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Figure 2.7: Solution curve of y versus x with brood size B = 286, obtained by
solving (2.28). Values for B, m, p and g are taken from Table 2.3. The cross, crossed
open circle and open circle correspond to y = mg and x = m f B/p with f = 1, 1/3
and 1/8, respectively.
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Figure 2.8: A more refined timeline of a hermaphrodite’s life.
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sperm production periods sJ and sA, with s = sj + sA. The revised timeline of the
hermaphrodite’s life is now shown in Fig. 2.8. With the fraction of sperm produced
as an adult denoted by f , and the fraction produced as a juvenile by 1− f , we have

sJ = (1− f )s, sA = f s. (2.29)

Equation (2.21) for the age-specific maternity function becomes

m(a) =

{
m for g + sA < a < g + sA + e,
0 otherwise.

(2.30)

with
sA = f B/p. (2.31)

The Euler-Lotka equation (2.22) is then changed by the substitution p → p/ f . Fol-
lowing this substitution to the final result given by (2.28) shows that this equation
still holds (which is in fact equivalent to (12) of Chasnov (2011)), but with the now
changed definition

x = m f B/p. (2.32)

A close examination of the results shown in Fig. 2.7 demonstrates that near-perfect
agreement can be made between the results of the theoretical model and the ex-
perimental data if f = 1/8 (shown as the open circle in Fig. 2.7). Cutter (2004)
suggested the value of f = 1/3, and this result is shown as a crossed open circle
in Fig. 2.7, still in much better agreement with the experimental data than the open
circle corresponding to f = 1. The added modeling of precocious sperm production
through the parameter f thus seems to improve the verisimilitude of the model to
the underlying biology.
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Chapter 3

Stochastic Modeling of
Population Growth

Our derivation of the Malthusian growth model implicitly assumed a large pop-
ulation size. Smaller populations exhibit stochastic effects and these can consider-
ably complicate the modeling. Since in general, modeling stochastic processes in
biology is an important yet difficult topic, we will spend some time here analyzing
the simplest model of births in finite populations.

3.1 A stochastic model of population growth

The size of the population N is now considered to be a discrete random variable.
We define the time-dependent probability mass function pN(t) of N to be the prob-
ability that the population is of size N at time t. Since N must take on one of the
values from zero to infinity, we have

∞

∑
N=0

pN(t) = 1,

for all t ≥ 0. Again, let b be the average per capita birth rate. We make the
simplifying approximations that all births are singlets, and that the probability of
an individual giving birth is independent of past birthing history. We can then
interpret b probabilistically by supposing that as ∆t → 0, the probability that an
individual gives birth during the time ∆t is given by b∆t. For example, if the average
per capita birthrate is one offspring every 365-day year, then the probability that a
given individual gives birth on a given day is 1/365. As we will be considering the
limit as ∆t → 0, we neglect probabilities of more than one birth in the population
in the time interval ∆t since they are of order (∆t)2 or higher. Furthermore, we will
suppose that at t = 0, the population size is known to be N0, so that pN0(0) = 1,
with all other pN’s at t = 0 equal to zero.

We can determine a system of differential equations for the probability mass
function pN(t) as follows. For a population to be of size N > 0 at a time t + ∆t,
either it was of size N − 1 at time t and one birth occurred, or it was of size N at
time t and there were no births; that is

pN(t + ∆t) = pN−1(t)b(N − 1)∆t + pN(t)(1− bN∆t).

Subtracting pN(t) from both sides, dividing by ∆t, and taking the limit ∆t → 0
results in the forward Kolmogorov differential equations,

dpN
dt

= b
[
(N − 1)pN−1 − NpN

]
, N = 1, 2, . . . , (3.1)

where p0(t) = p0(0) since a population of zero size remains zero. This system of
coupled, first-order, linear differential equations can be solved iteratively.
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We first review how to solve a first-order linear differential equation of the form

dy
dt

+ ay = g(t), y(0) = y0, (3.2)

where y = y(t) and a is constant. First, we look for an integrating factor µ such that

d
dt
(µy) = µ

(
dy
dt

+ ay
)

.

Differentiating the left-hand-side and multiplying out the right-hand-side results in

dµ

dt
y + µ

dy
dt

= µ
dy
dt

+ aµy;

and canceling terms yields
dµ

dt
= aµ.

We may integrate this equation with an arbitrary initial condition, so for simplicity
we take µ(0) = 1. Therefore, µ(t) = eat. Hence,

d
dt
(
eaty

)
= eatg(t).

Integrating this equation from 0 to t yields

eaty(t)− y(0) =
∫ t

0
easg(s)ds.

Therefore, the solution is

y(t) = e−at
(

y(0) +
∫ t

0
easg(s)ds

)
. (3.3)

The forward Kolmogorov differential equation (3.1) is of the form (3.2) with
a = bN and g(t) = b(N − 1)pN−1. With the population size known to be N0 at
t = 0, the initial conditions can be written succinctly as pN(0) = δN,N0 , where δij is
the Kronecker delta, defined as

δij =

{
0, if i 6= j;
1, if i = j.

Therefore, formal integration of (3.1) using (3.3) results in

pN(t) = e−bNt
[

δN,N0 + b(N − 1)
∫ t

0
ebNs pN−1(s)ds

]
. (3.4)

The first few solutions of (3.4) can now be obtained by successive integrations:

pN(t) =



0, if N < N0;
e−bN0t, if N = N0;
N0e−bN0t[1− e−bt], if N = N0 + 1;
1
2 N0(N0 + 1)e−bN0t[1− e−bt]2, if N = N0 + 2;
. . . , if . . . .
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Although we will not need this, for completeness I give the complete solution. By
defining the binomial coefficient as the number of ways one can select k objects
from a set of n identical objects, where the order of selection is immaterial, we have(

n
k

)
=

n!
k!(n− k)!

,

(read as “n choose k”). The general solution for pN(t), N ≥ N0, is known to be

pN(t) =
(

N − 1
N0 − 1

)
e−bN0t

[
1− e−bt

]N−N0
,

which statisticians call a shifted negative binomial distribution. The determination
of the time-evolution of the probability mass function of N completely solves this
stochastic problem.

Of usual main interest is the mean and variance of the population size, and
although both could in principle be computed from the probability mass function,
we will compute them directly from the differential equation for pN . The definitions
of the mean population size 〈N〉 and its variance σ2 are

〈N〉 =
∞

∑
N=0

NpN , σ2 =
∞

∑
N=0

(
N − 〈N〉

)2 pN , (3.5)

and we will make use of the equality

σ2 = 〈N2〉 − 〈N〉2. (3.6)

Multiplying the differential equation (3.1) by the constant N, summing over N, and
using pN = 0 for N < N0, we obtain

d〈N〉
dt

= b

[
∞

∑
N=N0+1

N(N − 1)pN−1 −
∞

∑
N=N0

N2 pN

]
.

Now, write N(N − 1) = (N − 1)(N − 1 + 1) = (N − 1)2 + (N − 1), so that the first
term on the right-hand-side is

∞

∑
N=N0+1

N(N − 1)pN−1 =
∞

∑
N=N0+1

(N − 1)2 pN−1 +
∞

∑
N=N0+1

(N − 1)pN−1

=
∞

∑
N=N0

N2 pN +
∞

∑
N=N0

NpN ,

where the second equality was obtained by shifting the summation index down-
ward by one. Therefore, we find the familiar Malthusian growth equation

d〈N〉
dt

= b〈N〉.

Together with the initial condition 〈N〉(0) = N0, we can find the solution

〈N〉(t) = N0ebt. (3.7)

We proceed similarly to find σ2 by first determining the differential equation for
〈N2〉. Multiplying the differential equation for pN , (3.1), by N2 and summing over
N results in

d〈N2〉
dt

= b

[
∞

∑
N=N0+1

N2(N − 1)pN−1 −
∞

∑
N=N0

N3 pN

]
.
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Here, we write N2(N− 1) = (N− 1)(N− 1+ 1)2 = (N− 1)3 + 2(N− 1)2 +(N− 1).
Proceeding in the same way as above by shifting the index downward, we obtain

d〈N2〉
dt

− 2b〈N2〉 = b〈N〉. (3.8)

Since 〈N〉 is known, (3.8) is a first-order, linear, inhomogeneous equation for 〈N2〉,
which can be solved using an integrating factor. The solution obtained using (3.3)
is

〈N2〉 = e2bt
(

N2
0 + b

∫ t

0
e−2bs〈N〉(s)ds

)
,

with 〈N〉 given by (3.7). Performing the integration, we obtain

〈N2〉 = e2bt
[

N2
0 + N0(1− e−bt)

]
.

Finally, using σ2 = 〈N2〉 − 〈N〉2, we obtain the variance. Thus we arrive at our final
result for the population mean and variance:

〈N〉 = N0ebt, σ2 = N0e2bt
(

1− e−bt
)

. (3.9)

The coefficient of variation cv measures the standard deviation relative to the
mean, and is here given by

cv = σ/〈N〉

=

√
1− e−bt

N0
.

For large t, the coefficient of variation therefore goes like 1/
√

N0, and is small
when N0 is large. In the next section, we will determine the limiting form of the
probability distribution for large N0, recovering both the deterministic model and a
Gaussian model approximation.

3.2 Asymptotics of large initial populations

Our goal here is to solve for an expansion of the distribution in powers of 1/N0 to
leading-orders; notice that 1/N0 is small if N0 is large. To zeroth-order, that is in
the limit N0 → ∞, we will show that the deterministic model of population growth
is recovered. To first-order in 1/N0, we will show that the probability distribution
is normal. The latter result will be seen to be a consequence of the well-known
Central Limit Theorem in probability theory.

We develop our expansion by working directly with the differential equation for
pN(t). Now, when the population size N is a discrete random variable (taking only
the nonnegative integer values of 0, 1, 2, . . . ), pN(t) is the probability mass function
for N. If N0 is large, then the discrete nature of N is inconsequential, and it is
preferable to work with a continuous random variable and its probability density
function. Accordingly, we define the random variable x = N/N0, and treat x as a
continuous random variable, with 0 ≤ x < ∞. Now, pN(t) is the probability that the
population is of size N at time t, and the probability density function of x, P(x, t),
is defined such that

∫ b
a P(x, t)dx is the probability that a ≤ x ≤ b. The relationship
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between p and P can be determined by considering how to approximate a discrete
probability distribution by a continuous distribution, that is, by defining P such that

pN(t) =
∫ (N+ 1

2 )/N0

(N− 1
2 )/N0

P(x, t)dx

= P(N/N0, t)/N0

where the last equality becomes exact as N0 → ∞. Therefore, the appropriate
definition for P(x, t) is given by

P(x, t) = N0 pN(t), x = N/N0, (3.10)

which satisfies ∫ ∞

0
P(x, t)dx =

∞

∑
N=0

P(N/N0, t)(1/N0)

=
∞

∑
N=0

pN(t)

= 1,

the first equality (exact only when N0 → ∞) being a Reimann sum approximation
of the integral.

We now transform the infinite set of ordinary differential equations (3.1) for
pN(t) into a single partial differential equation for P(x, t). We multiply (3.1) by N0
and substitute N = N0x, pN(t) = P(x, t)/N0, and pN−1(t) = P(x − 1

N0
, t)/N0 to

obtain
∂P(x, t)

∂t
= b

[
(N0x− 1)P(x− 1

N0
, t)− N0xP(x, t)

]
. (3.11)

We next Taylor series expand P(x − 1/N0, t) around x, treating 1/N0 as a small
parameter. That is, we make use of

P(x− 1
N0

, t) = P(x, t)− 1
N0

Px(x, t) +
1

2N2
0

Pxx(x, t)− . . .

=
∞

∑
n=0

(−1)n

n!Nn
0

∂nP
∂xn .

The two leading terms proportional to N0 on the right-hand-side of (3.11) cancel
exactly, and if we group the remaining terms in powers of 1/N0, we obtain for the
first three leading terms in the expansion

Pt = −b

[
(xPx + P)− 1

N0

(
xPxx

2!
+

Px

1!

)
+

1
N2

0

(
xPxxx

3!
+

Pxx

2!

)
− . . .

]

= −b

[
(xP)x −

1
N02!

(xP)xx +
1

N2
0 3!

(xP)xxx − . . .

]
;

(3.12)

and higher-order terms can be obtained by following the evident pattern.
Equation (3.12) may be further analyzed by a perturbation expansion of the

probability density function in powers of 1/N0:

P(x, t) = P(0)(x, t) +
1

N0
P(1)(x, t) +

1
N2

0
P(2)(x, t) + . . . . (3.13)
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Here, the unknown functions P(0)(x, t), P(1)(x, t), P(2)(x, t), etc. are to be deter-
mined by substituting the expansion (3.13) into (3.12) and equating coefficients of
powers of 1/N0. We thus obtain for the coefficients of (1/N0)

0 and (1/N0)
1,

P(0)
t = −b

(
xP(0)

)
x

, (3.14)

P(1)
t = −b

[(
xP(1)

)
x
− 1

2

(
xP(0)

)
xx

]
. (3.15)

3.2.1 Derivation of the deterministic model

The zeroth-order term in the perturbation expansion (3.13),

P(0)(x, t) = lim
N0→∞

P(x, t),

satisfies (3.14). Equation (3.14) is a first-order linear partial differential equation
with a variable coefficient. One way to solve this equation is to try the ansatz

P(0)(x, t) = h(t) f (r), r = r(x, t), (3.16)

together with the initial condition

P(0)(x, 0) = f (x),

since at t = 0, the probability distribution is assumed to be a known function. This
initial condition imposes further useful constraints on the functions h(t) and r(x, t):

h(0) = 1, r(x, 0) = x.

The partial derivatives of (3.16) are

P(0)
t = h′ f + hrt f ′, P(0)

x = hrx f ′,

which after substitution into (3.14) results in(
h′ + bh

)
f + (rt + bxrx) h f ′ = 0.

This equation can be satisfied for any f provided that h(t) and r(x, t) satisfy

h′ + bh = 0, rt + bxrx = 0. (3.17)

The first equation for h(t), together with the initial condition h(0) = 1, is easily
solved to yield

h(t) = e−bt. (3.18)

To determine a solution for r(x, t), we try the technique of separation of variables.
We write r(x, t) = X(x)T(t), and upon substitution into the differential equation
for r(x, t), we obtain

XT′ + bxX′T = 0;

and division by XT and separation yields

T′

T
= −bx

X′

X
. (3.19)
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Since the left-hand-side is independent of x, and the right-hand-side is independent
of t, both the left-hand-side and right-hand-side must be constant, independent of
both x and t. Now, our initial condition is r(x, 0) = x, so that X(x)T(0) = x.
Without lose of generality, we can take T(0) = 1, so that X(x) = x. The right-hand-
side of (3.19) is therefore equal to the constant −b, and we obtain the differential
equation and initial condition

T′ + bT = 0, T(0) = 1,

which we can solve to yield T(t) = e−bt. Therefore, our solution for r(x, t) is

r(x, t) = xe−bt. (3.20)

By putting our solutions (3.18) and (3.20) together into our ansatz (3.16), we have
obtained the general solution to the pde:

P(0)(x, t) = e−bt f (xe−bt).

To determine f , we apply the initial condition of the probability mass function,
pN(0) = δN,N0 . From (3.10), the corresponding initial condition on the probability
distribution function is

P(x, 0) =

{
N0 if 1− 1

2N0
≤ x ≤ 1 + 1

2N0
,

0 otherwise.

In the limit N0 → ∞, P(x, 0) → P(0)(x, 0) = δ(x − 1), where δ(x − 1) is the Dirac
delta-function, centered around 1. The delta-function is widely used in quantum
physics and was introduced by Dirac for that purpose. It now finds many uses in
applied mathematics. It can be defined by requiring that, for any function g(x),∫ +∞

−∞
g(x)δ(x)dx = g(0).

The usual view of the delta-function δ(x− a) is that it is zero everywhere except at
x = a at which it is infinite, and its integral is one. It is not really a function, but it
is what mathematicians call a distribution.

Now, since P(0)(x, 0) = f (x) = δ(x− 1), our solution becomes

P(0)(x, t) = e−btδ(xe−bt − 1). (3.21)

This can be rewritten by noting that (letting y = ax− c),∫ +∞

−∞
g(x)δ(ax− c)dx =

1
a

∫ +∞

−∞
g
(
(y + c)/a

)
δ(y)dy

=
1
a

g(c/a),

yielding the identity

δ(ax− c) =
1
a

δ(x− c
a
).

From this, we can rewrite our solution (3.21) in the more intuitive form

P(0)(x, t) = δ(x− ebt). (3.22)
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Using (3.22), the zeroth-order expected value of x is

〈x0〉 =
∫ ∞

0
xP(0)(x, t)dx

=
∫ ∞

0
xδ(x− ebt)dx

= ebt;

while the zeroth-order variance is

σ2
x0

= 〈x2
0〉 − 〈x0〉2

=
∫ ∞

0
x2P(0)(x, t)dx− e2bt

=
∫ ∞

0
x2δ(x− ebt)dx− e2bt

= e2bt − e2bt

= 0.

Thus, in the infinite population limit, the random variable x has zero variance, and
is therefore no longer random, but follows x = ebt deterministically. We say that the
probability distribution of x becomes sharp in the limit of large population sizes.
The general principle of modeling large populations deterministically can simplify
mathematical models when stochastic effects are unimportant.

3.2.2 Derivation of the normal probability distribution

We now consider the first-order term in the perturbation expansion (3.13), which
satisfies (3.15). We do not know how to solve (3.15) directly, so we will attempt to
find a solution following a more circuitous route. First, we proceed by computing
the moments of the probability distribution. We have

〈xn〉 =
∫ ∞

0
xnP(x, t)dx

=
∫ ∞

0
xnP(0)(x, t)dx +

1
N0

∫ ∞

0
xnP(1)(x, t)dx + . . .

= 〈xn
0 〉+

1
N0
〈xn

1 〉+ . . . ,

where the last equality defines 〈xn
0 〉, etc. Now, using (3.22),

〈xn
0 〉 =

∫ ∞

0
xnP(0)(x, t)dx

=
∫ ∞

0
xnδ(x− ebt)dx

= enbt.

(3.23)

To determine 〈xn
1 〉, we use (3.15). Multiplying by xn and integrating, we have

d〈xn
1 〉

dt
= −b

[∫ ∞

0
xn
(

xP(1)
)

x
dx− 1

2

∫ ∞

0
xn
(

xP(0)
)

xx
dx
]

. (3.24)
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We integrate by parts to remove the derivatives of xP, assuming that xP and all
its derivatives vanish on the boundaries of integration, where x is equal to zero or
infinity. We have

∫ ∞

0
xn
(

xP(1)
)

x
dx = −

∫ ∞

0
nxnP(1)dx

= −n〈xn
1 〉,

and

1
2

∫ ∞

0
xn
(

xP(0)
)

xx
dx = −n

2

∫ ∞

0
xn−1

(
xP(0)

)
x

dx

=
n(n− 1)

2

∫ ∞

0
xn−1P(0)dx

=
n(n− 1)

2
〈xn−1

0 〉.

Therefore, after integration by parts, (3.24) becomes

d〈xn
1 〉

dt
= b

[
n〈xn

1 〉+
n(n− 1)

2
〈xn−1

0 〉
]

. (3.25)

Equation (3.25) is a first-order linear inhomogeneous differential equation and can
be solved using an integrating factor (see (3.3) and the preceding discussion). Solv-
ing this differential equation using (3.23) and the initial condition 〈xn

1 〉(0) = 0, we
obtain

〈xn
1 〉 =

n(n− 1)
2

enbt
(

1− e−bt
)

. (3.26)

The probability distribution function, accurate to order 1/N0, may be obtained by
making use of the so-called moment generating function Ψ(s), defined as

Ψ(s) = 〈esx〉

= 1 + s〈x〉+ s2

2!
〈x2〉+ s3

3!
〈x3〉+ . . .

=
∞

∑
n=0

sn〈xn〉
n!

.

To order 1/N0, we have

Ψ(s) =
∞

∑
n=0

sn〈xn
0 〉

n!
+

1
N0

∞

∑
n=0

sn〈xn
1 〉

n!
+ O(1/N2

0 ). (3.27)

Now, using (3.23),

∞

∑
n=0

sn〈xn
0 〉

n!
=

∞

∑
n=0

(
sebt
)n

n!

= esebt
,
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and using (3.26),

∞

∑
n=0

sn〈xn
1 〉

n!
=

1
2

(
1− e−bt

) ∞

∑
n=0

1
n!

n(n− 1)
(

sebt
)n

=
1
2

(
1− e−bt

)
s2e2bt

∞

∑
n=0

1
n!

n(n− 1)
(

sebt
)n−2

=
1
2

(
1− e−bt

)
s2

∞

∑
n=0

1
n!

∂2

∂s2

(
sebt
)n

=
1
2

(
1− e−bt

)
s2 ∂2

∂s2

∞

∑
n=0

(
sebt
)n

n!

=
1
2

(
1− e−bt

)
s2 ∂2

∂s2

(
esebt

)
=

1
2

(
1− e−bt

)
s2e2btesebt

.

Therefore,

Ψ(s) = esebt
(

1 +
1

2N0

(
1− e−bt

)
s2e2bt + . . .

)
. (3.28)

We can recognize the parenthetical term of (3.28) as a Taylor-series expansion of an
exponential function truncated to first-order, i.e.,

exp
(

1
2N0

(
1− e−bt

)
s2e2bt

)
= 1 +

1
2N0

(
1− e−bt

)
s2e2bt + O(1/N2

0 ).

Therefore, to first-order in 1/N0, we have

Ψ(s) = exp
(

sebt +
1

2N0

(
1− e−bt

)
s2e2bt

)
+ O(1/N2

0 ). (3.29)

Standard books on probability theory (e.g., A first course in probability by Sheldon
Ross, pg. 365) detail the derivation of the moment generating function of a normal
random variable:

Ψ(s) = exp
(
〈x〉s + 1

2
σ2s2

)
, for a normal random variable; (3.30)

and comparing (3.30) with (3.29) shows us that the probability distribution P(x, t)
to first-order in 1/N0 is normal with the mean and variance given by

〈x〉 = ebt, σ2
x =

1
N0

e2bt
(

1− e−bt
)

. (3.31)

The mean and variance of x = N/N0 is equivalent to those derived for N in (3.9),
but now we learn that N is approximately normal for large populations.

The appearance of a normal probability distribution (also called a Gaussian
probability distribution) in a first-order expansion is in fact a particular case of
the Central Limit Theorem, one of the most important and useful theorems in prob-
ability and statistics. We state here a simple version of this theorem without proof:

Central Limit Theorem: Suppose that X1, X2, . . . , Xn are independent and identically
distributed (iid) random variables with mean 〈X〉 and variance σ2

X . Then for sufficiently
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large n, the probability distribution of the average of the Xi’s, denoted as the random variable
Z = 1

n ∑n
i=1 Xi, is well approximated by a Gaussian with mean 〈X〉 and variance σ2 =

σ2
X/n.

The central limit theorem can be applied directly to our problem. Consider that
our population consists of N0 founders. If mi(t) denotes the number of individuals
descendent from founder i at time t (including the still living founder), then the
total number of individuals at time t is N(t) = ∑N0

i=1 mi(t); and the average number
of descendants of a single founder is x(t) = N(t)/N0. If the mean number of
descendants of a single founder is 〈m〉, with variance σ2

m, then by applying the
central limit theorem for large N0, the probability distribution function of x is well
approximated by a Gaussian with mean 〈x〉 = 〈m〉 and variance σ2

x = σ2
m/N0.

Comparing with our results (3.31), we find 〈m〉 = ebt and σ2
m = e2bt(1− e−bt).

3.3 Simulation of population growth

As we have seen, stochastic modeling is significantly more complicated than de-
terministic modeling. As the modeling becomes more sophisticated, a numerical
simulation becomes necessary. Here, for illustration, we show how to simulate
individual realizations of population growth.

A naive approach would make use of the birth rate b directly. During the short
time interval ∆t, each individual has probability b∆t of giving birth. We can de-
cide if an individual gives birth by generating a random deviate (a pseudo-random
number between zero and one): if the random deviate is less than b∆t, then the
individual gives birth; if larger than b∆t, then the individual does not. With N
individuals at time t, we then simply compute N random deviates. Counting the
number of random deviates less than b∆t allows us to update the population size
to the time t + ∆t. For accuracy, ∆t must be small, making this a computationally
slow method.

There is, however, a much more efficient way to simulate population growth.
Define a random variable τ = τ(N) to be the time it takes for a population to grow
from size N to size N + 1 because of a single birth. The random variable τ is called
the interevent time and represents the elapsed time between births. A simulation
from population size N0 to size N f would then simply require computing N f − N0
different random values of τ, a relatively easy and quick computation if we know
the probability density function (pdf) of τ.

Accordingly, we define P(τ) to be the pdf of τ for a population of size N. The
cumulative distribution function (cdf), F(τ), defined as the probability that the in-
terevent time is less that τ is given by

F(τ) =
∫ τ

0
P(τ)dτ,

where P(τ) = F′(τ). The complementary cumulative distribution function (ccdf),
G(τ), defined as the probability that the interevent time is greater than τ is given
by G(τ) = 1− F(τ).

Now the probability that the interevent time is greater than τ + ∆τ, with ∆τ
small, is given by the probability that it is greater than τ times the probability that
there are no births in the time interval ∆τ. Therefore, G(τ + ∆τ) satisfies

G(τ + ∆τ) = G(τ)(1− bN∆τ).
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Differencing G and taking the limit ∆τ → 0 yields the differential equation

dG
dτ

= −bNG,

which can be integrated using the initial condition G(0) = 1 to obtain

G(τ) = e−bNτ .

From G(τ), we can find

F(τ) = 1− e−bNτ , P(τ) = bNe−bNτ . (3.32)

The pdf, P(τ), has the form of an exponential distribution with parameter bN.
Here, we make use of a well-known result from probability theory that enables

us to compute τ using random deviates. With y a random deviate, τ can be com-
puted from τ = F−1(y), where F−1 is the inverse function of F. The correct formula
for the exponential distribution is

τ = − ln (1− y)
bN

. (3.33)

To simulate a population growing from N0 to N f , we compute N f − N0 random de-
viates y, and then compute the corresponding interevent times using (3.33), taking
care to adjust the population size N as the population grows.

Below, we illustrate a simple MATLAB function that simulates one realization
of population growth from initial size N0 to final size N f , with birth rate b.

function [t, N] = population_growth_simulation(b,N0,Nf)
% simulates population growth from N0 to Nf with birth rate b
N=N0:Nf;
y=rand(1,Nf-N0); % random deviates
tau=-log(1-y)./(b*N(1:Nf-N0)); % interevent times
t=[0 cumsum(tau)]; % cumulative sum of interevent times

The function population_growth_simulation.m can be driven by a MATLAB script
to compute realizations of population growth. For instance, the following script
computes 25 realizations for a population growth from 10 to 100 with b = 1 and
plots all the realizations:

% calculate nreal realizations and plot
b=1; N0=10; Nf=100;
nreal=25;
for i=1:nreal

[t,N]=population_growth_simulation(b,N0,Nf);
plot(t,N); hold on;

end
xlabel(’t’); ylabel(’N’);

Figure 3.1 presents three graphs, showing 25 realizations of population growth
starting with population sizes of 10, 100, and 1000, and ending with population
sizes a factor of 10 larger. Observe that the variance, relative to the initial popula-
tion size, decreases as the initial population size increases, following our analytical
result (3.31).

46 CHAPTER 3. STOCHASTIC POPULATION GROWTH



3.3. SIMULATION OF POPULATION GROWTH

0 1 2 3
0

50

100

t

N

0 1 2 3
0

500

1000

t

N

0 1 2 3
0

5000

10000

t

N

(a) (b)

(c)

Figure 3.1: Twenty-five realizations of population growth with initial population
sizes of 10, 100, and 1000, in (a), (b), and (c), respectively.
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Chapter 4

Infectious Disease Modeling
In the late 1320’s, an outbreak of the bubonic plague occurred in China. This

disease is caused by the bacteria Yersinia pestis and is transmitted from rats to hu-
mans by fleas. The outbreak in China spread west, and the first major outbreak in
Europe occurred in 1347. During a five year period, 25 million people in Europe,
approximately 1/3 of the population, died of the black death. Other more recent
epidemics include the influenza pandemic known as the Spanish flu killing 50-100
million people worldwide during the years 1918-1919, and the present AIDS epi-
demic, originating in Africa and first recognized in the USA in 1981, killing more
than 25 million people. For comparison, the SARS epidemic for which Hong Kong
was the global epicenter in the year 2003 resulted in 8096 known SARS cases and
774 deaths. Yet, we know well that this relatively small epidemic caused local social
and economic turmoil.

Here, we introduce the most basic mathematical models of infectious disease
epidemics and endemics. These models form the basis of the necessarily more
detailed models currently used by world health organizations, both to predict the
future spread of a disease and to develop strategies for containment and eradication.

4.1 The SI model

The simplest model of an infectious disease categorizes people as either susceptible
or infective (SI). One can imagine that susceptible people are healthy and infective
people are sick. A susceptible person can become infective by contact with an in-
fective. Here, and in all subsequent models, we assume that the population under
study is well mixed so that every person has equal probability of coming into con-
tact with every other person. This is a major approximation. For example, while the
population of Amoy Gardens could be considered well mixed during the SARS epi-
demic because of shared water pipes and elevators, the population of Hong Kong
as a whole could not because of the larger geographical distances, and the limited
travel of many people outside the neighborhoods where they live.

We derive the governing differential equation for the SI model by considering the
number of people that become infective during time ∆t. Let β∆t be the probability
that a random infective person infects a random susceptible person during time
∆t. Then with S susceptible and I infective people, the expected number of newly
infected people in the total population during time ∆t is β∆tSI. Thus,

I(t + ∆t) = I(t) + β∆tS(t)I(t),

and in the limit ∆t→ 0,
dI
dt

= βSI. (4.1)

We diagram (4.1) as

S
βSI−−→ I.

Later, diagrams will make it easier to construct more complicated systems of equa-
tions. We now assume a constant population size N, neglecting births and deaths,
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so that S + I = N. We can eliminate S from (4.1) and rewrite the equation as

dI
dt

= βNI
(

1− I
N

)
,

which can be recognized as a logistic equation, with growth rate βN and carrying
capacity N. Therefore I → N as t → ∞ and the entire population will become
infective.

4.2 The SIS model

The SI model may be extended to the SIS model, where an infective can recover and
become susceptible again. We assume that the probability that an infective recovers
during time ∆t is given by γ∆t. Then the total number of infective people that
recover during time ∆t is given by I × γ∆t, and

I(t + ∆t) = I(t) + β∆tS(t)I(t)− γ∆tI(t),

or as ∆t→ 0,
dI
dt

= βSI − γI, (4.2)

which we diagram as

S
βSI−−⇀↽−−
γI

I.

Using S + I = N, we eliminate S from (4.2) to obtain

dI
dt

= (βN − γ)I
(

1− β

βN − γ
I
)

, (4.3)

which is again a logistic equation, but now with growth rate βN − γ and carrying
capacity N − γ/β. In the SIS model, an epidemic will occur if βN > γ. And if
an epidemic does occur, then the disease becomes endemic with the number of
infectives at equilibrium given by I∗ = N − γ/β, and the number of susceptibles
given by S∗ = γ/β.

In general, an important metric for whether or not an epidemic will occur is
called the basic reproductive ratio. The basic reproductive ratio is defined as the
expected number of people that a single infective will infect in an otherwise sus-
ceptible population. To compute the basic reproductive ratio, define l(t) to be the
probability that an individual initially infected at t = 0 is still infective at time t.
Since the probability of being infective at time t + ∆t is equal to the probability of
being infective at time t multiplied by the probability of not recovering during time
∆t, we have

l(t + ∆t) = l(t)(1− γ∆t),

or as ∆t→ 0,
dl
dt

= −γl.

With initial condition l(0) = 1,
l(t) = e−γt. (4.4)

Now, the expected number of secondary infections produced by a single primary
infective over the time period (t, t + ∆t) is given by the probability that the primary
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infective is still infectious at time t multiplied by the expected number of secondary
infections produced by a single infective during time ∆t; that is, l(t) × S(t)β∆t.
Here, the definition of the basic reproductive ratio assumes that the entire popula-
tion is susceptible so that S(t) = N. Therefore, the expected number of secondary
infectives produced by a single primary infective in a completely susceptible popu-
lation is ∫ ∞

0
βl(t)Ndt = βN

∫ ∞

0
e−γtdt

=
βN
γ

.

The basic reproductive ratio, written as R0, is therefore defined as

R0 =
βN
γ

,

and from (4.3), we can see that in the SIS model an epidemic will occur if R0 > 1.
In other words, an epidemic can occur if an infected individual in an otherwise
susceptible population will on average infect more than one other individual.

We have also seen an analogous definition of the basic reproductive ratio in our
previous discussion of age-structured populations (§2.5). There, the basic reproduc-
tive ratio was the number of female offspring expected from a new born female over
her lifetime; the population size would grow if this value was greater than unity.

In the SIS model, after an epidemic occurs the population reaches an equilibrium
between susceptible and infective individuals. The effective basic reproductive ratio
of this steady-state population can be defined as βS∗/γ, and with S∗ = γ/β this
ratio is evidently unity. Clearly, for a population to be in equilibrium, an infective
individual must infect on average one other individual before he or she recovers.

4.3 The SIR epidemic disease model

The SIR model, first published by Kermack and McKendrick in 1927, is undoubtedly
the most famous mathematical model for the spread of an infectious disease. Here,
people are characterized into three classes: susceptible S, infective I and removed
R. Removed individuals are no longer susceptible nor infective for whatever reason;
for example, they have recovered from the disease and are now immune, or they
have been vaccinated, or they have been isolated from the rest of the population,
or perhaps they have died from the disease. As in the SIS model, we assume that
infectives leave the I class with constant rate γ, but in the SIR model they move
directly into the R class. The model may be diagrammed as

S
βSI−→ I

γI−→ R,

and the corresponding coupled differential equations are

dS
dt

= −βSI,
dI
dt

= βSI − γI,
dR
dt

= γI, (4.5)

with the constant population constraint S + I + R = N. For convenience, we nondi-
mensionalize (4.5) using N for population size and γ−1 for time; that is, let

Ŝ = S/N, Î = I/N, R̂ = R/N, t̂ = γt,
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and define the dimensionless basic reproductive ratio as

R0 =
βN
γ

. (4.6)

The dimensionless SIR equations are then given by

dŜ
dt̂

= −R0Ŝ Î,
dÎ
dt̂

= R0Ŝ Î − Î,
dR̂
dt̂

= Î, (4.7)

with dimensionless constraint Ŝ + Î + R̂ = 1.
We will use the SIR model to address two fundamental questions: (1) Under

what condition does an epidemic occur? (2) If an epidemic occurs, what fraction of
a well-mixed population gets sick?

Let (Ŝ∗, Î∗, R̂∗) be the fixed points of (4.7). Setting dŜ/dt̂ = dÎ/dt̂ = dR̂/dt̂ = 0,
we immediately observe from the equation for dR̂/dt̂ that Î = 0, and this value
forces all the time-derivatives to vanish for any Ŝ and R̂. Since with Î = 0, we have
R̂ = 1− Ŝ, evidently all the fixed points of (4.7) are given by the one parameter
family (Ŝ∗, Î∗, R̂∗) = (Ŝ∗, 0, 1− Ŝ∗).

An epidemic occurs when a small number of infectives introduced into a sus-
ceptible population results in an increasing number of infectives. We can assume
an initial population at a fixed point of (4.7), perturb this fixed point by introducing
a small number of infectives, and determine the fixed point’s stability. An epidemic
occurs when the fixed point is unstable. The linear stability problem may be solved
by considering only the equation for dÎ/dt̂ in (4.7). With Î � 1 and Ŝ ≈ Ŝ0, we have

dÎ
dt̂

=
(
R0Ŝ0 − 1

)
Î,

so that an epidemic occurs if R0Ŝ0 − 1 > 0. With the basic reproductive ratio given
by (4.6), and Ŝ0 = S0/N, where S0 is the number of initial susceptible individuals,
an epidemic occurs if

R0Ŝ0 =
βS0

γ
> 1, (4.8)

which could have been guessed. An epidemic occurs if an infective individual
introduced into a population of S0 susceptible individuals infects on average more
than one other person. If an epidemic occurs, then initially the number of infective
individuals increases exponentially with growth rate βS0 − γ.

We now address the second question: If an epidemic occurs, what fraction of the
population gets sick? For simplicity, we assume that the entire initial population is
susceptible to the disease, so that Ŝ0 = 1. We expect the solution of the governing
equations (4.7) to approach a fixed point asymptotically in time (so that the final
number of infectives will be zero), and we define this fixed point to be (Ŝ, Î, R̂) =
(1− R̂∞, 0, R̂∞), with R̂∞ equal to the fraction of the population that gets sick. To
compute R̂∞, it is simpler to work with a transformed version of (4.7). By the chain
rule, dŜ/dt̂ = (dŜ/dR̂)(dR̂/dt̂), so that

dŜ
dR̂

=
dŜ/dt̂
dR̂/dt̂

= −R0Ŝ,

which is separable. Separating and integrating from the initial to final conditions,∫ 1̂−R̂∞

1

dŜ
Ŝ

= −R0

∫ R̂∞

0
dR̂,
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Figure 4.1: The fraction of the population that gets sick in the SIR model as a function of
the basic reproduction ratio R0.

which upon integration and simplification, results in the following transcendental
equation for R̂∞:

1− R̂∞ − e−R0R̂∞ = 0, (4.9)

an equation that can be solved numerically using Newton’s method. We have

F(R̂∞) = 1− R̂∞ − e−R0R̂∞ ,

F′(R̂∞) = −1 +R0e−R0R̂∞ ;

and Newton’s method for solving F(R̂∞) = 0 iterates

R̂(n+1)
∞ = R̂n

∞ −
F(R̂(n)

∞ )

F′(R̂(n)
∞ )

for fixed R0 and a suitable initial condition for R(0)
∞ , which we take to be unity. My

code for computing R∞ as a function of R0 is given below, and the result is shown
in Fig. 4.1. There is an explosion in the number of infections as R0 increases from
unity, and this rapid increase is a classic example of what is known more generally
as a threshold phenomenon.

function [R0, R_inf] = sir_rinf
% computes solution of R_inf using Newton’s method from SIR model
nmax=10; numpts=1000;
R0 = linspace(0,2,numpts); R_inf = ones(1,numpts);
for i=1:nmax

R_inf = R_inf - F(R_inf,R0)./Fp(R_inf,R0);
end
plot(R0,R_inf); axis([0 2 -0.02 0.8])
xlabel(’$\mathcal{R}_0$’, ’Interpreter’, ’latex’, ’FontSize’,16)
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ylabel(’$\hat R_\infty$’, ’Interpreter’, ’latex’, ’FontSize’,16);
title(’fraction of population that get sick’)
%subfunctions
function y = F(R_inf,R0)
y = 1 - R_inf - exp(-R0.*R_inf);
function y = Fp(R_inf,R0)
y = -1 + R0.*exp(-R0.*R_inf);

4.4 Vaccination

Table 4.1 lists the diseases for which vaccines exist and are widely administered to
children. Health care authorities must determine the fraction of a population that
must be vaccinated to prevent epidemics.

We address this problem within the SIR epidemic disease model. Let p be the
fraction of the population that is vaccinated and p∗ the minimum fraction required
to prevent an epidemic. When p > p∗, an epidemic can not occur. Since even
non-vaccinated people are protected by the absence of epidemics, we say that the
population has acquired herd immunity.

We assume that individuals are susceptible unless vaccinated, and vaccinated
individuals are in the removed class. The initial population is then modeled as
(Ŝ, Î, R̂) = (1− p, 0, p). We have already determined the stability of this fixed point
to perturbation by a small number of infectives. The condition for an epidemic to
occur is given by (4.8), and with Ŝ0 = 1− p, an epidemic occurs if

R0(1− p) > 1.

Therefore, the minimum fraction of the population that must be vaccinated to pre-
vent an epidemic is

p∗ = 1− 1
R0

.

Diseases with smaller values of R0 are easier to eradicate than diseases with larger
values R0 since a population can acquire herd immunity with a smaller fraction of
the population vaccinated. For example, smallpox with R0 ≈ 4 has been eradicated
throughout the world whereas measles with R0 ≈ 17 still has occasional outbreaks.

4.5 The SIR endemic disease model

A disease that is constantly present in a population is said to be endemic. For
example, malaria is endemic to Sub-Saharan Africa, where about 90% of malaria-
related deaths occur. Endemic diseases prevail over long time scales: babies are
born, old people die. Let b be the birth rate and d the disease-unrelated death rate.
We separately define c to be the disease-related death rate; R is now the immune
class. We may diagram a SIR model of an endemic disease as
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Disease Description Symptoms Complications
Diphtheria A bacterial res-

piratory disease
Sore throat and low-
grade fever

Airway obstruction,
coma, and death

Haemophilus
influenzae
type b (Hib)

A bacterial
infection occur-
ring primarily
in infants

Skin and throat in-
fections, meningitis,
pneumonia, sepsis, and
arthritis

Death in one out of
20 children, and perma-
nent brain damage in
10% - 30% of the sur-
vivors

Hepatitis A A viral liver dis-
ease

Potentially none; yellow
skin or eyes, tiredness,
stomach ache, loss of
appetite, or nausea

usually none

Hepatitis B Same as Hepati-
tis A

Same as Hepatitis A Life-long liver prob-
lems, such as scarring
of the liver and liver
cancer

Measles A viral respira-
tory disease

Rash, high fever, cough,
runny nose, and red,
watery eyes

Diarrhea, ear infections,
pneumonia, encephali-
tis, seizures, and death

Mumps A viral lymph
node disease

Fever, headache, mus-
cle ache, and swelling of
the lymph nodes close
to the jaw

Meningitis, inflamma-
tion of the testicles or
ovaries, inflammation
of the pancreas and
deafness

Pertussis
(whooping
cough)

A bacterial res-
piratory disease

Severe spasms of cough-
ing

Pneumonia, encephali-
tis, and death, especially
in infants

Pneumococcal
disease

A bacterial dis-
ease

High fever, cough,
and stabbing chest
pains, bacteremia, and
meningitis

death

Polio A viral lym-
phatic and
nervous system
disease

Fever, sore throat, nau-
sea, headaches, stomach
aches, stiffness in the
neck, back, and legs

Paralysis that can lead
to permanent disability
and death

Rubella
(German
measles)

A viral respira-
tory disease

Rash and fever for two
to three days

Birth defects if acquired
by a pregnant woman

Tetanus
(lockjaw)

A bacterial
nervous system
disease

Lockjaw, stiffness in the
neck and abdomen, and
difficulty swallowing

Death in one third of the
cases, especially people
over age 50

Varicella
(chickenpox)

A viral disease
in the Herpes
family

A skin rash of blister-
like lesions

Bacterial infection of the
skin, swelling of the
brain, and pneumonia

Human pa-
pillomavirus

A viral skin
and mucous
membrane
disease

Warts, cervical cancer The 5-year survival rate
from all diagnoses of
cervical cancer is 72%

Table 4.1: Previously common diseases for which vaccines have been developed.
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and the governing differential equations are

dS
dt

= bN − βSI − dS,
dI
dt

= βSI − (d + c + γ)I,
dR
dt

= γI − dR, (4.10)

with N = S + I + R. In our endemic disease model, N separately satisfies the
differential equation

dN/dt = (b− d)N − cI, (4.11)

and is not necessarily constant.
A disease can become endemic in a population if dI/dt stays nonnegative; that

is,
βS(t)

d + c + γ
≥ 1.

For a disease to become endemic, newborns must introduce an endless supply of
new susceptibles into a population.

4.6 Evolution of virulence

Microorganisms continuously evolve due to selection pressures in their environ-
ments. Antibiotics are a common source of selection pressure on pathogenic bac-
teria, and the development of antibiotic-resistant strains presents a major health
challenge to medical science. Bacteria and viruses also compete directly with each
other for reproductive success resulting in the evolution of virulence. Here, using
the SIR endemic disease model, we study how virulence may evolve.

For the sake of argument, we will assume that a population is initially in equi-
librium with an endemic disease caused by a wildtype virus; that is, S, I and R are
assumed to be nonzero and at equilibrium values. Now suppose that some virus
particles mutate by a random, undirected process that occurs naturally. We want to
determine the conditions under which the mutant virus will replace the wildtype
virus in the population. In mathematical terms, we want to determine the linear
stability of the endemic disease equilibrium to the introduction of a mutant viral
strain.

We assume that the original wildtype virus has infection rate β, removal rate γ,
and disease-related death rate c, and that the mutant virus has corresponding rates
β′, γ′ and c′. We further assume that an individual infected with either a wildtype
or mutant virus gains immunity to subsequent infection from both wildtype and
mutant viral forms. Our model thus has a single susceptible class S, two distinct
infective classes I and I′ depending on which virus causes the infection, and a single
recovered class R. The appropriate diagram is
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with corresponding differential equations

dS
dt

= bN − dS− S(βI + β′ I′), (4.12)

dI
dt

= βSI − (d + c + γ)I, (4.13)

dI′

dt
= β′SI′ − (d + c′ + γ′)I′, (4.14)

dR
dt

= γI + γ′ I′ − dR. (4.15)

If the population is initially in equilibrium with the wildtype virus, then we have
İ = 0 with I 6= 0, and the equilibrium value for S is determined from (4.13) to be

S∗ =
d + c + γ

β
, (4.16)

which corresponds to a basic reproductive ratio βS∗/(d + c + γ) of unity.
We perturb this endemic disease equilibrium by introducing a small number

of infectives carrying the mutated virus, that is, by letting I′ be small. Rather than
solve the stability problem by means of a Jacobian analysis, we can directly examine
the equation for dI′/dt given by (4.14). Here, with S = S∗ given by (4.16), we have

dI′

dt
=

[
β′(d + c + γ)

β
− (d + c′ + γ′)

]
I′;

and I′ increases exponentially if

β′(d + c + γ)

β
− (d + c′ + γ′) > 0,

or after some elementary algebra,

β′

d + c′ + γ′
>

β

d + c + γ
. (4.17)

Our result (4.17) suggests that endemic viruses (or other microorganisms) will tend
to evolve (i) to be more easily transmitted between people (β′ > β); (ii) to make
people sick longer (γ′ < γ), and; (iii) to be less deadly c′ < c. In other words, viruses
evolve to increase their basic reproductive ratios. For instance, our model suggests
that viruses evolve to be less deadly because the dead do not spread disease. Our
result would not be applicable, however, if the dead in fact did spread disease, a
possibility if disposal of the dead was not done with sufficient care, perhaps because
of certain cultural traditions such as family washing of the dead body.
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Chapter 5

Population Genetics
Deoxyribonucleic acid, or DNA—a large double-stranded, helical molecule, with

rungs made from the four base pairs adenine (A), cytosine (C), thymine (T) and gua-
nine (G)—carries inherited genetic information. The ordering of the base pairs A, C,
T and G determines the DNA sequence. A gene is a particular DNA sequence that
is the fundamental unit of heredity for a particular trait. Some species develop as
diploids, carrying two copies of every gene, one from each parent, and some species
develop as haploids with only one copy. There are even species that develop as both
diploids and haploids.

Consider the pea plant, which develops as a diploid. When we say there is a
gene for pea color, say, we mean there is a particular DNA sequence that may vary
in a pea plant population, and that there are at least two subtypes, called alleles,
where plants with two copies of the yellow-color allele have yellow peas, those
with two copies of the green-color allele, green peas. A plant with two copies of the
same allele is homozygous for that particular gene (or a homozygote), while a plant
carrying two different alleles is heterozygous (or a heterozygote). For the pea color
gene, a plant carrying both a yellow- and green-color allele has yellow peas. We
say that the green color is a recessive trait (or the green-color allele is recessive),
and the yellow color is a dominant trait (or the yellow-color allele is dominant). The
combination of alleles carried by the plant is called its genotype, while the actual trait
(green or yellow peas) is called its phenotype. A gene that has more than one allele
in a population is called polymorphic, and we say the population has a polymorphism
for that particular gene.

Population genetics can be defined as the mathematical modeling of the evo-
lution and maintenance of polymorphism in a population. Population genetics
together with Charles Darwin’s theory of evolution by natural selection and Gregor
Mendel’s theory of biological inheritance forms the modern evolutionary synthe-
sis (sometimes called the modern synthesis, the evolutionary synthesis, the neo-
Darwinian synthesis, or neo-Darwinism). The primary founders in the early twen-
tieth century of population genetics were Sewall Wright, J. B. S. Haldane and Ronald
Fisher.

Allele frequencies in a population can change due to the influence of four pri-
mary evolutionary forces: natural selection, genetic drift, mutation, and migration.
Here, we mainly focus on natural selection and mutation. Genetic drift is the study
of stochastic effects, and it is important in small populations. Migration typically
requires consideration of the spatial distribution of a population, and it is usually
modeled mathematically by partial differential equations.

The simplified models we will consider assume infinite population sizes (ne-
glecting stochastic effects except in §5.5), well-mixed populations (neglecting any
spatial distribution), and discrete generations (neglecting any age-structure). Our
main purpose is to illustrate the fundamental ways that a genetic polymorphism
can be maintained in a population.
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genotype A a
number nA na
viability fitness gA ga
fertility fitness fA fa

Table 5.1: Haploid genetics using population size, absolute viability, and fertility
fitnesses.

5.1 Haploid genetics

We first consider the modeling of selection in a population of haploid organisms.
Selection is modeled by fitness coefficients, with different genotypes having differ-
ent fitnesses. We begin with a simple model that counts the number of individuals
in the next generation, and then show how this model can be reformulated in terms
of allele frequencies and relative fitness coefficients.

Table 5.1 formulates the basic model. We assume that there are two alleles A
and a for a particular haploid gene. These alleles are carried in the population by
nA and na individuals, respectively. A fraction gA (ga) of individuals carrying allele
A (a) is assumed to survive to reproduction age, and those that survive contribute
fA ( fa) offspring to the next generation. These are of course average values, but
under the assumption of an (almost) infinite population, our model is deterministic.
Accordingly, with n(i)

A (n(i)
a ) representing the number of individuals carrying allele

A (a) in the ith generation, and formulating a discrete generation model, we have

n(i+1)
A = fAgAn(i)

A , n(i+1)
a = fagan(i)

a . (5.1)

It is mathematically easier and more transparent to work with allele frequencies
rather than individual numbers. We denote the frequency (or more accurately,
proportion) of allele A (a) in the ith generation by pi (qi); that is,

pi =
n(i)

A

n(i)
A + n(i)

a

, qi =
n(i)

a

n(i)
A + n(i)

a

,

where evidently pi + qi = 1. Now, from (5.1),

n(i+1)
A + n(i+1)

a = fAgAn(i)
A + fagan(i)

a , (5.2)

so that dividing the first equation in (5.1) by (5.2) yields

pi+1 =
fAgAn(i)

A

fAgAn(i)
A + fagan(i)

a

=
fAgA pi

fAgA pi + fagaqi

=

(
fAgA
faga

)
pi(

fAgA
faga

)
pi + qi

,

(5.3)

where the second equality comes from dividing the numerator and denominator by
n(i)

A + n(i)
a , and the third equality from dividing the numerator and denominator by
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genotype A a
freq. of gamete p q
relative fitness 1 + s 1
freq after selection (1 + s)p/w q/w
normalization w = (1 + s)p + q

Table 5.2: Haploid genetic model of the spread of a favored allele.

faga. Similarly,

qi+1 =
qi(

fAgA
faga

)
pi + qi

, (5.4)

which could also be derived using qi+1 = 1− pi+1. We observe from the evolution
equations for the allele frequencies, (5.3) and (5.4), that only the relative fitness
fAgA/ faga of the alleles matters. Accordingly, in our models, we will consider only
relative fitnesses, and we will arbitrarily set one fitness to unity to simplify the
algebra and make the final result more transparent.

5.1.1 Spread of a favored allele
We consider a simple model for the spread of a favored allele in Table 5.2, with
s > 0. Denoting p′ by the frequency of A in the next generation (not (!) the
derivative of p), the evolution equation is given by

p′ =
(1 + s)p

w

=
(1 + s)p
1 + sp

,
(5.5)

where we have used (1 + s)p + q = 1 + sp, since p + q = 1. Note that (5.5) is the
same as (5.3) with p′ = pi+1, p = pi, and fAgA/ faga = 1 + s. Fixed points of (5.5)
are determined from p′ = p. We find two fixed points: p∗ = 0, corresponding to a
population in which allele A is absent; and p∗ = 1, corresponding to a population
in which allele A is fixed. Intuitively, p∗ = 0 is unstable while p∗ = 1 is stable.

To illustrate how a stability analysis is performed analytically for a difference
equation (instead of a differential equation), consider the general difference equa-
tion

p′ = f (p). (5.6)

With p = p∗ a fixed point such that p∗ = f (p∗), we write p = p∗ + ε so that (5.6)
becomes

p∗ + ε′ = f (p∗ + ε)

= f (p∗) + ε f ′(p∗) + . . .

= p∗ + ε f ′(p∗) + . . . ,

where f ′(p∗) denotes the derivative of f evaluated at p∗. Therefore, to leading-order
in ε ∣∣ε′/ε

∣∣ = ∣∣ f ′(p∗)
∣∣ ,

and the fixed point is stable provided that | f ′(p∗)| < 1. For our haploid model,

f (p) =
(1 + s)p
1 + sp

, f ′(p) =
1 + s

(1 + sp)2 ,
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genotype A a
freq. of gamete p q
relative fitness 1 1− s
freq after selection p/w (1− s)q/w
freq after mutation (1-u)p/w [(1− s)q + up]/w
normalization w = p + (1− s)q

Table 5.3: A haploid genetic model of mutation-selection balance.

so that f ′(p∗ = 0) = 1 + s > 1, and f ′(p∗ = 1) = 1/(1 + s) < 1, confirming that
p∗ = 0 is unstable and p∗ = 1 is stable.

If the selection coefficient s is small, the model equation (5.5) simplifies further.
We have

p′ =
(1 + s)p
1 + sp

= (1 + s)p(1− sp + O(s2))

= p + (p− p2)s + O(s2),

so that to leading-order in s,

p′ − p = sp(1− p).

If p′ − p� 1, which is valid for s� 1, we can approximate this difference equation
by the differential equation

dp/dn = sp(1− p),

which shows that the frequency of allele A satisfies the now very familiar logistic
equation.

Although a polymorphism for this gene exists in the population as the new allele
spreads, eventually A becomes fixed in the population and the polymorphism is
lost. In the next section, we consider how a polymorphism can be maintained in a
haploid population by a balance between mutation and selection.

5.1.2 Mutation-selection balance
We consider a gene with two alleles: a wildtype allele A and a mutant allele a.
We view the mutant allele as a defective genotype, which confers on the carrier a
lowered fitness 1− s relative to the wildtype. Although all mutant alleles may not
have identical DNA sequences, we assume that they share in common the same
phenotype of reduced fitness. We model the opposing effects of two evolutionary
forces: natural selection, which favors the wildtype allele A over the mutant allele
a, and mutation, which confers a small probability u that allele A mutates to allele
a in each newborn individual. Schematically,

A
u−⇀↽−
s

a

where u represents mutation and s represents selection. The model is shown in
Table 5.3. The equations for p and q in the next generation are

p′ =
(1− u)p

w

=
(1− u)p

1− s(1− p)
,

(5.7)
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genotype AA Aa aa
referred to as wildtype homozygote heterozygote mutant homozygote

frequency P Q R

Table 5.4: The terminology of diploidy.

and

q′ =
(1− s)q + up

w

=
(1− s− u)q + u

1− sq
,

(5.8)

where we have used p+ q = 1 to eliminate q from the equation for p′ and p from the
equation for q′. The equations for p′ and q′ are linearly dependent since p′ + q′ = 1,
and we need solve only one of them.

Considering (5.7), the fixed points determined from p′ = p are p∗ = 0, for which
the mutant allele a is fixed in the population and there is no polymorphism, and
the solution to

1− s(1− p∗) = 1− u,

which is p∗ = 1− u/s, and there is a polymorphism. The stabilities of these two
fixed points are determined by considering p′ = f (p), with f (p) given by the right-
hand-side of (5.7). Taking the derivative of f ,

f ′(p) =
(1− u)(1− s)
[1− s(1− p)]2

,

so that
f ′(p∗ = 0) =

1− u
1− s

, f ′(p∗ = 1− u/s) =
1− s
1− u

.

Applying the criterion | f ′(p∗)| < 1 for stability, p∗ = 0 is stable for s < u and
p∗ = 1 − u/s is stable for s > u. A polymorphism is therefore possible under
mutation-selection balance when s > u > 0.

5.2 Diploid genetics

Most sexually reproducing species are diploid. In particular, our species Homo
sapiens is diploid with two exceptions: we are haploid at the gamete stage (sperm
and unfertilized egg); and males are haploid for most genes on the unmatched
X and Y sex chromosomes (females are XX and diploid). This latter seemingly
innocent fact is of great significance to males suffering from genetic diseases due to
an X-linked recessive mutation inherited from their mother. Females inheriting this
mutation are most probably disease-free because of the functional gene inherited
from their father.

A polymorphic gene with alleles A and a can appear in a diploid gene as three
distinct genotypes: AA, Aa and aa. Conventionally, we denote A to be the wildtype
allele and a the mutant allele. Table 5.4 presents the terminology of diploidy.

As for haploid genetics, we will determine evolution equations for allele and/or
genotype frequencies. To develop the appropriate definitions and relations, we
initially assume a population of size N (which we will later take to be infinite), and
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assume that the number of individuals with genotypes AA, Aa and aa are NAA,
NAa and Naa. Now, N = NAA + NAa + Naa. Define genotype frequencies P, Q and
R as

P =
NAA

N
, Q =

NAa
N

, R =
Naa

N
,

so that P + Q + R = 1. It will also be useful to define allele frequencies. Let nA
and na be the number of alleles A and a in the population, with n = nA + na the
total number of alleles. Since the population is of size N and diploidy, n = 2N;
and since each homozygote contains two identical alleles, and each heterozygote
contains one of each allele, nA = 2NAA + NAa and na = 2Naa + NAa. Defining the
allele frequencies p and q as previously,

p = nA/n

=
2NAA + NAa

2N

= P +
1
2

Q;

and similarly,

q = na/n

=
2Naa + NAa

2N

= R +
1
2

Q.

With five frequencies, P, Q, R, p, q, and four constraints P + Q + R = 1, p + q = 1,
p = P + Q/2, q = R + Q/2, how many independent frequencies are there? In fact,
there are two because one of the four constraints is linearly dependent. We may
choose any two frequencies other than the choice {p, q} as our linearly independent
set. For instance, one choice is {P, p}; then,

q = 1− p, Q = 2(p− P), R = 1 + P− 2p.

Similarly, another choice is {P, Q}; then

R = 1− P−Q, p = P +
1
2

Q, q = 1− P− 1
2

Q.

5.2.1 Sexual reproduction
Diploid reproduction may be sexual or asexual, and sexual reproduction may be
of varying types (e.g., random mating, selfing, brother-sister mating, and various
other types of assortative mating). The two simplest types to model exactly are
random mating and selfing. These mating systems are useful for contrasting the
biology of both outbreeding and inbreeding.

Random mating

Random mating is perhaps the simplest mating system to model. Here, we assume
a well-mixed population of individuals that have equal probability of mating with
every other individual. We will determine the genotype frequencies of the zygotes
(fertilized eggs) in terms of the allele frequencies using two approaches: (1) the
gene pool approach, and (2) the mating table approach.
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progeny frequency
mating frequency AA Aa aa

AA× AA P2 P2 0 0
AA× Aa 2PQ PQ PQ 0
AA× aa 2PR 0 2PR 0
Aa× Aa Q2 1

4 Q2 1
2 Q2 1

4 Q2

Aa× aa 2QR 0 QR QR
aa× aa R2 0 0 R2

Totals (P + Q + R)2 (P + 1
2 Q)2 2(P + 1

2 Q)(R + 1
2 Q) (R + 1

2 Q)2

= 1 = p2 = 2pq = q2

Table 5.5: Random mating table.

The gene pool approach models sexual reproduction by assuming that males
and females release their gametes into pools. Offspring genotypes are determined
by randomly combining one gamete from the male pool and one gamete from the
female pool. As the probability of a random gamete containing allele A or a is
equal to the allele’s population frequency p or q, respectively, the probability of an
offspring being AA is p2, of being Aa is 2pq (male A female a + female A male a),
and of being aa is q2. Therefore, after a single generation of random mating, the
genotype frequencies can be given in terms of the allele frequencies by

P = p2, Q = 2pq, R = q2.

This is the celebrated Hardy-Weinberg law. Notice that under the assumption of
random mating, there is now only a single independent frequency, greatly simpli-
fying the mathematical modeling. For example, if p is taken as the independent
frequency, then

q = 1− p, P = p2, Q = 2p(1− p), R = (1− p)2.

Most modeling is done assuming random mating unless the biology under study is
influenced by inbreeding.

The second approach uses a mating table (see Table 5.5). This approach to mod-
eling sexual reproduction is more general and can be applied to other mating sys-
tems. We explain this approach by considering the mating AA× Aa. The genotypes
AA and Aa have frequencies P and Q, respectively. The frequency of AA males mat-
ing with Aa females is PQ and is the same as AA females mating with Aa males, so
the sum is 2PQ. Half of the offspring will be AA and half Aa, and the frequencies
PQ are denoted under progeny frequency. The sums of all the progeny frequencies
are given in the Totals row, and the random mating results are recovered upon use
of the relationship between the genotype and allele frequencies.

Selfing

Perhaps the next simplest type of mating system is self-fertilization, or selfing. Here,
an individual reproduces sexually (passing through a haploid gamete stage in its
life-cycle), but provides both of the gametes. For example, the nematode worm C.
elegans can reproduce by selfing. The mating table for selfing is given in Table 5.6.
The selfing frequency of a particular genotype is just the frequency of the genotype
itself. For a selfing population, disregarding selection or any other evolutionary
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progeny frequency
mating frequency AA Aa aa
AA⊗ P P 0 0
Aa⊗ Q 1

4 Q 1
2 Q 1

4 Q
aa⊗ R 0 0 R

Totals 1 P + 1
4 Q 1

2 Q R + 1
4 Q

Table 5.6: Selfing mating table.

forces, the genotype frequencies evolve as

P′ = P +
1
4

Q, Q′ =
1
2

Q, R′ = R +
1
4

Q. (5.9)

Assuming an initially heterozygous population, we solve (5.9) with the initial
conditions Q0 = 1 and P0 = R0 = 0. In the worm lab, this type of initial population
is commonly created by crossing wildtype homozygous C. elegans males with mu-
tant homozygous C. elegans hermaphrodites, where the mutant allele is recessive.
Wildtype hermaphrodite offspring, which are necessarily heterozygous, are then
picked to separate worm plates and allowed to self-fertilize. (Do you see why the
experiment is not done with wildtype hermaphrodites and mutant males?) From
the equation for Q′ in (5.9), we have Qn = (1/2)n, and from symmetry, Pn = Rn.
Then, since Pn + Qn + Rn = 1, we obtain the complete solution

Pn =
1
2

(
1−

(
1
2

)n)
, Qn =

(
1
2

)n
, Rn =

1
2

(
1−

(
1
2

)n)
.

The main result to be emphasized here is that the heterozygosity of the population
decreases by a factor of two in each generation. Selfing populations rapidly become
homozygous.

Constancy of allele frequencies

We can show that both random mating and selfing do not by themselves change
the allele frequencies of a population, but only reshuffles alleles into different geno-
types. For random mating,

p′ = P′ +
1
2

Q′

= p2 +
1
2
(2pq)

= p(p + q)
= p;

and for selfing,

p′ = P′ +
1
2

Q′

=

(
P +

1
4

Q
)
+

1
2

(
1
2

Q
)

= P +
1
2

Q

= p.
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Figure 5.1: Evolution of peppered moths in industrializing England (from H. B. D.
Kettlewell).

These results are not general, however, and it is possible to construct other mating
systems for which allele frequencies do change.

Nevertheless, the conservation of allele frequencies by random mating is an im-
portant element of neo-Darwinism. In Darwin’s time, most biologists believed in
blending inheritance, where the genetic material from parents with different traits
actually blended in their offspring, rather like the mixing of paints of different col-
ors. If blending inheritance occurred, then genetic variation, or polymorphism,
would eventually be lost over several generations as the “genetic paints” became
well-mixed. Mendel’s work on peas, published in 1866, suggested a particulate
theory of inheritance, where the genetic material, later called genes, maintain their
integrity across generations. Sadly, Mendel’s paper was not read by Darwin (who
published The Origin of Species in 1859 and died in 1882) or other influential biolo-
gists during Mendel’s lifetime (Mendel died in 1884). After being rediscovered in
1900, Mendel and his work eventually became widely celebrated.

5.2.2 Spread of a favored allele

We consider the spread of a favored allele in a diploid population. The classic
example – widely repeated in biology textbooks as a modern example of natural
selection – is the change in the frequencies of the dark and light phenotypes of
the peppered moth during England’s industrial revolution. The evolutionary story
begins with the observation that pollution killed the light colored lichen on trees
during industrialization of the cities. On the one hand, light colored peppered
moths camouflage well on light colored lichens, but are exposed to birds on plain
tree bark. On the other hand, dark colored peppered moths camouflage well on
plain tree bark, but are exposed on light colored lichens (see Fig. 5.1). Natural
selection therefore favored the light-colored allele in preindustrialized England and
the dark-colored allele during industrialization. It is believed that the dark-colored
allele increased rapidly under natural selection in industrializing England.

We present our model in Table 5.7. Here, we consider aa as the wildtype geno-
type and normalize its fitness to unity. The allele A is the mutant whose frequency
increases in the population. In our example of the peppered moth, the aa pheno-

CHAPTER 5. POPULATION GENETICS 67



5.2. DIPLOID GENETICS

genotype AA Aa aa
freq. of zygote p2 2pq q2

relative fitness 1 + s 1 + sh 1
freq after selection (1 + s)p2/w 2(1 + sh)pq/w q2/w
normalization w = (1 + s)p2 + 2(1 + sh)pq + q2

Table 5.7: A diploid genetic model of the spread of a favored allele assuming ran-
dom mating.

type is light colored and the AA phenotype is dark colored. The color of the Aa
phenotype depends on the relative dominance of A and a. Usually, no pigment
results in light color and is a consequence of nonfunctioning pigment-producing
genes. One functioning pigment-producing allele is usually sufficient to result in a
dark-colored moth. With A a functioning pigment-producing allele and a the mu-
tated nonfunctioning allele, a is most likely recessive, A is most likely dominant,
and the phenotype of Aa is most likely dark, so h ≈ 1. For the moment, though, we
leave h as a free parameter.

We assume random mating, and this simplification is used to write the genotype
frequencies as P = p2, Q = 2pq, and R = q2. Since q = 1 − p, we reduce our
problem to determining an equation for p′ in terms of p. Using p′ = Ps + (1/2)Qs,
where p′ is the A allele frequency in the next generation’s zygotes, and Ps and Qs
are the AA and Aa genotype frequencies, respectively, in the present generation
after selection,

p′ =
(1 + s)p2 + (1 + sh)pq

w
,

where q = 1− p, and

w = (1 + s)p2 + 2(1 + sh)pq + q2

= 1 + s(p2 + 2hpq).

After some algebra, the final evolution equation written solely in terms of p is

p′ =
(1 + sh)p + s(1− h)p2

1 + 2shp + s(1− 2h)p2 . (5.10)

The expected fixed points of this equation are p∗ = 0 (unstable) and p∗ = 1 (stable),
where our assignment of stability assumes positive selection coefficients.

The evolution equation (5.10) in this form is not particularly illuminating. In
general, a numerical solution would require specifying numerical values for s and h,
as well as an initial value for p. Here, to determine how the spread of A depends on
the dominance coefficient h, we investigate analytically the increase of A assuming
s� 1. We Taylor-series expand the right-hand-side of (5.10) in powers of s, keeping
terms to order s:

p′ =
(1 + sh)p + s(1− h)p2

1 + 2shp + s(1− 2h)p2

=
p + s

(
hp + (1− h)p2)

1 + s
(
2hp + (1− 2h)p2

)
=
(

p + s
(
hp + (1− h)p2))(1− s

(
2hp + (1− 2h)p2)+ O(s2)

)
= p + sp

(
h + (1− 3h)p− (1− 2h)p2)+ O(s2).

(5.11)
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disease mutation symptoms
Thalassemia haemoglobin anemia
Sickle cell anemia haemoglobin anemia
Haemophilia blood clotting factor uncontrolled bleeding
Cystic Fibrosis chloride ion channel thick lung mucous
Tay-Sachs disease Hexosaminidase A enzyme nerve cell damage
Fragile X syndrome FMR1 gene mental retardation
Huntington’s disease HD gene brain degeneration

Table 5.8: Seven common monogenic diseases.

If s � 1, we expect a small change in allele frequency in each generation, so we
can approximate p′ − p ≈ dp/dn, where n denotes the generation number, and
p = p(n). The approximate differential equation obtained from (5.11) is

dp
dn

= sp
(
h + (1− 3h)p− (1− 2h)p2). (5.12)

If A is partially dominant so that h 6= 0 (e.g., the heterozygous moth is darker
than the homozgygous mutant moth), then the solution to (5.12) behaves similarly
to the solution of a logistic equation: p initially grows exponentially as p(n) =
p0 exp (shn), and asymptotes to one for large n. If A is recessive so that h = 0 (e.g.,
the heterozygous moth is as light-colored as the homozygous mutant moth), then
(5.12) reduces to

dp
dn

= sp2 (1− p) , for h = 0. (5.13)

Of main interest is the initial growth of p when p(0) = p0 � 1, so that dp/dn ≈ sp2.
This differential equation may be integrated by separating variables to yield

p(n) =
p0

1− sp0n
≈ p0(1 + sp0n).

The frequency of a recessive favored allele increases only linearly across genera-
tions, a consequence of the heterozygote being hidden from natural selection. Most
likely, the peppered-moth heterozygote is significantly darker than the light-colored
homozygote since the dark colored moth rapidly increased in frequency over a short
period of time.

As a final comment, linear growth in the frequency of A when h = 0 is sensitive
to our assumption of random mating. If selfing occurred, or another type of close
family mating, then a recessive favored allele may still increase exponentially. In
this circumstance, the production of homozygous offspring from more frequent
heterozygote pairings allows selection to act more effectively.

5.2.3 Mutation-selection balance
By virtue of self-knowledge, the species with the most known mutant phenotypes
is Homo sapiens. There are thousands of known genetic diseases in humans, many
of them caused by mutation of a single gene (called a monogenic disease). For an
easy-to-read overview of genetic disease in humans, see the website

http://www.who.int/genomics/public/geneticdiseases.
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genotype AA Aa aa
freq. of zygote p2 2pq q2

relative fitness 1 1− sh 1− s
freq after selection p2/w 2(1− sh)pq/w (1− s)q2/w
normalization w = p2 + 2(1− sh)pq + (1− s)q2

Table 5.9: A diploid genetic model of mutation-selection balance assuming random
mating.

Table 5.8 lists seven common monogenic diseases. The first two diseases are main-
tained at significant frequencies in some human populations by heterosis. We will
discuss in §5.2.4 the maintenance of a polymorphism by heterosis, for which the het-
erozygote has higher fitness than either homozygote. It is postulated that Tay-Sachs
disease, prevalent among ancestors of Eastern European Jews, and cystic fibrosis
may also have been maintained by heterosis acting in the past. (Note that the cystic
fibrosis gene was identified in 1989 by a Toronto group led by Lap Chee Tsui, who
later became President of the University of Hong Kong.) The other disease genes
listed may be maintained by mutation-selection balance.

Our model for diploid mutation-selection balance is given in Table 5.9. We
further assume that mutations of type A → a occur in gamete production with
frequency u. Back-mutation is neglected. The gametic frequency of A and a after
selection but before mutation is given by p̂ = Ps + Qs/2 and q̂ = Rs + Qs/2, and
the gametic frequency of a after mutation is given by q′ = up̂ + q̂. Therefore,

q′ =
(
u
(

p2 + (1− sh)pq
)
+
(
(1− s)q2 + (1− sh)pq

))
/w,

where

w = p2 + 2(1− sh)pq + (1− s)q2

= 1− sq(2hp + q).

Using p = 1− q, we write the evolution equation for q′ in terms of q alone. After
some algebra that could be facilitated using a computer algebra software such as
Mathematica, we obtain

q′ =
u +

(
1− u− sh(1 + u)

)
q− s

(
1− h(1 + u)

)
q2

1− 2shq− s(1− 2h)q2 . (5.14)

To determine the equilibrium solutions of (5.14), we set q∗ ≡ q′ = q to obtain
a cubic equation for q∗. Because of the neglect of back mutation in our model,
one solution readily found is q∗ = 1, in which all the A alleles have mutated to
a. The q∗ = 1 solution may be factored out of the cubic equation resulting in a
quadratic equation, with two solutions. Rather than show the exact result here, we
determine equilibrium solutions under two approximations: (i) 0 < u � h, s, and;
(ii) 0 = h < u < s.

First, when 0 < u � h, s, we look for a solution of the form q∗ = au + O(u2),
with a constant, and Taylor series expand in u (assuming s, h = O(u0)). If such a
solution exists, then (5.14) will determine the unknown coefficient a. We have

au + O(u2) =
u + (1− sh)au + O(u2)

1− 2shau + O(u2)

= (1 + a− sha)u + O(u2);
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genotype AA Aa aa
freq: 0 < u� s, h 1 + O(u) 2u/sh + O(u2) u2/(sh)2 + O(u3)

freq: 0 = h < u < s 1 + O(
√

u) 2
√

u/s + O(u) u/s

Table 5.10: Equilibrium frequencies of the genotypes at the diploid mutation-
selection balance.

and equating powers of u, we find a = 1 + a− sha, or a = 1/sh. Therefore,

q∗ = u/sh + O(u2), for 0 < u� h, s.

Second, when 0 = h < u < s , we substitute h = 0 directly into (5.14),

q∗ =
u + (1− u)q∗ − sq2∗

1− sq2∗
,

which we then write as a cubic equation q∗,

q3
∗ − q2

∗ −
u
s

q∗ +
u
s
= 0.

By factoring this cubic equation, we find

(q∗ − 1)(q2
∗ − u/s) = 0;

and the polymorphic equilibrium solution is

q∗ =
√

u/s, for 0 = h < u < s.

Because q∗ < 1 only if s > u, this solution does not exist if s < u.
Table 5.10 summarizes our results for the equilibrium frequencies of the geno-

types at mutation-selection balance. The first row of frequencies, 0 < u � s, h,
corresponds to a dominant (h = 1) or partially-dominant (u � h < 1) mutation,
where the heterozygote is of reduced fitness and shows symptoms of the genetic
disease. The second row of frequencies, 0 = h < u < s, corresponds to a recessive
mutation, where the heterozygote is symptom-free. Notice that individuals carry-
ing a dominant mutation are twice as prevalent in the population as individuals
homozygous for a recessive mutation (with the same u and s).

A heterozygote carrying a dominant mutation most commonly arises either de
novo (by direct mutation of allele A) or by the mating of a heterozygote with a
wildtype. The latter is more common for s � 1, while the former must occur for
s = 1 (a heterozygote with an s = h = 1 mutation by definition does not reproduce).
One of the most common autosomal dominant genetic diseases is Huntington’s
disease, resulting in brain deterioration during middle age. Because individuals
with Huntington’s disease have children before disease symptoms appear, s is small
and the disease is usually passed to offspring by the mating of a (heterozygote) with
a wildtype homozygote. For a recessive mutation, a mutant homozygote usually
occurs by the mating of two heterozygotes. If both parents carry a single recessive
disease allele, then their child has a 1/4 chance of getting the disease.

5.2.4 Heterosis
Heterosis, also called overdominance or heterozygote advantage, occurs when the het-
erozygote has higher fitness than either homozygote. The best-known examples
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genotype AA Aa aa
freq. of zygote p2 2pq q2

relative fitness 1− s 1 1− t
freq after selection (1− s)p2/w 2pq/w (1− t)q2/w
normalization w = (1− s)p2 + 2pq + (1− t)q2

Table 5.11: A diploid genetic model of heterosis assuming random mating.

are sickle-cell anemia and thalassemia, diseases that both affect hemoglobin, the
oxygen-carrier protein of red blood cells. The sickle-cell mutations are most com-
mon in people of West African descent, while the thalassemia mutations are most
common in people from the Mediterranean and Asia. In Hong Kong, the television
stations occasionally play public service announcements concerning thalassemia.
The heterozygote carrier of the sickle-cell or thalassemia gene is healthy and resis-
tant to malaria; the wildtype homozygote is healthy, but susceptible to malaria; the
mutant homozygote is sick with anemia. In class, we will watch the short video, A
Mutation Story, about the sickle cell gene.

Table 5.11 presents our model of heterosis. Both homozygotes are of lower fit-
ness than the heterozygote, whose relative fitness we arbitrarily set to unity. Writing
the equation for p′, we have

p′ =
(1− s)p2 + pq
1− sp2 − tq2

=
p− sp2

1− t + 2tp− (s + t)p2 .

At equilibrium, p∗ ≡ p′ = p, and we obtain a cubic equation for p∗:

(s + t)p3
∗ − (s + 2t)p2

∗ + tp∗ = 0. (5.15)

Evidently, p∗ = 0 and p∗ = 1 are fixed points, and (5.15) can be factored as

p(1− p) (t− (s + t)p) = 0.

The polymorphic solution is therefore

p∗ =
t

s + t
, q∗ =

s
s + t

,

valid when s, t > 0. Since the value of q∗ can be significant, recessive mutations that
cause disease, yet are highly prevalent in a population, are suspected to provide
some benefit to the heterozygote. However, only a few genes are unequivocally
known to exhibit heterosis.

5.3 Frequency-dependent selection

A polymorphism may also result from frequency-dependent selection. A well-
known model of frequency-dependent selection is the Hawk-Dove game. Most
commonly, frequency-dependent selection is studied using game theory, and fol-
lowing John Maynard Smith, one looks for an evolutionarily stable strategy (ESS).

We consider two phenotypes: Hawk and Dove, with no mating between dif-
ferent phenotypes (for example, different phenotypes may correspond to different
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player \ opponent H D
H EHH = −2 EHD = 2
D EDH = 0 EDD = 1

Table 5.12: General payoff matrix for the Hawk-Dove game, and the usually as-
sumed values. The payoffs are payed to the player (first column) when playing
against the opponent (first row).

species, such as hawks and doves). We describe the Hawk-Dove game as follows: (i)
when Hawk meets Dove, Hawk gets the resource and Dove retreats before injury;
(ii) when two Hawks meet, they engage in an escalating fight, seriously risking
injury, and; (iii) when two Doves meet, they share the resource.

The Hawk-Dove game is modeled by a payoff matrix, as shown in Table 5.12.
The player in the first column receives the payoff when playing the opponent in the
first row. For instance, Hawk playing Dove gets the payoff EHD. The numerical
values are commonly chosen such that EHH < EDH < EDD < EHD, that is, Hawk
playing Dove does better than Dove playing Dove does better than Dove playing
Hawk does better than Hawk playing Hawk.

Frequency-dependent selection occurs because the expected payoff to a Hawk
or a Dove depends on the frequency of Hawks and Doves in the population. For
example, a Hawk in a population of Doves does well, but a Hawk in a population
of Hawks does poorly.

A population of all Doves is unstable to invasion by Hawks (because Hawk
playing against Dove does better than Dove playing against Dove), and similarly
a population of all Hawks is unstable to invasion by Doves. These two possible
equilibria are therefore unstable, and the stable equilibrium consists of a mixed
population of Hawks and Doves. In game theory, this mixed equilibrium is called a
mixed Nash equilibrium, and is determined by assuming that the expected payoff
to a Hawk in a mixed population of Hawks and Doves is the same as the expected
payoff to a Dove.

With p the frequency of Hawks and q the frequency of Doves, the expected
payoff to a Hawk is pEHH + qEHD, and the expected payoff to a Dove is pEDH +
qEDD, so that the mixed Nash equilibrium satisfies

pEHH + qEHD = pEDH + qEDD.

Substituting in q = 1− p and solving for p, we obtain

p =
EHD − EDD

(EHD − EDD) + (EDH − EHH)
,

and with the numerical values in Table 5.12,

p∗ =
2− 1

(2− 1) + (0 + 2)
= 1/3.

Thus the stable polymorphic population maintained by frequency-dependent selec-
tion consists of 1/3 Hawks and 2/3 Doves.
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5.4 Recombination and the approach to linkage equi-
librium

When considering a polymorphism at a single genetic locus, we assumed two dis-
tinct alleles, A and a. The diploid then occurs as one of three types: AA, Aa and
aa. We now consider a polymorphism at two genetic loci, each with two distinct
alleles. If the alleles at the first genetic loci are A and a, and those at the second
B and b, then four distinct haploid gametes are possible, namely AB, Ab, aB and
ab. Ten distinct diplotypes are possible, obtained by forming pairs of all possible
haplotypes. We can write these ten diplotypes as AB/AB, AB/Ab, AB/aB, AB/ab,
Ab/Ab, Ab/aB, Ab/ab, aB/aB, aB/ab, and ab/ab, where the numerator represents
the haplotype from one parent, the denominator represents the haplotype from the
other parent. We do not distinguish here which haplotype came from which parent.

To proceed further, we define the allelic and gametic frequencies for our two loci
problem in Table 5.13. If the probability that a gamete contains allele A or a does
not depend on whether the gamete contains allele B or b, then the two loci are said
to be independent. Under the assumption of independence, the gametic frequencies
are the products of the allelic frequencies, i.e., pAB = pA pB, pAb = pA pb, etc.

Often, the two loci are not independent. This can be due to epistatic selection, or
epistasis. As an example, suppose that two loci in humans influence height, and that
the most fit genotype is the one resulting in an average height. Selection that favors
the average population value of a trait is called normalizing or stabilizing. Suppose
that A and B are hypothetical tall alleles, a and b are short alleles, and a person
with two tall and two short alleles obtains average height. Then selection may
favor the specific genotypes AB/ab, Ab/Ab, Ab/aB, and aB/aB. Selection may
act against both the genotypes yielding above average heights, AB/AB, AB/Ab,
and AB/aB, and those yielding below average heights, Ab/ab, aB/ab and ab/ab.
Epistatic selection occurs because the fitness of the A, a loci depends on which
alleles are present at the B, b loci. Here, A has higher fitness when paired with b
than when paired with B.

The two loci may also not be independent because of a finite population size
(i.e., stochastic effects). For instance, suppose a mutation a → A occurs only once
in a finite population (in an infinite population, any possible mutation occurs an
infinite number of times), and that A is strongly favored by natural selection. The
frequency of A may then increase. If a nearby polymorphic locus on the same
chromosome as A happens to be B (say, with a polymorphism b in the population),
then AB gametes may substantially increase in frequency, with Ab absent. We say
that the allele B hitchhikes with the favored allele A.

When the two loci are not independent, we say that the loci are in gametic phase
disequilibrium, or more commonly linkage disequilibrium, sometimes abbreviated as
LD. When the loci are independent, we say they are in linkage equilibrium. Here,
we will model how two loci, initially in linkage disequilibrium, approach linkage
equilibrium through the process of recombination.

To begin, we need a rudimentary understanding of meiosis. During meiosis, a

allele or gamete genotype A a B b AB Ab aB ab
frequency pA pa pB pb pAB pAb paB pab

Table 5.13: Definitions of allelic and gametic frequencies for two genetic loci each
with two alleles.
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Figure 5.2: A schematic of crossing-over and recombination during meiosis (figure
from Access Excellence @ the National Health Museum)

diploid cell’s DNA, arranged in very long molecules called chromosomes, is repli-
cated once and separated twice, producing four haploid cells, each containing half
of the original cell’s chromosomes. Sexual reproduction results in syngamy, the
fusing of a haploid egg and sperm cell to form a diploid zygote cell.

Fig. 5.2 presents a schematic of meiosis and the process of crossing-over resulting
in recombination. In a diploid, each chromosome has a corresponding sister chro-
mosome, one chromosome originating from the egg, one from the sperm. These
sibling chromosomes have the same genes, but possibly different alleles. In Fig. 5.2,
we schematically show the alleles a, b, c on the light chromosome, and the alleles
A, B, C on its sister’s dark chromosome. In the first step of meiosis, each chro-
mosome replicates itself exactly. In the second step, sister chromosomes exchange
genetic material by the process of crossing-over. All four chromosomes then sepa-
rate into haploid cells. Notice from the schematic that the process of crossing-over
can result in genetic recombination. Suppose that the schematic of Fig. 5.2 repre-
sents the production of sperm by a male. If the chromosome from the male’s father
contains the alleles ABC and that from the male’s mother abc, recombination can
result in the sperm containing a chromosome with alleles ABc (the third gamete in
Fig. 5.2). We say this chromosome is a recombinant; it contains alleles from both its
paternal grandfather and paternal grandmother. It is likely that the precise com-
bination of alleles on this recombinant chromosome has never existed before in a
single person. Recombination is the reason why everybody, with the exception of
identical twins, is genetically unique.

Genes that occur on the same chromosome are said to be linked. The closer the
genes are to each other on the chromosome, the tighter the linkage, and the less
likely recombination will separate them. Tightly linked genes are likely to be inher-
ited from the same grandparent. Genes on different chromosomes are by definition
unlinked; independent assortment of chromosomes results in a 50% chance of a
gamete receiving either grandparents’ genes.
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To define and model the evolution of linkage disequilibrium, we first obtain
allele frequencies from gametic frequencies by

pA = pAB + pAb, pa = paB + pab,
pB = pAB + paB, pb = pAb + pab. (5.16)

Since the frequencies sum to unity,

pA + pa = 1, pB + pb = 1, pAB + pAb + paB + pab = 1. (5.17)

There are three independent gametic frequencies and only two independent allelic
frequencies, so in general it is not possible to obtain the gametic frequencies from
the allelic frequencies without assuming an additional constraint such as linkage
equilibrium. We can, however, introduce an additional variable D, called the co-
efficient of linkage disequilibrium, and define D to be the difference between the
gametic frequency pAB and what this gametic frequency would be if the loci were
in linkage equilibrium:

pAB = pA pB + D. (5.18a)

Using pAB + pAb = pA to eliminate pAB in (5.18a), we obtain

pAb = pA pb − D. (5.18b)

Likewise, using pAB + paB = pB,

paB = pa pB − D; (5.18c)

and using paB + pab = pa,
pab = pa pb + D. (5.18d)

With our definition, positive linkage disequilibrium (D > 0) implies excessive AB
and ab gametes and deficient Ab and aB gametes; negative linkage disequilibrium
(D < 0) implies the opposite. D attains its maximum value of 1/4 when pAB =
pab = 1/2, and attains its minimum value of −1/4 when pAb = paB = 1/2. An
equality obtainable from (5.18) that we will later find useful is

pAB pab − pAb paB = (pA pB + D)(pa pb + D)− (pA pb − D)(pa pB − D)

= D(pA pB + pa pb + pA pb + pa pB)

= D. (5.19)

Without selection and mutation, D evolves only because of recombination. With
primes representing the values in the next generation, and using p′A = pA and
p′B = pB because sexual reproduction by itself does not change allele frequencies,

D′ = p′AB − p′A p′B
= p′AB − pA pB

= p′AB − (pAB − D)

= D +
(

p′AB − pAB
)

,

where we have used (5.18a) to obtain the third equality. The change in D is therefore
equal to the change in frequency of the AB gametes,

D′ − D = p′AB − pAB. (5.20)
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gamete freq / diploid freq
diploid dip freq AB Ab aB ab
AB/AB p2

AB 1 0 0 0
AB/Ab 2pAB pAb 1/2 1/2 0 0
AB/aB 2pAB paB 1/2 0 1/2 0
AB/ab 2pAB pab (1− r)/2 r/2 r/2 (1− r)/2
Ab/Ab p2

Ab 0 1 0 0
Ab/aB 2pAb paB r/2 (1− r)/2 (1− r)/2 r/2
Ab/ab 2pAb pab 0 1/2 0 1/2
aB/aB p2

aB 0 0 1 0
aB/ab 2paB pab 0 0 1/2 1/2
ab/ab p2

ab 0 0 0 1

Table 5.14: Computation of gamete frequencies.

To understand why gametic frequencies change across generations, we should
first recognize when they do not change. Without genetic recombination, chromo-
somes maintain their exact identity across generations. Chromosome frequencies
without recombination are therefore constant, and for genetic loci on the same
chromosome with alleles A,a and B,b, say, p′AB = pAB. In an infinite population
without selection or mutation, gametic frequencies change only for genetic loci in
linkage disequilibrium on different chromosomes, or for genetic loci in linkage dis-
equilibrium on the same chromosome subjected to genetic recombination.

We will compute the frequency p′AB of AB gametes in the next generation, given
the frequency pAB of AB gametes in the present generation, using two different
methods. The first method uses a mating table. The second method makes a direct
probability argument.

The mating table is shown in Table 5.14. The first column is the parent diplotype
before meiosis. The second column is the diplotype frequency assuming random
mating. The next four columns are the haploid genotype frequencies (normalized
by the corresponding diploid frequencies to simplify the table presentation). Here,
we define r to be the frequency at which the gamete arises from a combination
of grandmother and grandfather genes. If the A,a and B,b loci occur on the same
chromosome, then r is the recombination frequency due to crossing-over. If the
A,a and B,b loci occur on different chromosomes, then because of the independent
assortment of chromosomes there is an equal probability that the gamete contains
all grandfather or grandmother genes, or contains a combination of grandmother
and grandfather genes, so that r = 1/2. Notice that crossing-over or independent
assortment is of importance for those pairs of genes for which the grandfather’s
and grandmother’s contribution to the diploid genotype share no common alleles
(i.e., AB/ab and Ab/aB genotypes). The frequency p′AB in the next generation is
given by the sum of the AB column (after multiplication by the diploid frequencies).
Therefore,

p′AB = p2
AB + pAB pAb + pAB paB + (1− r)pAB pab + rpAb paB

= pAB(pAB + pAb + paB + pab) + r(pAb paB − pAB pab)

= pAB − rD, (5.21)

where the final equality makes use of (5.17) and (5.19).
The second method for computing p′AB is more direct. An AB haplotype can

arise from a diploid of general type AB/XX without recombination, or a diploid of
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type AX/XB with recombination. Therefore,

p′AB = (1− r)pAB + rpA pB,

where the first term is from non-recombinants and the second term from recombi-
nants. With pA pB = pAB − D, we have

p′AB = (1− r)pAB + r(pAB − D)

= pAB − rD,

the same result as (5.21).
Using (5.20) and (5.21), we derive

D′ = (1− r)D,

with the solution
Dn = D0(1− r)n.

Recombination decreases linkage disequilibrium in each generation by a factor of
(1− r). Tightly linked genes on the same chromosome have small values of r; un-
linked genes on different chromosomes have r = 1/2. For unlinked genes, linkage
disequilibrium decreases by a factor of two in each generation. We conclude that
very strong selection is required to maintain linkage disequilibrium for genes on
different chromosomes, while weak selection can maintain linkage disequilibrium
for tightly linked genes.

5.5 Random genetic drift

Up to now, our simplified genetic models have all assumed an infinite population,
neglecting stochastic effects. Here, we consider a finite population: the resulting
stochastic effects on the allelic frequencies is called random genetic drift. The sim-
plest genetic model incorporating random genetic drift assumes a fixed-sized pop-
ulation of N individuals, and models the evolution of a diallelic haploid genetic
locus.

There are two widely used genetic models for finite populations: the Wright-
Fisher model and the Moran model. The Wright-Fisher model is most similar to our
infinite-population discrete-generation model. In the Wright-Fisher model, N adult
individuals release a very large number of gametes into a gene pool, and the next
generation is formed from N random gametes independently chosen from the gene
pool. The Moran model takes a different approach. In the Moran model, a single
evolution step consists of one random individual in the population reproducing,
and another random individual dying, with the population always maintained at
the constant size N. Because two random events occur every generation in the
Moran model, and N random events occur every generation in the Wright-Fisher
model, a total of N/2 evolution steps in the Moran model is comparable, but not
exactly identical, to a single discrete generation in the Wright-Fisher model. It has
been shown, however, that the two models become identical in the limit of large N.
For our purposes, the Moran model is mathematically more tractable and we adopt
it here.

We develop our model analogously to the stochastic population growth model
derived in §3.1. We let n denote the number of A-alleles in the population, and
N − n the number of a-alleles. With n = 0, 1, 2, . . . , N a discrete random variable,
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the probability mass function pn(g) denotes the probability of having n A-alleles
at evolution step g. With n A-alleles in a population of size N, the probability of
an individual with A either reproducing or dying is given by sn = n/N; the cor-
responding probability for a is 1− sn. There are three ways to obtain a population
of n A-alleles at evolution step g + 1. First, there were n A-alleles at evolution step
g, and the individual reproducing carried the same allele as the individual dying.
Second, there were n− 1 A-alleles at evolution step g, and the individual reproduc-
ing has A and the individual dying has a. And third, there were n + 1 A-alleles
at evolution step g, and the individual reproducing has a and the individual dying
has A. Multiplying the probabilities and summing the three cases results in

pn(g + 1) =
(
s2

n + (1− sn)
2)pn(g) + sn−1(1− sn−1)pn−1(g)

+ sn+1(1− sn+1)pn+1(g). (5.22)

Note that this equation is valid for 0 < n < N, and that the equations at the
boundaries—representing the probabilities that one of the alleles is fixed—are

p0(g + 1) = p0(g) + s1(1− s1)p1(g), (5.23a)
pN(g + 1) = pN(g) + sN−1(1− sN−1)pN−1(g). (5.23b)

The boundaries are called absorbing and the probability of fixation of an allele
monotonically increases with each birth and death. Once the probability of fixation
of an allele is unity, there are no further changes in allele frequencies.

We illustrate the solution of (5.22)-(5.23) in Fig. 5.3 for a small population of size
N = 20, and where the number of A-alleles is precisely known in the founding
generation, with either (a) p10(0) = 1, or; (b) p13(0) = 1. We plot the probability
mass density of the number of A-alleles every N evolution steps, up to 7N steps,
corresponding to approximately fourteen discrete generations of evolution in the
Wright-Fisher model. Notice how the probability distribution diffuses away from
its initial value, and how the probabilities eventually concentrate on the boundaries,
with both p0 and p20 monotonically increasing. In fact, after a large number of
generations, p0 approaches the initial frequency of the a-allele and p20 approaches
the initial frequency of the A-allele (not shown in figures).

To better understand this numerical solution, we consider the limit of large (but
not infinite) populations by expanding (5.22) in powers of 1/N. We first rewrite
(5.22) as

pn(g + 1)− pn(g) = sn+1(1− sn+1)pn+1(g)− 2sn(1− sn)pn(g)
+ sn−1(1− sn−1)pn−1(g). (5.24)

We then introduce the continuous random variable x = n/N, with 0 ≤ x ≤ 1, and
the continuous time t = g/(N/2). The variable x corresponds to the frequency
of the A-allele in the population, and a unit of time corresponds to approximately
a single discrete generation in the Wright-Fisher model. The probability density
function is defined by

P(x, t) = Npn(g), with x = n/N, t = 2g/N.

Furthermore, we define
S(x) = sn,
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Figure 5.3: pn versus n with N = 20. Evolution steps plotted correspond to g =
0, N, 2N, . . . , 7N. (a) Initial number of A individuals is n = 10. (b) Initial number of
A individuals is n = 13.
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and note that S(x) = x. Similarly, we have sn+1 = S(x + ∆x) and sn−1 = S(x− ∆x),
where ∆x = 1/N. Then, with ∆t = 2/N, (5.24) transforms into

P(x, t + ∆t)− P(x, t) = S(x + ∆x)
(
1− S(x + ∆x)

)
P(x + ∆x, t)

− 2S(x)
(
1− S(x)

)
P(x, t) + S(x− ∆x)

(
1− S(x− ∆x)

)
P(x− ∆x, t). (5.25)

To simplify further, we use the well-known central-difference approximation to the
second-derivative of a function f (x),

f ′′(x) =
f (x + ∆x)− 2 f (x) + f (x− ∆x)

∆x2 + O(∆x2),

and recognize the right-hand side of (5.25) to be the numerator of a second-derivative.
With ∆x = ∆t/2 = 1/N → 0, and S(x) = x, we derive to leading-order in 1/N the
partial differential equation

∂P(x, t)
∂t

=
1
2

∂2

∂x2

(
V(x)P(x, t)

)
, (5.26)

with

V(x) =
x(1− x)

N
. (5.27)

To interpret the meaning of the function V(x) we will use the following result
from probability theory. For n independent trials, each with probability of success p
and probability of failure 1− p, the number of successes, denoted by X, is a binomial
random variable with parameters (n, p). Well-known results are E[X] = np and
Var[X] = np(1− p), where E[. . . ] is the expected value, and Var[. . . ] is the variance.

Now, the number of A-alleles chosen when forming the next Wright-Fisher gen-
eration is a binomial random variable n′ with parameters (N, n/N). Therefore,
E[n′] = n and Var[n′] = n(1 − n/N). With x′ = n′/N and x = n/N, we have
E[x′] = x , and Var[x′] = x(1− x)/N. The function V(x) can therefore be inter-
preted as the variance of x over a single Wright-Fisher generation.

Although (5.26) and (5.27) depend explicitly on the population size N, the pop-
ulation size can be eliminated by a simple change of variables. If we let

τ = t/N, (5.28)

then the differential equation (5.26) transforms to

∂P(x, τ)

∂τ
=

1
2

∂2

∂x2

(
x(1− x)P(x, τ)

)
, (5.29)

independent of N. The change-of-variables given by (5.28) simply states that a
doubling of the population size will lengthen the time scale of evolution by a cor-
responding factor of two. Remember that here we are already working under the
assumption that population sizes are large.

Equation (5.29) is a diffusion-like equation for the probability distribution func-
tion P(x, τ). A diffusion approximation for studying genetic drift was first intro-
duced into population genetics by its founders Fisher and Wright, and was later
extensively developed in the 1950’s by the Japanese biologist Motoo Kimura. Here,
our analysis of this equation relies on a more recent paper by McKane and Wax-
man (2007), who showed how to construct the analytical solution of (5.29) at the
boundaries of x.
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For 0 < x < 1, it is suggestive from the numerical solutions shown in Fig. 5.3
that the probability distribution might asymptotically become independent of x.
Accordingly, we look for an asymptotic solution to (5.29) at the interior values of x
satisfying P(x, τ) = P(τ). Equation (5.29) becomes

dP(τ)
dτ

=
1
2
(
x(1− x)

)′′P(τ)
= −P(τ),

with asymptotic solution
P(τ) = ce−τ , (5.30)

and we observe that the total probability over the interior values of x decays expo-
nentially.

To understand how the solution behaves at the boundaries of x, we require
boundary conditions for P(x, τ). In fact, because P(x, τ) is singular at the bound-
aries of x, appropriate boundary conditions can not be obtained directly from the
difference equations given by (5.23). Rather, boundary conditions are most easily
obtained by first recasting (5.29) into the form of a continuity equation.

We let j(x, τ) denote the so-called probability current. In a small region of
size ∆x lying in the interval (x, x + ∆x), the time-rate of change of the probabil-
ity P(x, τ)∆x is due to the flow of probability into and out of this region. With an
appropriate definition of the probability current, we have in general

∂

∂τ

(
P(x, τ)∆x

)
= j(x, τ)− j(x + ∆x, τ),

or as ∆x → 0,
∂P(x, τ)

∂τ
+

∂j(x, τ)

∂x
= 0, (5.31)

which is the usual form of a continuity equation. Identification of (5.31) with (5.29)
shows that the probability current of our problem is given by

j(x, τ) = −1
2

∂

∂x
(

x(1− x)P(x, τ)
)
. (5.32)

Now, since the total probability is unity; that is,∫ 1

0
P(x, τ)dx = 1, (5.33)

probability can not flow in or out of the boundaries of x, and we must therefore
have

j(0, τ) = 0, j(1, τ) = 0, (5.34)

which are the appropriate boundary conditions for (5.29).
We can look for stationary solutions of (5.29). Use of the continuity equation

(5.31) together with the boundary conditions (5.34) shows that the stationary solu-
tion has zero probability current; that is, j(x) = 0. Integration of j(x) using (5.32)
results in

x(1− x)P(x) = c1,

where c1 is an integration constant. The readily apparent solution is P(x) =
c1/[x(1− x)], but there are also two less obvious solutions. Probability distribution
functions are allowed to contain singular solutions corresponding to Dirac delta
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functions, and here we consider the possibility of there being Dirac delta functions
at the boundaries. By noticing that both xδ(x) = 0 and (1− x)δ(1− x) = 0, we can
see that the general solution for P(x) can be written as

P(x) =
c1

x(1− x)
+ c2δ(x) + c3δ(1− x).

Requiring P(x) to satisfy (5.33) results in c1 = 0 and c2 + c3 = 1. To determine the
remaining free constant, we can compute the mean frequency of the A-allele in the
population. From the continuity equation (5.31), we have

∂

∂τ

∫ 1

0
xP(x, τ)dx = −

∫ 1

0
x

∂j(x, τ)

∂x
dx

=
∫ 1

0
j(x, τ)dx

= 0,

where the first integral on the right-hand-side was done by parts using the bound-
ary conditions given by (5.34), and the second integral was done using (5.32) and
the vanishing of x(1− x)P(x) on the boundaries. The mean frequency of the A-
allele is therefore a constant—as one would expect for a nondirectional random
genetic drift—and we can assume that its initial value is p. We therefore obtain for
our stationary solution

P(x) = (1− p)δ(x) + pδ(1− x).

The eventual probability of fixing the A-allele is therefore simply equal to its
initial frequency. For example, suppose that within a population of N individuals
homogeneous for a, a single neutral mutation occurs so that one individual now
carries the A-allele. What is the probability that the A-allele eventually becomes
fixed? Our result would yield the probability 1/N, which is the initial frequency
of the A-allele. Intuitively, after a sufficient number of generations has passed, all
living individuals should be descendant from a single ancestral individual living at
the time the single mutation occurred. The probability that that single individual
carried the A-allele is just 1/N.

We further note that Kimura was the first to find an analytical solution of the
diffusion equation (5.29). A solution method using Fourier transforms can be found
in the appendix of McKane and Waxman (2007). In addition to making use of Dirac
delta functions, these authors require Heaviside step functions, Bessel functions,
spherical Bessel functions, hypergeometric functions, Legendre polynomials, and
Gegenbauer polynomials. The resulting solution is of the form

P(x, τ) = Π0(τ)δ(x) + Π1(τ)δ(1− x) + f (x, τ). (5.35)

If the number of A-alleles are known at the initial instant, and the frequency is p,
then

P(x, 0) = δ(x− p),

and Π0(0) = Π1(0) = 0; f (x, 0) = δ(x − p). As τ → ∞, we have f (x, τ) → 0;
Π0(τ)→ 1− p and Π1(τ)→ p.

We can easily demonstrate at least one exact solution of the form (5.35). For an
initial uniform probability distribution given by

P(x, 0) = 1,
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the probability distribution at the interior points remains uniform and is given by
(5.30) with c = 1. If we assume the form of solution given by (5.35) together with
the requirement of unit probability given by (5.33), we can obtain the exact result

P(x, τ) =
1
2
(
1− e−τ

) (
δ(x) + δ(1− x)

)
+ e−τ .
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Chapter 6

Biochemical Reactions
Biochemistry is the study of the chemistry of life. It can be considered a branch

of molecular biology, perhaps more focused on specific molecules and their reac-
tions, or a branch of chemistry focused on the complex chemical reactions occurring
in living organisms. One can guess that the first application of biochemistry hap-
pened about 5000 years ago when bread was made using yeast.

Modern biochemistry, however, had a relatively slow start among the sciences,
as did modern biology. Isaac Newton’s publication of Principia Mathematica in 1687
preceded Darwin’s Origin of Species in 1859 by almost 200 years. I find this amazing
because the ideas of Darwin are in many ways simpler and easier to understand
than the mathematical theory of Newton. Most of the delay must be attributed to
a fundamental conflict between science and religion. The physical sciences experi-
enced this conflict early—witness the famous prosecution of Galileo by the Catholic
Church in 1633, during which Galileo was forced to recant his heliocentric view—
but the conflict of religion with evolutionary biology continues even to this day.
Advances in biochemistry were initially delayed because it was long believed that
life was not subject to the laws of science the way non-life was, and that only living
things could produce the molecules of life. Certainly, this was more a religious con-
viction than a scientific one. Then Friedrich Wöhler in 1828 published his landmark
paper on the synthesis of urea (a waste product neutralizing toxic ammonia before
excretion in the urine), demonstrating for the first time that organic compounds can
be created artificially.

Here, we present mathematical models for some important biochemical reac-
tions. We begin by introducing a useful model for a chemical reaction: the law of
mass action. We then model what may be the most important biochemical reactions,
namely those catalyzed by enzymes. Using the mathematical model of enzyme ki-
netics, we consider three fundamental enzymatic properties: competitive inhibition,
allosteric inhibition, and cooperativity.

6.1 The law of mass action

The law of mass action describes the rate at which chemicals interact in reactions.
It is assumed that different chemical molecules come into contact by collision be-
fore reacting, and that the collision rate is directly proportional to the number of
molecules of each reacting species. Suppose that two chemicals A and B react to
form a product chemical C, written as

A + B k→ C,

with k the rate constant of the reaction. For simplicity, we will use the same symbol
C, say, to refer to both the chemical C and its concentration. The law of mass action
says that dC/dt is proportional to the product of the concentrations A and B, with
proportionality constant k. That is,

dC
dt

= kAB. (6.1)
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Similarly, the law of mass action enables us to write equations for the time-derivatives
of the reactant concentrations A and B:

dA
dt

= −kAB,
dB
dt

= −kAB. (6.2)

Notice that when using the law of mass action to find the rate-of-change of a con-
centration, the chemical that the arrow points towards is increasing in concentration
(positive sign), the chemical that the arrow points away from is decreasing in con-
centration (negative sign). The product of concentrations on the right-hand-side is
always that of the reactants from which the arrow points away, multiplied by the
rate constant that is on top of the arrow.

Equation (6.1) can be solved analytically using conservation laws. Each reactant,
original and converted to product, is conserved since one molecule of each reactant
gets converted into one molecule of product. Therefore,

d
dt
(A + C) = 0 =⇒ A + C = A0,

d
dt
(B + C) = 0 =⇒ B + C = B0,

where A0 and B0 are the initial concentrations of the reactants, and no product is
present initially. Using the conservation laws, (6.1) becomes

dC
dt

= k(A0 − C)(B0 − C), with C(0) = 0,

which may be integrated by separating variables. After some algebra, the solution
is determined to be

C(t) = A0B0
e(B0−A0)kt − 1

B0e(B0−A0)kt − A0
,

which is a complicated expression with the simple limits

lim
t→∞

C(t) =

{
A0 if A0 < B0,
B0 if B0 < A0.

(6.3)

The reaction stops after one of the reactants is depleted; and the final concentration
of the product is equal to the initial concentration of the depleted reactant.

If we also include the reverse reaction,

A + B
-

� C,
k+

k−

then the time-derivative of the product is given by

dC
dt

= k+AB− k−C.

Notice that k+ and k− have different units. At equilibrium, Ċ = 0, and using the
conservation laws A + C = A0, B + C = B0, we obtain

(A0 − C)(B0 − C)− k−
k+

C = 0,
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from which we define the equilibrium constant Keq by

Keq = k−/k+,

which has units of concentration. Therefore, at equilibrium, the concentration of
the product is given by the solution of the quadratic equation

C2 − (A0 + B0 + Keq)C + A0B0 = 0,

with the extra condition that 0 < C < min(A0, B0). For instance, if A0 = B0 ≡ R0,
then at equilibrium,

C = R0 −
1
2

Keq

(√
1 + 4R0/Keq − 1

)
.

If Keq � R0, then A and B have a high affinity, and the reaction proceeds mainly to
C, with C → R0.

Below are two interesting reactions. In reaction (ii), A is assumed to be held at
a constant concentration.
(i)

A + X
-

� 2X

k+

k−

(ii)

A + X
k1→ 2X, X + Y

k2→ 2Y, Y
k3→ B

Can you write down the equations for Ẋ in reaction (i), and Ẋ and Ẏ in reaction (ii)?
When normalized properly, the equations from reaction (ii) reduce to the Lotka-
Volterra predator-prey equations introduced in §1.4. The chemical concentrations
X and Y, therefore, oscillate in time like predators and their prey.

6.2 Enzyme kinetics

Enzymes are catalysts, usually proteins, that help convert other molecules called
substrates into products, but are themselves unchanged by the reaction. Each en-
zyme has high specificity for at least one reaction, and it can accelerate this reaction
by millions of times. Without enzymes, most biochemical reactions are too slow
for life to be possible. Enzymes are so important to our lives that a single amino
acid mutation in one enzyme out of the more than 2000 enzymes in our bodies can
result in a severe or lethal genetic disease.

Enzymes do not follow the law of mass action directly: with S substrate, P
product, and E enzyme, the reaction

S + E k→ P + E,

is a poor model since the reaction velocity dP/dt is known to attain a finite limit
with increasing substrate concentration. Rather, Michaelis and Menten (1913) pro-
posed the following reaction scheme with an intermediate molecule:

S + E
-

�

k1

k−1

C - P + E,
k2
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Figure 6.1: A Michaelis-Menten reaction of two substrates converting to one prod-
uct. (Drawn by User:IMeowbot, released under the GNU Free Documentation Li-
cense.)

where C is a complex formed by the enzyme and the substrate. A cartoon of the
Michaelis-Menten reaction with an enzyme catalyzing a reaction between two sub-
strates is shown in Fig. 6.1. Commonly, substrate is continuously provided to the
reaction and product is continuously removed. The removal of product has been
modeled by neglecting the reverse reaction P + E → C. A continuous provision of
substrate allows us to assume that S is held at an approximately constant concen-
tration.

The differential equations for C and P can be obtained from the law of mass
action:

dC/dt = k1SE− (k−1 + k2)C,
dP/dt = k2C.

Biochemists usually want to determine the reaction velocity dP/dt in terms of the
substrate concentration S and the total enzyme concentration E0. We can eliminate
E in favor of E0 from the conservation law that the enzyme, free and bound, is
conserved; that is

d(E + C)
dt

= 0 =⇒ E + C = E0 =⇒ E = E0 − C;

and we can rewrite the equation for dC/dt eliminating E:

dC
dt

= k1S(E0 − C)− (k−1 + k2)C

= k1E0S− (k−1 + k2 + k1S)C. (6.4)

Because S is assumed to be held constant, the complex C is expected to be in equilib-
rium, with the rate of formation equal to the rate of dissociation. With this so-called
quasi-steady-state approximation, we may assume that Ċ = 0 in (6.4), and we have

C =
k1E0S

k−1 + k2 + k1S
.
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The reaction velocity is then given by

dP
dt

= k2C

=
k1k2E0S

k−1 + k2 + k1S

=
VmS

Km + S
, (6.5)

where two fundamental constants are defined:

Km = (k−1 + k2)/k1, Vm = k2E0. (6.6)

The Michaelis-Menten constant or the Michaelis constant Km has units of concentra-
tion, and the maximum reaction velocity Vm has units of concentration divided by
time. The interpretation of these constants is obtained by considering the following
limits:

as S→ ∞, C → E0 and dP/dt→ Vm,

if S = Km, C =
1
2

E0 and dP/dt =
1
2

Vm.

Therefore, Vm is the limiting reaction velocity obtained by saturating the reaction
with substrate so that every enzyme is bound; and Km is the concentration of S at
which only one-half of the enzymes are bound and the reaction proceeds at one-half
maximum velocity.

6.3 Competitive inhibition

Competitive inhibition occurs when inhibitor molecules compete with substrate
molecules for binding to the same enzyme’s active site. When an inhibitor is bound
to the enzyme, no product is produced so competitive inhibition will reduce the
velocity of the reaction. A cartoon of this process is shown in Fig. 6.2.

To model competitive inhibition, we introduce an additional reaction associated
with the inhibitor-enzyme binding:

S + E
-

�

k1

k−1

C1 - P + E,
k2

I + E
-

�

k3

k−3

C2.

With more complicated enzymatic reactions, the reaction schematic becomes diffi-
cult to interpret. Perhaps an easier way to visualize the reaction is from the follow-
ing redrawn schematic:
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Figure 6.2: Competitive inhibition. (Drawn by G. Andruk, released under the GNU
Free Documentation License.)

E C1 P + E

C2

-
� -

?

6

k1S

k−1

k2

k3 I k−3

Here, the substrate S and inhibitor I are combined with the relevant rate con-
stants, rather than treated separately. It is immediately obvious from this redrawn
schematic that inhibition is accomplished by sequestering enzyme in the form of C2
and preventing its participation in the catalysis of S to P.

Our goal is to determine the reaction velocity Ṗ in terms of the substrate and in-
hibitor concentrations, and the total concentration of the enzyme (free and bound).
The law of mass action applied to the two complexes and the product results in

dC1

dt
= k1SE− (k−1 + k2)C1,

dC2

dt
= k3 IE− k−3C2,

dP
dt

= k2C1.

The enzyme, free and bound, is conserved so that

d
dt
(E + C1 + C2) = 0 =⇒ E + C1 + C2 = E0 =⇒ E = E0 − C1 − C2.

Under the quasi-equilibrium approximation, Ċ1 = Ċ2 = 0, so that

k1S(E0 − C1 − C2)− (k−1 + k2)C1 = 0,
k3 I(E0 − C1 − C2)− k−3C2 = 0,
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which results in the following system of two linear equations and two unknowns
(C1 and C2):

(k−1 + k2 + k1S)C1 + k1SC2 = k1E0S, (6.7)
k3 IC1 + (k−3 + k3 I)C2 = k3E0 I. (6.8)

We define the Michaelis-Menten constant Km as before, and an additional constant
Ki associated with the inhibitor reaction:

Km =
k−1 + k2

k1
, Ki =

k−3

k3
.

Dividing (6.7) by k1 and (6.8) by k3 yields

(Km + S)C1 + SC2 = E0S, (6.9)
IC1 + (Ki + I)C2 = E0 I. (6.10)

Since our goal is to obtain the velocity of the reaction, which requires determining
C1, we multiply (6.9) by (Ki + I) and (6.10) by S, and subtract:

(Km + S)(Ki + I)C1 + S(Ki + I)C2 = E0(Ki + I)S
− SIC1 + S(Ki + I)C2 = E0SI

(
(Km + S)(Ki + I)− SI

)
C1 = KiE0S;

or after cancellation and rearrangement

C1 =
KiE0S

KmKi + KiS + Km I

=
E0S

Km(1 + I/Ki) + S
.

Therefore, the reaction velocity is given by

dP
dt

=
(k2E0)S

Km(1 + I/Ki) + S

=
VmS

K′m + S
, (6.11)

where
Vm = k2E0, K′m = Km(1 + I/Ki). (6.12)

By comparing the inhibited reaction velocity (6.11) and (6.12) with the uninhibited
reaction velocity (6.5) and (6.6), we observe that inhibition increases the Michaelis-
Menten constant of the reaction, but leaves unchanged the maximum reaction veloc-
ity. Since the Michaelis-Menten constant is defined as the substrate concentration
required to attain one-half of the maximum reaction velocity, addition of an in-
hibitor with a fixed substrate concentration acts to decrease the reaction velocity.
However, a reaction saturated with substrate still attains the uninhibited maximum
reaction velocity.
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Figure 6.3: Allosteric inhibition. (Unknown artist, released under the GNU Free
Documentation License.)

6.4 Allosteric inhibition

The term allostery comes from the Greek word allos, meaning different, and stereos,
meaning solid, and refers to an enzyme with a regulatory binding site separate from
its active binding site. In our model of allosteric inhibition, an inhibitor molecule is
assumed to bind to its own regulatory site on the enzyme, resulting in either a
lowered binding affinity of the substrate to the enzyme, or a lowered conversion
rate of substrate to product. A cartoon of allosteric inhibition due to a lowered
binding affinity is shown in Fig. 6.3.

In general, we need to define three complexes: C1 is the complex formed from
substrate and enzyme; C2 from inhibitor and enzyme, and; C3 from substrate, in-
hibitor, and enzyme. We write the chemical reactions as follows:

E C1 P + E

P + C2C3C2

-
� -

?

6

-
�

?

6

-

k1S

k−1

k2

k′3 I k′−3

k′1S

k′−1

k3 I k−3

k′2

The general model for allosteric inhibition with ten independent rate constants
appears too complicated to analyze. We will simplify this general model to one with
fewer rate constants that still exhibits the unique features of allosteric inhibition.
One possible but uninteresting simplification assumes that if I binds to E, then S
does not; however, this reduces allosteric inhibition to competitive inhibition and
loses the essence of allostery. Instead, we simplify by allowing both I and S to
simultaneously bind to E, but we assume that the binding of I prevents substrate
conversion to product. With this simplification, k′2 = 0. To further reduce the
number of independent rate constants, we assume that the binding of S to E is
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unaffected by the bound presence of I, and the binding of I to E is unaffected
by the bound presence of S. These approximations imply that all the primed rate
constants equal the corresponding unprimed rate constants, e.g., k′1 = k1, etc. With
these simplifications, the schematic of the chemical reaction simplifies to

E C1 P + E

C3C2

-
�

-

?

6

-
�

?

6

k1S

k−1

k2

k3 I k−3

k1S

k−1

k3 I k−3

and now there are only five independent rate constants. We write the equations for
the complexes using the law of mass action:

dC1

dt
= k1SE + k−3C3 − (k−1 + k2 + k3 I)C1, (6.13)

dC2

dt
= k3 IE + k−1C3 − (k−3 + k1S)C2, (6.14)

dC3

dt
= k3 IC1 + k1SC2 − (k−1 + k−3)C3, (6.15)

while the reaction velocity is given by

dP
dt

= k2C1. (6.16)

Again, both free and bound enzyme is conserved, so that E = E0 − C1 − C2 − C3.
With the quasi-equilibrium approximation Ċ1 = Ċ2 = Ċ3 = 0, we obtain a system
of three equations and three unknowns: C1, C2 and C3. Despite our simplifica-
tions, the analytical solution for the reaction velocity remains messy (see Keener &
Sneyd, referenced at the chapter’s end) and not especially illuminating. We omit the
complete analytical result here and determine only the maximum reaction velocity.

The maximum reaction velocity V′m for the allosteric-inhibited reaction is defined
as the time-derivative of the product concentration when the reaction is saturated
with substrate; that is,

V′m = lim
S→∞

dP/dt

= k2 lim
S→∞

C1.

With substrate saturation, every enzyme will have its substrate binding site occu-
pied. Enzymes are either bound with only substrate in the complex C1, or bound
together with substrate and inhibitor in the complex C3. Accordingly, the schematic
of the chemical reaction with substrate saturation simplifies to
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C1 P + C1

C3

-

?

6

k2

k3 I k−3

The equations for C1 and C3 with substrate saturation are thus given by

dC1

dt
= k−3C3 − k3 IC1, (6.17)

dC3

dt
= k3 IC1 − k−3C3, (6.18)

and the quasi-equilibrium approximation yields the single independent equation

C3 = (k3/k−3)IC1

= (I/Ki)C1, (6.19)

with Ki = k−3/k3 as before. The equation expressing the conservation of enzyme
is given by E0 = C1 + C3. This conservation law, together with (6.19), permits us to
solve for C1:

C1 =
E0

1 + I/Ki
.

Therefore, the maximum reaction velocity for the allosteric-inhibited reaction is
given by

V′m =
k2E0

1 + I/Ki

=
Vm

1 + I/Ki
,

where Vm is the maximum reaction velocity of both the uninhibited and the compet-
itive inhibited reaction. The allosteric inhibitor is thus seen to reduce the maximum
velocity of the uninhibited reaction by the factor (1 + I/Ki), which may be large if
the concentration of allosteric inhibitor is substantial.

6.5 Cooperativity

Enzymes and other protein complexes may have multiple binding sites, and when
a substrate binds to one of these sites, the other sites may become more active.
A well-studied example is the binding of the oxygen molecule to the hemoglobin
protein. Hemoglobin can bind four molecules of O2, and when three molecules
are bound, the fourth molecule has an increased affinity for binding. We call this
cooperativity.

We will model cooperativity by assuming that an enzyme has two separated
but indistinguishable binding sites for a substrate S. For example, the enzyme may
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Figure 6.4: Cooperativity.

be a protein dimer, composed of two identical sub-proteins with identical binding
sites for S. A cartoon of this enzyme is shown in Fig. 6.4. Because the two binding
sites are indistinguishable, we need consider only two complexes: C1 and C2, with
enzyme bound to one or two substrate molecules, respectively. When the enzyme
exhibits cooperativity, the binding of the second substrate molecule has a greater
rate constant than the binding of the first. We therefore consider the following
reaction:

E C1 P + E

P + C1C2

-
� -

?

6

-

k1S

k−1

k2

k3S k−3

k4

where cooperativity supposes that k1 � k3. Application of the law of mass action
results in

dC1

dt
= k1SE + (k−3 + k4)C2 − (k−1 + k2 + k3S)C1,

dC2

dt
= k3SC1 − (k−3 + k4)C2.

Applying the quasi-equilibrium approximation Ċ1 = Ċ2 = 0 and the conservation
law E0 = E + C1 + C2 results in the following system of two equations and two
unknowns: (

k−1 + k2 + (k1 + k3)S
)
C1 − (k−3 + k4 − k1S)C2 = k1E0S, (6.20)

k3SC1 − (k−3 + k4)C2 = 0. (6.21)
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We divide (6.20) by k1 and (6.21) by k3 and define

K1 =
k−1 + k2

k1
, K2 =

k−3 + k4

k3
, ε = k1/k3

to obtain (
εK1 + (1 + ε)S

)
C1 − (K2 − εS)C2 = εE0S, (6.22)

SC1 − K2C2 = 0. (6.23)

We can subtract (6.23) from (6.22) and cancel ε to obtain

(K1 + S)C1 + SC2 = E0S. (6.24)

Equations (6.23) and (6.24) can be solved for C1 and C2:

C1 =
K2E0S

K1K2 + K2S + S2 , (6.25)

C2 =
E0S2

K1K2 + K2S + S2 , (6.26)

so that the reaction velocity is given by

dP
dt

= k2C1 + k4C2

=
(k2K2 + k4S) E0S
K1K2 + K2S + S2 . (6.27)

To illuminate this result, we consider two limiting cases: (i) no cooperativity,
where the active sites act independently so that each protein dimer, say, can be con-
sidered as two independent protein monomers; (ii) strong cooperativity, where the
binding of the second substrate has a much greater rate constant than the binding
of the first.

Independent active sites

The free enzyme E has two independent binding sites while C1 has only a single
binding site. Consulting the reaction schematic: k1 is the rate constant for the
binding of S to two independent binding sites; k−1 and k2 are the rate constants
for the dissociation and conversion of a single S from the enzyme; k3 is the rate
constant for the binding of S to a single free binding site, and; k−3 and k4 are the
rate constants for the dissociation and conversion of one of two independent S’s
from the enzyme. Accounting for these factors of two and assuming independence
of active sites, we have

k1 = 2k3, k−3 = 2k−1, k4 = 2k2.

We define the Michaelis-Menten constant Km that is representative of the protein
monomer with one binding site; that is,

Km =
k−1 + k2

k1/2
= 2K1

=
1
2

K2.
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Figure 6.5: The reaction velocity dP/dt as a function of the substrate S. Shown are
the solutions to the Hill equation with Vm = 1, Km = 1, and for n = 1, 2.

Therefore, for independent active sites, the reaction velocity becomes

dP
dt

=
(2k2Km + 2k2S) E0S

K2
m + 2KmS + S2

=
2k2E0S
Km + S

.

The reaction velocity for a dimer protein enzyme composed of independent identi-
cal monomers is simply double that of a monomer protein enzyme, an intuitively
obvious result.

Strong cooperativity

We now assume that after the first substrate binds to the enzyme, the second sub-
strate binds much more easily, so that k1 � k3. The number of enzymes bound
to a single substrate molecule should consequently be much less than the number
bound to two substrate molecules, resulting in C1 � C2. Dividing (6.25) by (6.26),
this inequality becomes

C1

C2
=

K2

S
� 1.

Dividing the numerator and denominator of (6.27) by S2, we have

dP
dt

=
(k2K2/S + k4) E0

(K1/S)(K2/S) + (K2/S) + 1
.

To take the limit of this expression as K2/S → 0, we set K2/S = 0 everywhere
except in the first term in the denominator, since K1/S is inversely proportional
to k1 and may go to infinity in this limit. Taking the limit and multiplying the
numerator and denominator by S2,

dP
dt

=
k4E0S2

K1K2 + S2 .
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Here, the maximum reaction velocity is Vm = k4E0, and the modified Michaelis-
Menten constant is Km =

√
K1K2, so that

dP
dt

=
VmS2

K2
m + S2 .

In biochemistry, this reaction velocity is generalized to

dP
dt

=
VmSn

Kn
m + Sn ,

known as the Hill equation, and by varying n is used to fit experimental data.
In Fig. 6.5, we have plotted the reaction velocity dP/dt versus S as obtained from

the Hill equation with n = 1 or 2. In drawing the figure, we have taken both Vm
and Km equal to unity. It is evident that with increasing n the reaction velocity more
rapidly saturates to its maximum value.
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Chapter 7

Sequence Alignment
The software program BLAST (Basic Local Alignment Search Tool) uses se-

quence alignment algorithms to compare a query sequence against a database to
identify other known sequences similar to the query sequence. Often, the annota-
tions attached to the already known sequences yield important biological informa-
tion about the query sequence. Almost all biologists use BLAST, making sequence
alignment one of the most important algorithms of bioinformatics.

The sequence under study can be composed of nucleotides (from the nucleic
acids DNA or RNA) or amino acids (from proteins). Nucleic acids chain together
four different nucleotides: A,C,T,G for DNA and A,C,U,G for RNA; proteins chain
together twenty different amino acids. The sequence of a DNA molecule or of a
protein is the linear order of nucleotides or amino acids in a specified direction,
defined by the chemistry of the molecule. There is no need for us to know the exact
details of the chemistry; it is sufficient to know that a protein has distinguishable
ends called the N-terminus and the C-terminus, and that the usual convention is to
read the amino acid sequence from the N-terminus to the C-terminus. Specification
of the direction is more complicated for a DNA molecule than for a protein molecule
because of the double helix structure of DNA, and this will be explained in Section
7.1.

The basic sequence alignment algorithm aligns two or more sequences to high-
light their similarity, inserting a small number of gaps into each sequence (usually
denoted by dashes) to align wherever possible identical or similar characters. For
instance, Fig 7.1 presents an alignment using the software tool ClustalW of the
hemoglobin beta-chain from a human, a chimpanzee, a rat, and a zebrafish. The
human and chimpanzee sequences are identical, a consequence of our very close
evolutionary relationship. The rat sequence differs from human/chimpanzee at
only 27 out of 146 amino acids; we are all mammals. The zebrafish sequence,
though clearly related, diverges significantly. Notice the insertion of a gap in each
of the mammal sequences at the zebra fish amino acid position 122. This permits
the subsequent zebrafish sequence to better align with the mammal sequences, and
implies either an insertion of a new amino acid in fish, or a deletion of an amino
acid in mammals. The insertion or deletion of a character in a sequence is called
an indel. Mismatches in sequence, such as that occurring between zebrafish and
mammals at amino acid positions 2 and 3 is called a mutation. ClustalW places a
‘*’ on the last line to denote exact amino acid matches across all sequences, and
a ‘:’ and ‘.’ to denote chemically similar amino acids across all sequences (each
amino acid has characteristic chemical properties, and amino acids can be grouped
according to similar properties). In this chapter, we detail the algorithms used to
align sequences.

7.1 The minimum you need to know about DNA chem-
istry and the genetic code

In one of the most important scientific papers ever published, James Watson and
Francis Crick, pictured in Fig. 7.2, determined the structure of DNA using a three-
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CLUSTAL W (1.83) multiple sequence alignment

Human VHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPKV 60
Chimpanzee VHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPKV 60
Rat VHLTDAEKAAVNGLWGKVNPDDVGGEALGRLLVVYPWTQRYFDSFGDLSSASAIMGNPKV 60
Zebrafish VEWTDAERTAILGLWGKLNIDEIGPQALSRCLIVYPWTQRYFATFGNLSSPAAIMGNPKV 60

*. * *::*: .****:* *::* :**.* *:*******:* :**:**:. *:******

Human KAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKLHVDPENFRLLGNVLVCVLAHHFGK 120
Chimpanzee KAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKLHVDPENFRLLGNVLVCVLAHHFGK 120
Rat KAHGKKVINAFNDGLKHLDNLKGTFAHLSELHCDKLHVDPENFRLLGNMIVIVLGHHLGK 120
Zebrafish AAHGRTVMGGLERAIKNMDNVKNTYAALSVMHSEKLHVDPDNFRLLADCITVCAAMKFGQ 120

***:.*:..:. .: ::**:*.*:* ** :*.:******:*****.: :. . ::*:

Human E-FTPPVQAAYQKVVAGVANALAHKYH 146
Chimpanzee E-FTPPVQAAYQKVVAGVANALAHKYH 146
Rat E-FTPCAQAAFQKVVAGVASALAHKYH 146
Zebrafish AGFNADVQEAWQKFLAVVVSALCRQYH 147

*.. .* *:**.:* *..**.::**

Figure 7.1: Multiple alignment of the hemoglobin beta-chain for Human, Chimpanzee, Rat
and Zebra fish, obtained using ClustalW.

dimensional molecular model that makes plain the chemical basis of heredity. The
DNA molecule consists of two strands wound around each other to form the now
famous double helix. Arbitrarily, one strand is labeled by the sequencing group to
be the positive strand, and the other the negative strand. The two strands of the
DNA molecule bind to each other by base pairing: the bases of one strand pair
with the bases of the other strand. Adenine (A) always pairs with thymine (T),
and guanine (G) always pairs with cytosine (C): A with T, G with C. For RNA, T
is replaced by uracil (U). When reading the sequence of nucleotides from a single
strand, the direction of reading must be specified, and this is possible by referring
to the chemical bonds of the DNA backbone. There are of course only two possible
directions to read a linear sequence of bases, and these are denoted as 5’-to-3’ and
3’-to-5’. Importantly, the two separate strands of the DNA molecule are oriented
in opposite directions. Below is the beginning of the DNA coding sequence for the
human hemoglobin beta chain protein discussed earlier:

5’-GTGCACCTGACTCCTGAGGAGAAGTCTGCCGTTACTGCCCTGTGGGGCAAGGTGAACGTG-3’
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

3’-CACGTGGACTGAGGACTCCTCTTCAGACGGCAATGACGGGACACCCCGTTCCACTTGCAC-5’

It is important to realize that there are two unique DNA sequences here, and either
one, or even both, can be coding. Reading from 5’-to-3’, the upper sequence begins
‘GTGCACCTG...’, while the lower sequence ends ‘...CAGGTGCAC’. Here, only the
upper sequence codes for the human hemoglobin beta chain, and the lower se-
quence is non-coding.

How is the DNA code read? Enzymes separate the two strands of DNA, and
transcription occurs as the DNA sequence is copied into messenger RNA (mRNA).
If the upper strand is the coding sequence, then the complementary lower strand
serves as the template for constructing the mRNA sequence. The ACUG nucleotides
of the mRNA bind to the lower sequence and construct a single stranded mRNA
molecule containing the sequence ‘GUGCACCUG...’, which exactly matches the
sequence of the upper, coding strand, but with T replaced by U. This mRNA is
subsequently translated in the ribosome of the cell, where each nucleotide triplet
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Figure 7.2: James Watson and Francis Crick posing in front of their DNA model.
The original photograph was taken in 1953, the year of discovery, and was recreated
in 2003, fifty years later. Francis Crick, the man on the right, died in 2004.

Figure 7.3: The genetic code.
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codes for a single amino acid. The triplet coding of nucleotides for amino acids
is the famous genetic code, shown in Fig. 7.3. Here, the translation to amino acid
sequence is ‘VHL...’, where we have used the genetic code ‘GUG’ = V, ‘CAC’=H,
‘CUG’=L. The three out of the twenty amino acids used here are V = Valine, H =
Histidine, and L = Leucine.

7.2 Sequence alignment by brute force

One (bad) approach to sequence alignment is to align the two sequences in all possi-
ble ways, score the alignments with an assumed scoring system, and determine the
highest scoring alignment. The problem with this brute-force approach is that the
number of possible alignments grows exponentially with sequence length; and for
sequences of reasonable length, the computation is already impossible. For exam-
ple, the number of ways to align two sequences of 50 characters each—a rather small
alignment problem—is about 1.5× 1037, already an astonishingly large number. It
is informative to count the number of possible alignments between two sequences
since a similar algorithm is used for sequence alignment.

Suppose we want to align two sequences. Gaps in either sequence are allowed
but a gap can not be aligned with a gap. By way of illustration, we demonstrate
the three ways that the first character of the upper-case alphabet and the lower-case
alphabet may align:

A -A A-
| , || , ||
a a- -a

and the five ways in which the first two characters of the upper-case alphabet can
align with the first character of the lower-case alphabet:

AB AB AB- A-B -AB
|| , || , ||| , ||| , ||| .
-a a- –a -a- a–

A recursion relation for the total number of possible alignments of a sequence
of i characters with a sequence of j characters may be derived by considering the
alignment of the last character. There are three possibilities that we illustrate by
assuming the ith character is ‘F’ and the jth character is ‘d’:

(1) i− 1 characters of the first sequence are already aligned with j− 1 characters of
the second sequence, and the ith character of the first sequence aligns exactly with
the jth character of the second sequence:

...F
||||
...d

(2) i− 1 characters of the first sequence are aligned with j characters of the second
sequence and the ith character of the first sequence aligns with a gap in the second
sequence:

...F
||||
...-

(3) i characters of the first sequence are aligned with j− 1 characters of the second
sequence and a gap in the first sequence aligns with the jth character of the second
sequence:
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...-
||||
...d

If C(i, j) is the number of ways to align an i character sequence with a j character
sequence, then, from our counting,

C(i, j) = C(i− 1, j− 1) + C(i− 1, j) + C(i, j− 1). (7.1)

This recursion relation requires boundary conditions. Because there is only one
way to align an i > 0 character sequence against a zero character sequence (i.e., i
characters against i gaps) the boundary conditions are C(0, j) = C(i, 0) = 1 for all
i, j > 0 We may also add the additional boundary condition C(0, 0) = 1, obtained
from the known result C(1, 1) = 3.

Using the recursion relation (7.1), we can construct the following dynamic matrix
to count the number of ways to align the two five-character sequences a1a2a3a4a5
and b1b2b3b4b5:

- b1 b2 b3 b4 b5
- 1 1 1 1 1 1

a1 1 3 5 7 9 11
a2 1 5 13 25 41 61
a3 1 7 25 63 129 231
a4 1 9 41 129 321 681
a5 1 11 61 231 681 1683

The size of this dynamic matrix is 6× 6, and for convenience we label the rows and
columns starting from zero (i.e., row 0, row 1, . . . , row 5). This matrix was con-
structed by first writing − a1 a2 a3 a4 a5 to the left of the matrix and − b1 b2 b3 b4 b5
above the matrix, then filling in ones across the zeroth row and down the zeroth
column to satisfy the boundary conditions, and finally applying the recursion re-
lation directly by going across the first row from left-to-right, the second row from
left-to-right, etc. To demonstrate the filling in of the matrix, we have across the first
row: 1 + 1 + 1 = 3, 1 + 1 + 3 = 5, 1 + 1 + 5 = 7, etc, and across the second row:
1 + 3 + 1 = 5, 3 + 5 + 5 = 13, 5 + 7 + 13 = 25, etc. Finally, the last element entered
gives the number of ways to align two five character sequences: 1683, already a
remarkably large number.

It is possible to solve analytically the recursion relation (7.1) for C(i, j) using
generating functions. Although the solution method is interesting—and in fact
was shown to me by a student—the final analytical result is messy and we omit it
here. In general, computation of C(i, j) is best done numerically by constructing the
dynamic matrix.

7.3 Sequence alignment by dynamic programming

Two reasonably sized sequences cannot be aligned by brute force. Luckily, there
is another algorithm borrowed from computer science, dynamic programming, that
makes use of a dynamic matrix.

What is needed is a scoring system to judge the quality of an alignment. The
goal is to find the alignment that has the maximum score. We assume that the
alignment of character ai with character bj has the score S(ai, bj). For example,
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when aligning two DNA sequences, a match (A-A, C-C, T-T, G-G) may be scored
as +2, and a mismatch (A-C, A-T, A-G, etc.) scored as −1. We also assume that an
indel (a nucleotide aligned with a gap) is scored as g, with a typical value for DNA
alignment being g = −2. In the next section, we develop a better and more widely
used model for indel scoring that distinguishes gap openings from gap extensions.

Now, let T(i, j) denote the maximum score for aligning a sequence of length
i with a sequence of length j. We can compute T(i, j) provided we know T(i −
1, j− 1), T(i − 1, j) and T(i, j− 1). Indeed, our logic is similar to that used when
counting the total number of alignments. There are again three ways to compute
T(i, j): (1) i− 1 characters of the first sequence are aligned with j− 1 characters of
the second sequence with maximum score T(i − 1, j− 1), and the ith character of
the first sequence aligns with the jth character of the second sequence with updated
maximum score T(i − 1, j− 1) + S(ai, bj); (2) i − 1 characters of the first sequence
are aligned with j characters of the second sequence with maximum score T(i −
1, j), and the ith character of the first sequence aligns with a gap in the second
sequence with updated maximum score T(i− 1, j)+ g, or; (3) i characters of the first
sequence are aligned with j− 1 characters of the second sequence with maximum
score T(i, j− 1), and a gap in the first sequence aligns with the jth character of the
second sequence with updated maximum score T(i, j − 1) + g. We then compare
these three scores and assign T(i, j) to be the maximum; that is,

T(i, j) = max


T(i− 1, j− 1) + S(ai, bj),
T(i− 1, j) + g,
T(i, j− 1) + g.

(7.2)

Boundary conditions give the score of aligning a sequence with a null sequence of
gaps, so that

T(i, 0) = T(0, i) = ig, i > 0, (7.3)

with T(0, 0) = 0.
The recursion (7.2), together with the boundary conditions (7.3), can be used

to construct a dynamic matrix. The score of the best alignment is then given by
the last filled-in element of the matrix, which for aligning a sequence of length n
with a sequence of length m is T(n, m). Besides this score, however, we also want
to determine the alignment itself. The alignment can be obtained by tracing back
the path in the dynamic matrix that was followed to compute each matrix element
T(i, j). There could be more than one path, so that the best alignment may be
degenerate.

Sequence alignment is always done computationally, and there are excellent
software tools freely available on the web (see §7.6). Just to illustrate the dynamic
programming algorithm, we compute by hand the dynamic matrix for aligning two
short DNA sequences GGAT and GAATT, scoring a match as +2, a mismatch as −1
and an indel as −2:

- G A A T T
- 0 -2 -4 -6 -8 -10
G -2 2 0 -2 -4 -6
G -4 0 1 -1 -3 -5
A -6 -2 2 3 1 -1
T -8 -4 0 1 5 3

In our hand calculation, the two sequences to be aligned go to the left and above the
dynamic matrix, leading with a gap character ‘-’. Row 0 and column 0 are then filled
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in with the boundary conditions, starting with 0 in position (0, 0) and incrementing
by the gap penalty −2 across row 0 and down column 0. The recursion relation
(7.2) is then used to fill in the dynamic matrix one row at a time moving from left-
to-right and top-to-bottom. To determine the (i, j) matrix element, three numbers
must be compared and the maximum taken: (1) inspect the nucleotides to the left
of row i and above column j and add +2 for a match or -1 for a mismatch to the
(i− 1, j− 1) matrix element; (2) add −2 to the (i− 1, j) matrix element; (3) add −2
to the (i, j− 1) matrix element. For example, the first computed matrix element 2 at
position (1, 1) was determined by taking the maximum of (1) 0 + 2 = 2, since G-G
is a match; (2) −2− 2 = −4; (3) −2− 2 = −4. You can test your understanding of
dynamic programming by computing the other matrix elements.

After the matrix is constructed, the traceback algorithm that finds the best align-
ment starts at the bottom-right element of the matrix, here the (4, 5) matrix element
with entry 3. The matrix element used to compute 3 was either at (4, 4) (horizon-
tal move) or at (3, 4) (diagonal move). Having two possibilities implies that the
best alignment is degenerate. For now, we arbitrarily choose the diagonal move.
We build the alignment from end to beginning with GGAT on top and GAATT on
bottom:

T
|
T

We illustrate our current position in the dynamic matrix by eliminating all the ele-
ments that are not on the traceback path and are no longer accessible:

- G A A T T
- 0 -2 -4 -6 -8
G -2 2 0 -2 -4
G -4 0 1 -1 -3
A -6 -2 2 3 1
T 3

We start again from the 1 entry at (3, 4). This value came from the 3 entry at (3, 3)
by a horizontal move. Therefore, the alignment is extended to

-T
||
TT

where a gap is inserted in the top sequence for a horizontal move. (A gap is inserted
in the bottom sequence for a vertical move.) The dynamic matrix now looks like

- G A A T T
- 0 -2 -4 -6
G -2 2 0 -2
G -4 0 1 -1
A -6 -2 2 3 1
T 3

Starting again from the 3 entry at (3, 3), this value came from the 1 entry at (2, 2) in
a diagonal move, extending the alignment to

A-T
|||
ATT
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The dynamic matrix now looks like

- G A A T T
- 0 -2 -4
G -2 2 0
G -4 0 1
A 3 1
T 3

Continuing in this fashion (try to do this), the final alignment is

GGA-T
: : : ,
GAATT

where it is customary to represent a matching character with a colon ‘:’. The trace-
back path in the dynamic matrix is

- G A A T T
- 0
G 2
G 1
A 3 1
T 3

If the other degenerate path was initially taken, the final alignment would be

GGAT-
: ::
GAATT

and the traceback path would be

- G A A T T
- 0
G 2
G 1
A 3
T 5 3

The score of both alignments is easily recalculated to be the same, with 2− 1 + 2−
2 + 2 = 3 and 2− 1 + 2 + 2− 2 = 3.

The algorithm for aligning two proteins is similar, except match and mismatch
scores depend on the pair of aligning amino acids. With twenty different amino
acids found in proteins, the score is represented by a 20× 20 substitution matrix. The
most commonly used matrices are the PAM series and BLOSUM series of matrices,
with BLOSUM62 the commonly used default matrix.

7.4 Gap opening and gap extension penalties

Empirical evidence suggests that gaps cluster, in both nucleotide and protein se-
quences. Clustering is usually modeled by different penalties for gap opening (go)
and gap extension (ge), with go < ge < 0. For example, the default scoring scheme
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for the widely used BLASTN software is +1 for a nucleotide match, −3 for a nu-
cleotide mismatch, −5 for a gap opening, and −2 for a gap extension.

Having two types of gaps (opening and extension) complicates the dynamic pro-
gramming algorithm. When an indel is added to an existing alignment, the scoring
increment depends on whether the indel is a gap opening or a gap extension. For
example, the extended alignment

AB AB-
|| to |||
ab abc

adds a gap opening penalty go to the score, whereas
A- A–
|| to |||
ab abc

adds a gap extension penalty ge to the score. The score increment depends not only
on the current aligning pair, but also on the previously aligned pair.

The final aligning pair of a sequence of length i with a sequence of length j can
be one of three possibilities (top:bottom): (1) ai : bj; (2) ai : −; (3) − : bj. Only for
(1) is the score increment S(ai, bj) unambiguous. For (2) or (3), the score increment
depends on the presence or absence of indels in the previously aligned characters.
For instance, for alignments ending with ai : −, the previously aligned character
pair could be one of (i) ai−1 : bj, (ii) − : bj, (iii) ai−1 : −. If the previous aligned
character pair was (i) or (ii), the score increment would be the gap opening penalty
go; if it was (iii), the score increment would be the gap extension penalty ge.

To remove the ambiguity that occurs with a single dynamic matrix, we need to
compute three dynamic matrices simultaneously, with matrix elements denoted by
T(i, j), T−(i, j) and T−(i, j), corresponding to the three types of aligning pairs. The
recursion relations are
(1) ai : bj

T(i, j) = max


T(i− 1, j− 1) + S(ai, bj),
T−(i− 1, j− 1) + S(ai, bj),
T−(i− 1, j− 1) + S(ai, bj);

(7.4)

(2) ai : −

T−(i, j) = max


T(i− 1, j) + go,
T−(i− 1, j) + ge,
T−(i− 1, j) + go;

(7.5)

(3) − : bj

T−(i, j) = max


T(i, j− 1) + go,
T−(i, j− 1) + go,
T−(i, j− 1) + ge;

(7.6)

To align a sequence of length n with a sequence of length m, the best alignment
score is the maximum of the scores obtained from the three dynamic matrices:

Topt(n, m) = max


T(n, m),
T−(n, m),
T−(n, m).

(7.7)

CHAPTER 7. SEQUENCE ALIGNMENT 107



7.5. LOCAL ALIGNMENTS

The traceback algorithm to find the best alignment proceeds as before by starting
with the matrix element corresponding to the best alignment score, Topt(n, m), and
tracing back to the matrix element that determined this score. The optimum align-
ment is then built up from last-to-first as before, but now switching may occur
between the three dynamic matrices.

7.5 Local alignments

We have so far discussed how to align two sequences over their entire length, called
a global alignment. Often, however, it is more useful to align two sequences over
only part of their lengths, called a local alignment. In bioinformatics, the algorithm
for global alignment is called “Needleman-Wunsch,” and that for local alignment
“Smith-Waterman.” Local alignments are useful, for instance, when searching a
long genome sequence for alignments to a short DNA segment. They are also
useful when aligning two protein sequences since proteins can consist of multiple
domains, and only a single domain may align.

If for simplicity we consider a constant gap penalty g, then a local alignment
can be obtained using the rule

T(i, j) = max


0,
T(i− 1, j− 1) + S(ai, bj),
T(i− 1, j) + g,
T(i, j− 1) + g.

(7.8)

After the dynamic matrix is computed using (7.8), the traceback algorithm starts at
the matrix element with the highest score, and stops at the first encountered zero
score.

If we apply the Smith-Waterman algorithm to locally align the two sequences
GGAT and GAATT considered previously, with a match scored as +2, a mismatch
as −1 and an indel as −2, the dynamic matrix is

- G A A T T
- 0 0 0 0 0 0
G 0 2 0 0 0 0
G 0 2 1 0 0 0
A 0 0 4 3 1 0
T 0 0 2 3 5 3

The traceback algorithm starts at the highest score, here the 5 in matrix element
(4, 4), and ends at the 0 in matrix element (0, 0). The resulting local alignment is

GGAT
: ::
GAAT

which has a score of five, larger than the previous global alignment score of three.

7.6 Software

If you have in hand two or more sequences that you would like to align, there is a
choice of software tools available. For relatively short sequences, you can use the
LALIGN program for global or local alignments:
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http://embnet.vital-it.ch/software/LALIGN_form.html

For longer sequences, the BLAST software has a flavor that permits local alignment
of two sequences:

http://www.ncbi.nlm.nih.gov/blast/bl2seq/wblast2.cgi

Another useful software for global alignment of two or more long DNA sequences
is PipMaker:

http://pipmaker.bx.psu.edu/pipmaker/

Multiple global alignments of protein sequences use ClustalW or T-Coffee:

http://www.clustal.org/
http://tcoffee.crg.cat/

Most users of sequence alignment software want to compare a given sequence
against a database of sequences. The BLAST software is most widely used, and
comes in several versions depending on the type of sequence and database search
one is performing:

http://www.ncbi.nlm.nih.gov/BLAST/
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