Complex Function Theory MATH 5030

CHIANG, Yik Man ${ }^{1}$

October 30, 2017

[^0]
Contents

1 Analytic Functions 1
1.1 Notations 1
1.2 Cauchy-Riemann Equations 2
1.3 Line Integrals 3
1.4 Local Cauchy Integral Formula 5
1.5 Consequences 8
1.6 Liouville's Theorem 11
1.7 Maximum Modulus Theorem 14
1.8 Branch of the Logarithm 16
1.9 Cauchy's Theorem 20
1.10 Homotopy version of Cauchy's Theorem 25
1.11 Open Mapping Theorem 35
1.12 Isolated Singularities 40
1.13 Rouché's theorem 45
2 Conformal mappings 48
2.1 Stereographic Projection 48
2.2 Analyticity revisited 56
2.3 Angle preserving mappings 59
2.4 Möbius transformations 63
2.5 Cross-ratios 68
2.6 Inversion symmetry 72
2.7 Explicit conformal mappings 76
2.8 Orthogonal circles 80
2.9 Extended Maximum Modulus Theorem 85
2.10 Phragmén-Lindelöf principle 90
3 Riemann Mapping Theorem 94
3.1 Metric Space 94
3.2 Arzela-Ascoli Theorem 104
3.3 Normal Family of Analytic Functions 111
3.4 Riemann Mapping Theorem 115
3.5 Boundary Correspondence of Conformal Mappings 120
3.6 Space of Meromorphic Functions 121
3.7 Schwarz's reflection principle 123
3.8 Schwarz-Christoffel formulae 129

Chapter 1

Analytic Functions

We shall give a brief review of the basic results in complex functions centred around Cauchy's integral formula in its general form and its immediate consequences.

1.1 Notations

$\mathbb{C}=\left\{z=x+i y:|x|<\infty,|y|<\infty, i^{2}=-1\right\}:=$ complex plane;
$\widehat{\mathbb{C}}=\mathbb{C} \cup\{\infty\}:=$ extended complex plane or Riemann sphere;
$B\left(z_{0}, r\right)=\left\{z:\left|z-z_{0}\right|<r\right\}:=$ open disk;
$\bar{B}\left(z_{0}, r\right)=\left\{z:\left|z-z_{0}\right| \leq r\right\}:=$ closed disk;
$\Re(z):=$ real part of z;
$\Im(z):=$ imaginary part of z.
Definition 1.1.1. 1. A set $S \in \mathbb{C}$ is connected if for any two points lying in S, there exist a polygonal curve lying entirely in S and connecting the points.
2. A region $G \in \mathbb{C}$ is an open connected set.

1.2 Cauchy-Riemann Equations

Definition 1.2.1. Let G be an open set in \mathbb{C} and $f: G \rightarrow \mathbb{C}$. Then f is differentiable at $a \in G$ if the limit

$$
\lim _{h \rightarrow \infty} \frac{f(a+h)-f(a)}{h}
$$

exists; the value of the limit is denoted by $f^{\prime}(a)$ which is called the derivative of f at a. If f is differentiable at each point of G, then we say f is differentiable on G.

Definition 1.2.2. A function $f: G \rightarrow \mathbb{C}$ is analytic if f is continuously differentiable on G i.e., f^{\prime} is continuous at every point of G.

We shall show later (see Remark 1.11) that analyticity of f alone (i.e., without the continuity assumption) implies the continuity of f^{\prime} (in a neighbourhood). That is, the function must be continuously differentiable. This is certainly not the case in real function theory; there exist many real functions such that their derivatives are not continuous. (e.g. $|x|$)

It is an easy exercise to show (from the definition) that if $f(z)=$ $u(x, y)+i v(x, y)$ is analytic, then u and v satisfy the Cauchy-Riemann equations at z :

$$
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x} .
$$

Note that the partial derivatives are continuous and the converse is also true.

Theorem 1.2.3. Let u and v be real-valued functions defined on a region G and suppose that they have continuous derivatives there. Then $f: G \rightarrow \mathbb{C}, f=u+i v$ is analytic if and only if both u and v satisfy the Cauchy-Riemann equations.

Proof. See Conway p.41-42.

1.3 Line Integrals

Definition 1.3.1. A path in a region $G \subset \mathbb{C}$ is a continuous function $\gamma:[a, b] \rightarrow G(a<b)$. A path is smooth if γ^{\prime} exists and also continuous on $[a, b]$. Let $a=t_{0}<t_{1}<t_{2}<\cdots<t_{n}=b$ be a partition on $[a, b]$, then a path $\gamma:[a, b] \rightarrow G$ is piecewise smooth if it is smooth on each subinterval $\left[t_{i-1}, t_{i}\right], i=1, \ldots, n$.

Remark. We note that if $\gamma^{\prime}(t) \neq 0$ implies that γ has a tangent at t. Some authors will simply assume, in addition to the existence and the continuity for the smooth curve γ, to have $\gamma^{\prime} \neq 0$.

Definition 1.3.2. We define the length of a piecewise smooth curve to be

$$
l(\gamma)=\int_{a}^{b}\left|\gamma^{\prime}(t)\right| d t
$$

This is clearly a well-defined number. Suppose that $f: G \rightarrow \mathbb{C}$ is continuous and $\gamma[a, b] \subset G$, we define the line integral along γ to be the number

$$
\int_{\gamma} f=\int_{a}^{b} f d \gamma=\int_{a}^{b} f(\gamma(t)) \gamma^{\prime}(t) d t
$$

In fact, it can be shown that the integral always exists (see Conway p.60-62) and it is independent of any particular parametrization (see Conway p.63-64).

Definition 1.3.3. Let f and γ be defined as above. Then we define the line integration of f along γ with respect to the arc length as

$$
\begin{equation*}
\int_{\gamma} f|d z|=\int_{a}^{b} f(\gamma(t))\left|\gamma^{\prime}(t)\right| d t \tag{1.1}
\end{equation*}
$$

The integral clearly exists since f is continuous, and γ is piecewise continuous. It is easy to verify that

$$
\left|\int_{\gamma} f d z\right| \leq \int_{\gamma}|f||d z| .
$$

Remark. The (1.1) becomes $l(\gamma)$ if $f(t) \equiv 1$.
Theorem 1.3.4. Let $\gamma:[a, b] \rightarrow G$ be a piecewise smooth path in a region G with initial and end points α and β. Suppose $f: G \rightarrow \mathbb{C}$ is continuous with primitive $F: G \rightarrow \mathbb{C}$ (i.e. $F^{\prime}=f$), then

$$
\int_{\gamma} f=F(\beta)-F(\alpha) . \quad(\gamma(a)=\alpha, \gamma(b)=\beta)
$$

Proof. By definition of line integral above,

$$
\begin{aligned}
\int_{\gamma} f & =\int_{a}^{b} f(\gamma(t)) \gamma^{\prime}(t) d t \\
& =\int_{a}^{b} F^{\prime}(\gamma(t)) \gamma^{\prime}(t) d t \\
& =\int_{a}^{b}(F \circ \gamma)^{\prime}(t) d t \\
& =F(\gamma(b))-F(\gamma(a)) \\
& =F(\beta)-F(\alpha) .
\end{aligned}
$$

by the Fundamental Theorem of Calculus.
Definition 1.3.5. A curve $\gamma:[a, b] \rightarrow \mathbb{C}$ is said to be closed if $\gamma(a)=$ $\gamma(b)$.

We deduce immediately from the above theorem that

$$
\int_{\gamma} f=0
$$

when γ is a closed piecewise smooth path and with f as in the above theorem.

Remark. (i) All of the above definitions and results about piecewise smooth paths can be generalized to rectifiable paths. We shall restrict ourselves to piecewise smooth paths in the rest of the course. See Conway for more details.
(ii) Although the treatment here (and in most books) about line integral is short, complex line integral is considered to be a very important contribution from Cauchy (in a paper dated 1825).

1.4 Local Cauchy Integral Formula

Theorem 1.4.1 (Local Cauchy Integral Formula). Let $f: G \rightarrow \mathbb{C}$ be analytic and that $\bar{B}(a, r) \subset G, \gamma(t)=a+r e^{i t}, t \in[0,2 \pi]$. Then

$$
f(z)=\frac{1}{2 \pi i} \int_{\gamma} \frac{f(w)}{w-z} d w
$$

for any $z \in B(a, r)$.
To prove this theorem, we require
Proposition 1.4.2. Let $\varphi:[a, b] \times[c, d] \rightarrow \mathbb{C}$ be a continuous function. Define $g:[c, d] \rightarrow \mathbb{C} b y$

$$
g(t)=\int_{a}^{b} \varphi(s, t) d s
$$

Then g is continuous. Moreover, if $\frac{\partial \varphi}{\partial t}$ exists and is a continuous function on $[a, b] \times[c, d]$, then g is continuously differentiable on $[c, d]$ and

$$
\begin{equation*}
g^{\prime}(t)=\int_{a}^{b} \frac{\partial \varphi}{\partial t}(s, t) d s \tag{1.2}
\end{equation*}
$$

Proof. Since $\varphi:[a, b] \times[c, d] \rightarrow \mathbb{C}$ is continuous and hence it just be uniformly continuous on its domain. It follows easily that g, as defined above, must be continuous on $[c, d]$. In order to prove (1.2), it suffices to show that

$$
\frac{g(t)-g\left(t_{0}\right)}{t-t_{0}}-\int_{a}^{b} \frac{\partial \varphi}{\partial t}\left(s, t_{0}\right) d s
$$

can be made arbitrarily small.
Since $\varphi_{t}(s, t)=\frac{\partial \varphi}{\partial t}(s, t)$ is continuous on $[a, b] \times[c, d]$, it must be uniformly continuous there. Thus, given $\epsilon>0$, there exists a $\delta>0$ such that

$$
\left|\varphi_{t}\left(s^{\prime}, t^{\prime}\right)-\varphi_{t}(s, t)\right|<\epsilon
$$

whenever $\left(s^{\prime}-s\right)^{2}+\left(t^{\prime}-t\right)^{2}<\delta^{2}$. In particular,

$$
\left|\varphi_{t}(s, t)-\varphi_{t}\left(s, t_{0}\right)\right|<\epsilon
$$

if $a \leq s \leq b$ and $\left|t-t_{0}\right|<\delta$. Hence for $\left|t-t_{0}\right|<\delta$, we have

$$
\left|\int_{t_{0}}^{t} \varphi_{t}(s, \tau)-\varphi_{t}\left(s, t_{0}\right) d \tau\right|<\epsilon\left|t-t_{0}\right| .
$$

But the integrand of the last inequality equals, with a fixed s,

$$
\begin{gathered}
\left(\varphi(s, t)-t \varphi_{t}\left(s, t_{0}\right)\right)-\left(\varphi\left(s, t_{0}\right)-t_{0} \varphi_{t}\left(s, t_{0}\right)\right) \\
\quad=\varphi(s, t)-\varphi\left(s, t_{0}\right)-\left(t-t_{0}\right) \varphi_{t}\left(s, t_{0}\right) .
\end{gathered}
$$

Hence

$$
\left|\varphi(s, t)-\varphi\left(s, t_{0}\right)-\left(t-t_{0}\right) \varphi_{t}\left(s, t_{0}\right)\right|<\epsilon\left|t-t_{0}\right|
$$

whenever $a \leq s \leq b$ and $\left|t-t_{0}\right|<\delta$. But this is precisely

$$
\left|\frac{g(t)-g\left(t_{0}\right)}{t-t_{0}}-\int_{a}^{b} \varphi_{t}\left(s, t_{0}\right) d s\right|<\epsilon|b-a|
$$

after integration with respect to s on both sides. This proves $g^{\prime}(t)=$ $\int_{a}^{b} \varphi_{t}(s, t) d s$. But φ_{t} is continuous and so g^{\prime} must also be continuous.

Example 1.4.3. Show that

$$
\int_{0}^{2 \pi} \frac{e^{i s}}{e^{i s}-z} d s=2 \pi
$$

whenever $|z|<1$.
Solution. Since $\varphi(s, t)=\frac{e^{i s}}{e^{i s}-t z}$, for $0 \leq t \leq 1,0 \leq s \leq 2 \pi$, is continuously differentiable, it follows from Prop 1.4.2 that

$$
g(t)=\int_{0}^{2 \pi} \varphi(s, t) d s=\int_{0}^{2 \pi} \frac{e^{i s}}{e^{i s}-t z} d s
$$

But

$$
\int_{0}^{2 \pi} \frac{z e^{i s}}{\left(e^{i s}-t z\right)^{2}} d s=\left.\frac{-i z}{e^{i s}-t z}\right|_{0} ^{2 \pi}=\frac{-i z}{e^{2 \pi i}-t z}-\frac{-i z}{e^{0}-t z}=0 .
$$

for all $t \in[0,1]$. Hence $g(t)=$ constant, and in particular,

$$
g(0)=\int_{0}^{2 \pi} \frac{e^{i s}}{e^{i s}-0} d s=2 \pi
$$

For $t=1$, we have the required equality.
Now, we are sufficiently prepared to prove Theorem 1.4.1.
Proof of Theorem 1.4.1. For any $\bar{B}(a, r) \subset G$, we are required to show

$$
f(z)=\frac{1}{2 \pi i} \int_{\gamma} \frac{f(w)}{w-z} d w
$$

where $\gamma(t)=a+r e^{i t}, t \in[0,2 \pi]$.
Without loss of generality, it is clear that we may consider $a=0$ and $r=1$ only. Since the translation $f(a+r z)$ will take that $B(0,1)$ to any preassigned $B(a, r)$. Thus we aim to show

$$
f(z)=\frac{1}{2 \pi i} \int_{\gamma} \frac{f(w)}{w-z} d w=\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{f\left(e^{i s}\right) e^{i s}}{e^{i s}-z} d s, \quad z \in B(0,1) .
$$

Consider

$$
\varphi(s, t)=\frac{f\left(z+t\left(e^{i s}-z\right)\right) e^{i s}}{e^{i s}-z}-f(z),
$$

where $t \in[0,1], s \in[0,2 \pi],|z|<1$. Clearly φ is continuously differentiable. Hence

$$
g(t)=\int_{0}^{2 \pi} \varphi(s, t) d s
$$

is also continuously differentiable, and

$$
\begin{aligned}
g^{\prime}(t) & =\int_{0}^{2 \pi} \frac{\partial}{\partial t}\left(\frac{f\left(z+t\left(e^{i s}-z\right)\right) e^{i s}}{\left.e^{i s}-z\right)}-f(z)\right) d s \\
& =\int_{0}^{2 \pi} \frac{\left(e^{i s}-z\right) f^{\prime}\left(z+t\left(e^{i s}-z\right)\right) e^{i s}}{e^{i s}-z} d s \\
& =\int_{0}^{2 \pi} f^{\prime}\left(z+t\left(e^{i s}-z\right)\right) e^{i s} d s \\
& =\left.\frac{1}{i t} f\left(z+t\left(e^{i s}-z\right)\right)\right|_{0} ^{2 \pi} \\
& =0
\end{aligned}
$$

for each $t \in[0,1]$. Hence $g(t)=$ constant. Then

$$
\int_{0}^{2 \pi}\left(\frac{f(z) e^{i s}}{e^{i s}-z}-f(z)\right) d s=g(0)=g(1)=\int_{0}^{2 \pi}\left(\frac{f\left(e^{i s}\right) e^{i s}}{e^{i s}-z}-f(z)\right) d s
$$

But

$$
\int_{0}^{2 \pi}\left(\frac{f(z) e^{i s}}{e^{i s}-z}-f(z)\right) d s=f(z) \int_{0}^{2 \pi}\left(\frac{e^{i s}}{e^{i s}-z}-1\right) d s=0
$$

by the Example 1.4 .3 above. Hence $g(1)=0$. And this is precisely

$$
2 \pi f(z)=\int_{0}^{2 \pi} \frac{f\left(e^{i s}\right) e^{i s}}{e^{i s}-z} d s=\frac{1}{i} \int_{\gamma} \frac{f(w)}{w-z} d w
$$

The result follows.

1.5 Consequences

We now investigate some consequences of the local Cauchy Integral formula.

Theorem 1.5.1. Let f be analytic on $B(a, R)$. Then

$$
f(z)=\sum_{n=0}^{\infty} a_{n}(z-a)^{n}
$$

for $z \in B(a, R)$ where $a_{n}=\frac{f^{(n)}(a)}{n!}$ and the series has radius of convergence at least R.

Proof. Let $r>0$ such that $\bar{B}(a, r) \subset B(a, R)$. Suppose $\gamma(t)=a+r e^{i t}$, $t \in[0,2 \pi]$. Define $M=\max _{z \in \gamma[0,2 \pi}|f(z)|$ since $\gamma[0,2 \pi]$ is compact and f is continuous on $\gamma[0,2 \pi]$. By Theorem 1.4.1, we have

$$
f(z)=\frac{1}{2 \pi i} \int_{\gamma} \frac{f(\zeta)}{\zeta-z} d \zeta, \quad \zeta=\gamma(t)=a+r e^{i t} .
$$

We claim that

$$
\begin{aligned}
f(z) & =\frac{1}{2 \pi i} \int_{\gamma} \frac{f(\zeta)}{\zeta-a+a-z} d \zeta \\
& =\frac{1}{2 \pi i} \int_{\gamma} \frac{f(\zeta)}{(\zeta-a)\left(1-\frac{z-a}{\zeta-a}\right)} d \zeta \\
& =\frac{1}{2 \pi i} \int_{\gamma} \frac{f(\zeta)}{\zeta-a} \sum_{k=0}^{\infty}\left(\frac{z-a}{\zeta-a}\right)^{k} d \zeta \\
& =\sum_{k=0}^{\infty}(z-a)^{k} \cdot \frac{1}{2 \pi i} \int_{\gamma} \frac{f(\zeta)}{(\zeta-a)^{k+1}} d \zeta:=\sum_{k=0}^{\infty} a_{k}(z-a)^{k} .
\end{aligned}
$$

This is because

$$
\left|\frac{z-a}{\zeta-a}\right|<1 \quad \text { and } \quad\left|\frac{f(\zeta)}{\zeta-a}\left(\frac{z-a}{\zeta-a}\right)^{k}\right| \leq \frac{M}{r}\left(\frac{|z-a|}{r}\right)^{k}
$$

So the series $\sum \frac{f(\zeta)}{\zeta-a}\left(\frac{z-a}{\zeta-a}\right)^{k}$ converges uniformly by applying Mtest.

Thus we could interchange the integral and summation signs in the above computation. But the series

$$
f(z)=\sum_{k=0}^{\infty} a_{k}(z-a)^{k}
$$

can be differentiated indefinitely within its radius of convergence, and the derivatives are given by

$$
f^{(n)}(z)=\sum_{k=0}^{\infty} n(n-1) \cdots(n-k+1) a_{k}(z-a)^{k-n}, \quad n=1,2,3, \cdots
$$

so that

$$
f^{(n)}(a)=n!a_{n}
$$

Hence

$$
\frac{1}{2 \pi i} \int_{\gamma} \frac{f(\zeta)}{(\zeta-a)^{n+1}} d \zeta=a_{n}=\frac{f^{n}(a)}{n!}
$$

for each $n \geq 0$. This completes the proof.
We deduce immediately from the above theorem that

Theorem 1.5.2. Suppose $f: G \rightarrow \mathbb{C}$ is analytic and $\bar{B}(a, r) \subset G$. Then
(i) f is infinitely differentiable; and
(ii)

$$
f^{(n)}(a)=\frac{n!}{2 \pi i} \int_{\gamma} \frac{f(\zeta)}{(\zeta-a)^{n+1}} d \zeta, \quad \gamma(t)=a+r e^{i t}
$$

The next theorem is another very important result in complex analysis. It will be derived from Theorem 1.5.1 above. However, some authors prefer to derive it directly and deduce the Cauchy Integral formula as a consequence.

Theorem 1.5.3. Let f be analytic on $B(a, R)$ and suppose γ is any closed piecewise smooth curve in $B(a, R)$. Then f has a primitive and

$$
\int_{\gamma} f=0
$$

Proof. Suppose $z \in B(a, R)$ and $f(z)=\sum_{n=0}^{\infty} a_{n}(z-a)^{n}$ by Theorem 1.5.1. It can be easily verified that the function defined by

$$
F(z)=\sum_{n=0}^{\infty} \frac{a_{n}}{n+1}(z-a)^{n+1}
$$

has the same radius of convergence as that of $f(z)$. Clearly F is differentiable, and $F^{\prime}(z)=f(z)$. Hence, F is a primitive of f in $B(a, R)$.

Suppose $\gamma:[a, b] \rightarrow \mathbb{C}$ is as in the assumption, then

$$
\begin{aligned}
\int_{\gamma} f(z) d z & =\int_{a}^{b} f(\gamma(t)) \gamma^{\prime}(t) d t \\
& =\int_{a}^{b} F^{\prime}\left(\gamma(t) \gamma^{\prime}(t) d t\right. \\
& =\int_{a}^{b} \frac{d}{d t} F(\gamma(t)) d t \\
& =F(\gamma(b))-F(\gamma(a)) \\
& =0
\end{aligned}
$$

since γ is closed.

1.6 Liouville's Theorem

Definition 1.6.1. We say a function f that is analytic everywhere in \mathbb{C} an entire function.

Clearly, any entire function has the power series representation in $B(a, r)$ for any $a \in \mathbb{C}$ and any $r>0$. So the power series must have an infinite radius of convergence.

Proposition 1.6.2. Let G be an region. If $f: G \rightarrow \mathbb{C}$ is differentiable with $f^{\prime}(z)=0$ for all $z \in G$, then f is a constant on G.

Proof. Let $z_{0} \in G$ and $f\left(z_{0}\right)=w_{0}$. Set

$$
A=\left\{z \in G: f(z)=w_{0}\right\} \subset G .
$$

We aim to show that $A=G$ by proving that A is both open and closed. Then a standard topological argument gives $A=G$. Hence, f is constant on G.

Let $\left\{z_{n}\right\}$ be a sequence in A and $z_{n} \rightarrow z$ as $n \rightarrow \infty$. Then by the continuity of f, we have

$$
w_{0}=\lim _{n \rightarrow \infty} f\left(z_{n}\right)=f\left(\lim _{n \rightarrow \infty} z_{n}\right)=f(z)
$$

Hence z belongs to A. This proves that A is closed.
Let $a \in A, B(a, \epsilon) \subset G$ and $z \in B(a, \epsilon)$. Let

$$
g(t)=f(t z+(1-t) a), \quad 0 \leq t \leq 1
$$

Then

$$
\begin{aligned}
\frac{g(t)-g(s)}{t-s}= & \frac{f(t z+(1-t) a)-f(s z+(1-s) a)}{t z+(1-t) a-(s z+(1-s) a)} \\
& \cdot \frac{t z+(1-t) a-(s z+(1-s) a)}{t-s} \\
\rightarrow & f^{\prime}(s z+(1-s) a) \cdot(z-a) \quad \text { (Chain rule) } \\
= & 0 \cdot(z-a)=0
\end{aligned}
$$

as $t \rightarrow s$. That is $g^{\prime}(s)=0$. So $f(z)=g(1)=g(0)=f(a)=w_{0}$. Since $z \in B(a, \epsilon)$ is arbitrary, we conclude that $B(a, \epsilon) \subset A$. Hence A is open. This completes the proof.

Theorem 1.6.3 (Liouville's Theorem). Any bounded entire function must reduce to a constant. That is, there is no non-constant entire function.

Proof. Let $z \in B(z, r) \subset \mathbb{C}$. Then Theorem 1.5.2 implies

$$
f^{\prime}(z)=\frac{1}{2 \pi i} \int_{\gamma} \frac{f(\zeta)}{(\zeta-z)^{2}} d \zeta, \quad \gamma=z+r e^{i t}, \quad t \in[0,2 \pi]
$$

So

$$
\begin{aligned}
\left|f^{\prime}(z)\right| & \leq \frac{1}{2 \pi i} \int_{\gamma} \frac{|f(z)|}{|\zeta-z|^{2}}\left|i r e^{i t}\right| d t \\
& \leq \frac{\text { upper bound of }|f|}{r} \rightarrow 0 \quad \text { as } \quad r \rightarrow \infty
\end{aligned}
$$

Hence $f^{\prime}(z)=0$ for every $z \in \mathbb{C}$.
Alternatively,

$$
\begin{aligned}
\left|a_{n}\right| & =\left|\frac{1}{2 \pi i} \int_{\gamma} \frac{f(\zeta)}{(\zeta-z)^{n+1}} d \zeta\right| \\
& \leq \frac{\text { upper bound of }|f|}{r^{n}} \rightarrow 0 \quad \text { as } \quad r \rightarrow \infty
\end{aligned}
$$

for each $n \geq 1$. Hence

$$
f(z)=\sum a_{n}(z-a)^{n}=a_{0}=\text { constant } .
$$

Definition 1.6.4. Let $f: G \rightarrow \mathbb{C}$ and $a \in G$ such that $f(a)=0$. Then a is a zero of f with multiplicity $m \geq 1$ if there is an analytic function g such that $f(z)=(z-a)^{m} g(z)$ and $g(a) \neq 0$.

We deduce the following important theorem from the Louville Theorem.

Theorem 1.6.5 (Fundamental Theorem of Algebra). Every polynomial $P(z)=a_{n} z^{n}+\cdots+a_{0}$ can be factored as

$$
P(z)=c\left(z-b_{1}\right)^{k_{1}} \cdots\left(z-b_{m}\right)^{k_{m}},
$$

where c is a constant, b_{1}, \ldots, b_{m} are the zeros of P and $k_{1}+\cdots+k_{m}=n$.
Proof. It suffices to show that P has at least one zero if it is nonconstant, so that we have $P(z)=(z-a) g(z)$, and then obtain the general form via induction on the degree of P.

So let us suppose that $P(z) \neq 0$ for all $z \in \mathbb{C}$. Then

$$
F(z):=\frac{1}{P(z)}
$$

is an entire function on \mathbb{C}. But $F(z) \rightarrow 0$ uniformly as $z \rightarrow \infty$ along all possible paths, so we can find an $M^{\prime}>0$ and $R>0$ such that $|F(z)|<M$ for $z \in \mathbb{C} \backslash B(0, R)$.

Notice that F is also continuous on $\bar{B}(0, R)$ since P has no zeros there. Hence we may find a $M^{\prime \prime}>0$ such that $|F|<M^{\prime \prime}$ on $\bar{B}(0, R)$ since the closed disk is a compact set and F is continuous on it.

Let $M=\max \left\{M^{\prime}, M^{\prime \prime}\right\}$, we see that $|F|<M$ for all $z \in \mathbb{C}$. So F, and hence P, must reduce to a constant by Louville's theorem. It contradicts to the assumption that P is an arbitrary polynomial.

1.7 Maximum Modulus Theorem

Theorem 1.7.1 (Isolated Zero Theorem). Let G be a region, $f: G \rightarrow$ \mathbb{C} be analytic. If the set $Z:=\{z \in G: f(z)=0\}$ has a limit point in G, then $f \equiv 0$ in G.

Proof. Let a be a limit point of $Z:=\{z \in G: f(z)=0\}$. Then we can find a sequence $\left\{z_{n}\right\}$ in $G, z_{n} \rightarrow a$ and $f\left(z_{n}\right)=0$. Since

$$
0=\lim _{n \rightarrow \infty} f\left(z_{n}\right)=f(a),
$$

so $f(a)=0$. Theorem 1.5 .1 implies that for some $R>0$ such that $B(a, R) \subset G$, we have

$$
f(z)=\sum_{k=0}^{\infty} a_{k}\left(z-a_{k}\right)^{k}
$$

Suppose that there is an integer N where $0=a_{0}=a_{1}=\cdots=a_{N-1}$ but $a_{N} \neq 0$. Then we can write

$$
f(z)=(z-a)^{N} g(z)
$$

in $B(a, R)$ where g is analytic there and $g(a) \neq 0$. But since g is analytic and hence continuous in $B(a, R)$, we can find $0<r<R$ such that $g(z) \neq 0$ in $B(a, r)$. But since a is a limit point, so there is a $b \in B(a, r)$ different from a such that $0=f(b)=(b-a)^{N} g(b) \neq 0$. A contradiction. So no such integer N can be found. Thus, the set

$$
A:=\left\{z \in G: f^{(n)}(z)=0 \text { for all } n \geq 0\right\}
$$

is non-empty.
We next show that A is both closed and open. Let z belongs to the closure of A, and $\left\{z_{k}\right\} \subset A$ converges to z. Since each $f^{(n)}$ is continuous, it follows that $0=\lim _{k \rightarrow \infty} f^{(n)}\left(z_{k}\right)=f^{(n)}(z)$. Hence $z \in A$ and A is closed.

Let $a \in A$ and $B(a, R) \subset G$. Then $f(z)=\sum a_{k}(z-a)^{k}$ in $B(a, R)$, and $f^{(n)}(a)=0$ for each n. So $f(z)=0$ in $B(a, R)$. Then clearly $B(a, R) \subset A$. Hence A is open. Since A is non-empty, so $A=G$.

Corollary 1.7.1.1 (Identity Theorem). If $f=g$ on a sequence of points having a limit point in G, then $f \equiv g$ on G.

Theorem 1.7.2 (Maximum Modulus Theorem). Let G be a region and $f: G \rightarrow \mathbb{C}$ is analytic. If there exists a point $a \in G$ such that $|f(z)| \leq|f(a)|$ for all $z \in G$, then f is constant.

Proof. Let z_{0} be an arbitrary point in G such that $\left|f\left(z_{0}\right)\right|=|f(a)|$, $B\left(z_{0}, r\right) \subset G, \gamma(t)=z_{0}+r e^{i t}, t \in[0,2 \pi]$.

By Cauchy's integral formula,

$$
\begin{aligned}
f\left(z_{0}\right) & =\frac{1}{2 \pi i} \int_{\gamma} \frac{f(\zeta)}{\zeta-z_{0}} d \zeta \\
& =\frac{1}{2 \pi i} \int_{0}^{2 \pi} \frac{f\left(z_{0}+r e^{i t}\right)}{r e e^{i t}} i r e^{i t} d t \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(z_{0}+r e^{i t}\right) d t
\end{aligned}
$$

We may suppose that $|f|$ is non-constant on $\partial B\left(z_{0}, r\right)$ for some $r>0$. Hence, there exists a $t_{0} \in[0,2 \pi]$ and $\delta>0$ such that

$$
\left|f\left(z_{0}+r e^{i t}\right)\right|<M=|f(a)| \quad \text { on }\left[t_{0}-\delta, t_{0}+\delta\right]
$$

Hence

$$
\begin{aligned}
M=\left|f\left(z_{0}\right)\right| \leq & \left|\frac{1}{2 \pi} \int_{t \in[0,2 \pi] \backslash\left[t_{0}-\delta, t_{0}+\delta\right]} f\left(z_{0}+r e^{i t}\right) d t\right| \\
& +\left|\frac{1}{2 \pi} \int_{t \in\left[t_{0}-\delta, t_{0}+\delta\right]} f\left(z_{0}+r e^{i t}\right) d t\right| \\
& =\frac{M}{2 \pi}(2 \pi-2 \delta)+\frac{M}{2 \pi} 2 \delta=M .
\end{aligned}
$$

A contradiction since $M \nless M$. Hence $|f| \equiv M$ in $B\left(z_{0}, r\right)$, then f is constant in $B\left(z_{0}, r\right)$ (Use $f^{\prime}=u_{x}+i v_{x}$ and Proposition 1.6.2). Now, since $B\left(z_{0}, r\right)$ is non-empty open subset of G, then by the Identity Theorem, f is constant on G.

Theorem 1.7.3 (Minimum Modulus Theorem). Let $f: G \rightarrow \mathbb{C}$ be analytic and G is a region. If there exists $a \in G$ such that $|f(z)| \geq$ $|f(a)|$ for all $z \in G$, then either f is a constant or $f(a)=0$ i.e. a is zero of f.

Proof. Exercise.

1.8 Branch of the Logarithm

Definition 1.8.1. Let G be a region and $f: G \rightarrow \mathbb{C}$ is continuous. We call $f(z)$, a branch of the logarithm if $e^{f(z)}=z$ for every $z \in G$.

If $e^{w}=z$, then we write $w=\log z=f(z)$. But $e^{w+2 \pi i k}=e^{w}=z$ for every integer k. Hence for each z, the equation $e^{w}=z$ has an infinite number of solution for $w=\log |z|+i(\arg z+2 \pi k)$. Let $G=\mathbb{C} \backslash\{x$: $x \leq 0\}$ and $-\pi<\arg z<\pi$. The function

$$
f(z)=\log |z|+i \arg z, \quad z \in G
$$

is called the principal branch of the logarithm. The other branches of the logarithm are given by

$$
f_{k}(z)=\log |z|+i \arg z
$$

for $(2 k-3) \pi<\arg z<(2 k-1) \pi$., $k \in \mathbb{Z} \backslash\{1\}$. (Principal branch $f=f_{1}$, i.e., $k=1$)

The principal branch of the logarithm is analytic on $\mathbb{C} \backslash\{x: x \leq 0\}$.
Proposition 1.8.2. Let $\gamma:[0,1] \rightarrow \mathbb{C}$ be a closed piecewise smooth curve and assume that $a \notin \gamma$. Then

$$
\frac{1}{2 \pi i} \int_{\gamma} \frac{d \zeta}{\zeta-a} \in \mathbb{Z}
$$

This proposition seems trivial since

$$
\int_{\gamma} \frac{d \zeta}{\zeta-a}=\int_{\gamma} d(\log (\zeta-a))=\int_{\gamma} d(\log |\zeta-a|)+i \int_{\gamma} d(\arg (\zeta-a)) .
$$

When γ has described a complete revolution, $\gamma(t)$ returns to its initial position, so the first integral $\int_{\gamma} d(\log |\zeta-a|)=0$; and $i \int_{\gamma} d(\arg (\zeta-a))$ gives $2 \pi i k$, where k is the number of the complete revolutions that γ around a. However, the function $\arg (\zeta-a)$ is not uniquely determined (multi-valued), so the above argument is not precise.

Proof. One of the easiest proofs available is to consider the function

$$
g(t)=\int_{0}^{t} \frac{\zeta^{\prime}(t)}{\zeta(t)-a} d t
$$

Note that

$$
g(1)=\int_{0}^{1} \frac{\zeta(t)}{\zeta(t)-a} d t=\int_{\gamma} \frac{d \zeta}{\zeta-a} .
$$

We aim to show that $\frac{e^{g(t)}}{\zeta(t)-a}$ is constant on $[0,1]$. Consider

$$
\begin{aligned}
\frac{d}{d t}\left(\frac{e^{g(t)}}{\zeta(t)-a}\right) & =\frac{g^{\prime}(t) e^{g}}{\zeta(t)-a}-\frac{\zeta^{\prime}(t) e^{g}}{(\zeta(t)-a)^{2}} \\
& =e^{g}\left(\frac{\zeta^{\prime}(t)}{(\zeta(t)-a)^{2}}-\frac{\zeta^{\prime}(t)}{(\zeta(t)-a)^{2}}\right) \\
& =0
\end{aligned}
$$

for $t \in[0,1]$. Thus

$$
\frac{e^{g(0)}}{\zeta(0)-a}=\frac{e^{g(1)}}{\zeta(1)-a} \Longrightarrow e^{g(0)}=e^{g(1)} .
$$

But $g(0)=0$, so $e^{g(1)}=1$.
Hence

$$
g(1)=\int_{0}^{1} \frac{\zeta^{\prime}(t)}{\zeta(t)-a} d t=\int_{\gamma} \frac{d \zeta}{\zeta-a}=2 \pi i k
$$

for some integer k. Then the result follows.

Definition 1.8.3. Let $\gamma:[0,1] \rightarrow \mathbb{C}$ be a closed and piecewise smooth curve, and $a \notin \gamma$. We define

$$
n(\gamma ; a)=\frac{1}{2 \pi i} \int_{\gamma} \frac{d \zeta}{\zeta-a}
$$

to be the index of γ with respect to a or the winding number of γ around a.

Suppose $\gamma(t):[0,1] \rightarrow \mathbb{C}$ is a curve, we define $-\gamma(t)=\gamma(1-t)$. If $\sigma:[0,1] \rightarrow \mathbb{C}$ is another curve such that $\gamma(1)=\sigma(0)$, then $\gamma+\sigma$ means

$$
(\gamma+\sigma)(t)= \begin{cases}\gamma(2 t), & 0 \leq t \leq \frac{1}{2} \\ \sigma(2 t-1), & \frac{1}{2}<t \leq 1\end{cases}
$$

It is left as an exercise to verify that
(i) $n(-\gamma ; a)=-n(\gamma ; a)$
(ii) $n(\gamma+\sigma ; a)=n(\gamma ; a)+n(\sigma ; a)$.

Proposition 1.8.4. Let $\gamma:[0,1] \rightarrow \mathbb{C}$ be a closed and piecewise smooth curve, and $a \notin \gamma$. Then $n(\gamma ; a)$ is constant for any a belongs to a bounded component of $\mathbb{C} \backslash \gamma$, and zero for a belongs to the unbounded component.

Remark. There is only one unbounded component since γ is a compact set.

Proof. Let a and b belong to the same component D of $\mathbb{C} \backslash \gamma$. Since $n(\gamma ; a)$ and $n(\gamma ; b)$ both equal to some integers, it suffices to prove $n(\gamma ; a)$ is continuous on D. (Then, $n(\gamma ; D)$ is connected, and since $n(\gamma ; D) \subset \mathbb{Z}, n(\gamma ; D)$ is a constant integer only.)

Let $d=\min _{\zeta \in \gamma}\{|\zeta-a|,|\zeta-b|\}$. Then, by definition,

$$
\begin{aligned}
|n(\gamma ; a)-n(\gamma ; b)| & =\left|\frac{1}{2 \pi i} \int_{\gamma}\left(\frac{1}{\zeta-a}-\frac{1}{\zeta-b}\right) d \zeta\right| \\
& =\frac{1}{2 \pi}\left|\int_{\gamma} \frac{a-b}{(\zeta-a)(\zeta-b)} d \zeta\right| \\
& \leq \frac{1}{2 \pi} \int_{\gamma} \frac{|a-b|}{|(\zeta-a)(\zeta-b)|}|d \zeta| \\
& \leq \frac{|a-b|}{2 \pi d^{2}} \int_{\gamma}|d \zeta| \\
& =\frac{|a-b|}{2 \pi d^{2}} l(\gamma) \rightarrow 0
\end{aligned}
$$

as $|a-b| \rightarrow 0$. Hence $n(\gamma ; a)$ is continuous on any components of $\mathbb{C} \backslash \gamma$.
For a belongs to the unbounded component of $\mathbb{C} \backslash \gamma$, let $d=$ $\min _{\zeta \in \gamma}\{|\zeta-a|\}$ By the above argument, we have

$$
\begin{aligned}
|n(\gamma ; a)| & =\frac{1}{2 \pi}\left|\int_{\gamma} \frac{d \zeta}{\zeta-a}\right| \\
& \leq \frac{1}{2 \pi d} l(\gamma)
\end{aligned}
$$

But $\min _{\zeta \in \gamma}\{|\zeta-a|\} \rightarrow \infty$ as $a \rightarrow \infty$. Hence, $|n(\gamma ; a)| \rightarrow 0$ as $a \rightarrow \infty$. Since $n(\gamma ; a)$ is constant and so $n(\gamma ; a)=0$ in this unbounded component because $n(\gamma ; a)$ was proved to be continuous.

1.9 Cauchy's Theorem

We next prove the general Cauchy Integral formula and Cauchy's theorem. In particular, we give conditions on $n(\gamma ; a)$ so that the Cauchy theorem holds.

Proposition 1.9.1. Let γ be a piecewise smooth curve and φ is a function continuous on γ. For each $m \geq 1$, define, for $z \notin \gamma$

$$
F_{m}(z)=\int_{\gamma} \frac{\varphi(\zeta)}{(\zeta-z)^{m}} d \zeta .
$$

Then, F_{m} is analytic on $\mathbb{C} \backslash \gamma$ and $F_{m}^{\prime}=m F_{m+1}$.
Proof. We first show that F_{m} is continuous on $\mathbb{C} \backslash \gamma$. Since γ is compact and φ is continuous on γ, we may let $M=\max _{z \in \gamma}|\varphi(z)|$.

Let a and b belong to the same component (if any) of $\mathbb{C} \backslash \gamma$. Then, as in the proof for $n(\gamma ; a)$,

$$
\begin{aligned}
\left|F_{m}(a)-F_{m}(b)\right| & =\left|\int_{\gamma}\left(\frac{\varphi(\zeta)}{(\zeta-a)^{m}}-\frac{\varphi(\zeta)}{(\zeta-b)^{m}}\right) d \zeta\right| \\
& \leq M \int_{\gamma}\left|\frac{1}{(\zeta-a)^{m}}-\frac{1}{(\zeta-b)^{m}}\right| \cdot|d \zeta| .
\end{aligned}
$$

So, it remains to estimate the function inside the integrand: Since

$$
A^{m}-B^{m}=(A-B)\left(A^{m-1}+A^{m-2} B+\cdots+A B^{m-2}+B^{m-1}\right) .
$$

Putting $A=\frac{1}{\zeta-a}$ and $B=\frac{1}{\zeta-b}$, and let $d=\min _{\zeta \in \gamma}\{|\zeta-a|, \mid \zeta-$ $b \mid\}$, gives

$$
\left|F_{m}(a)-F_{m}(b)\right| \leq m M \frac{|a-b|}{d^{m+1}} l(\gamma) \rightarrow 0 \quad \text { as } a \rightarrow b
$$

Hence, F_{m} is continuous on $\mathbb{C} \backslash \gamma$.
Let $a, b \in \mathbb{C} \backslash \gamma$ and A, B as defined above. Then

$$
\begin{aligned}
\frac{F_{m}(a)-F_{m}(b)}{a-b}= & \frac{1}{a-b} \int_{\gamma} \varphi(\zeta)(A-B)\left(A^{m-1}+A^{m-2} B+\cdots+A B^{m-2}+B^{m-1}\right) d \zeta \\
= & \frac{1}{a-b} \int_{\gamma} \varphi(\zeta)(a-b) A B\left(A^{m-1}+A^{m-2} B+\cdots\right. \\
& \left.\quad+A B^{m-2}+B^{m-1}\right) d \zeta \\
= & \int_{\gamma} \varphi(\zeta)\left(A^{m} B+A^{m-1} B^{2}+\cdots+A B^{m}\right) d \zeta \\
\longrightarrow & \int_{\gamma} \varphi(\zeta)\left(B^{m+1}+B^{m+1}+\cdots+B^{m+1}\right) d \zeta \\
= & m \int_{\gamma} \varphi(\zeta) B^{m+1} d \zeta \\
= & m \int_{\gamma} \frac{\varphi(\zeta)}{(\zeta-b)^{m+1}} d \zeta \\
= & F_{m}^{\prime}(b)
\end{aligned}
$$

as $a \rightarrow b$.
Hence, F_{m} is analytic with its derivative given at the end of the above expression.

Theorem 1.9.2 (Cauchy's Integral Formula - First version). Let G be an open subset of \mathbb{C} and $f: G \rightarrow \mathbb{C}$ be analytic. If γ is a closed piecewise smooth curve in G such that $n(\gamma ; w)=0$ for all $w \in \mathbb{C} \backslash G$, then for $a \in G \backslash \gamma$,

$$
n(\gamma ; a) f(a)=\frac{1}{2 \pi i} \int_{\gamma} \frac{f(\zeta)}{\zeta-a} d \zeta .
$$

Proof. Define $\varphi: G \times G \rightarrow \mathbb{C}$ by

$$
\varphi(z, w)= \begin{cases}\frac{f(z)-f(w)}{z-w}, & \text { if } z \neq w \\ f^{\prime}(z), & \text { if } z=w\end{cases}
$$

(Exercise: Show φ is continuous and $z \mapsto \varphi(z, w)$ is analytic.)

Let $H=\{w \in \mathbb{C}: n(\gamma ; w)=0\}$. Then H is open since $n(\gamma ; w)$ is continuous on $\mathbb{C} \backslash \gamma$ and integer-valued i.e., $\{0\}$ is open in \mathbb{Z}. From the definition of G and H, we deduce that $\mathbb{C}=G \cup H$ and $G \cap H \neq \emptyset$. Define $g: \mathbb{C} \rightarrow \mathbb{C}$ by

$$
g(z)= \begin{cases}\int_{\gamma} \varphi(z, \zeta) d \zeta, & \text { if } z \in G \\ \int_{\gamma} \frac{f(\zeta)}{\zeta-z} d \zeta, & \text { if } z \in H\end{cases}
$$

Next, we verify that g is well-defined on $G \cap H$.

$$
\begin{aligned}
\int_{\gamma} \varphi(z, \zeta) d \zeta & =\int_{\gamma} \frac{f(z)-f(\zeta)}{z-\zeta} d \zeta \\
& =\int_{\gamma} \frac{f(\zeta)-f(z)}{\zeta-z} d \zeta \\
& =\int_{\gamma} \frac{f(\zeta}{\zeta-z} d \zeta-f(z) \cdot 2 \pi i n(\gamma ; z) \\
& =\int_{\gamma} \frac{f(\zeta)}{\zeta-z} d \zeta
\end{aligned}
$$

since $z \in G \cap H$. Hence, g is a well-defined function on \mathbb{C}.
It follows from Proposition 1.9.1 that g is an entire function, and from Proposition 1.8.4, H must contain the unbounded component of $\mathbb{C} \backslash \gamma$ (because if $n(\gamma ; w)=0$, then $w \in H)$. For z belongs to the unbounded component, we have

$$
\lim _{z \rightarrow \infty} g(z)=\lim _{z \rightarrow \infty} \int_{\gamma} \frac{f(\zeta)}{\zeta-z} d \zeta=\int_{\gamma} f(\zeta) \lim _{z \rightarrow \infty} \frac{1}{\zeta-z} d \zeta=0
$$

since f is bounded on γ and $\lim _{z \rightarrow \infty} \frac{1}{\zeta-z}=0$ uniformly.
So, there exists an $R>0$ such that $|g(z)| \leq 1$ for $|z| \geq R$, and since g is bounded on the compact set $\bar{B}(0, R)$, then g is a bounded entire function. Hence g is constant by Liouville's Theorem. Thus, $g(z)=0$ for all $z \in \mathbb{C}$.

That is, for $a \in G \backslash \gamma$,

$$
\begin{aligned}
0=g(a) & =\int_{\gamma} \frac{f(\zeta)-f(a)}{\zeta-a} d \zeta \\
& =\int_{\gamma} \frac{f(\zeta)}{\zeta-a}-f(a) \cdot 2 \pi i n(\gamma ; a)
\end{aligned}
$$

This completes the proof.
Theorem 1.9.3 (Cauchy's Integral Formula - Second version). Let G be an open subset of \mathbb{C} and $f: G \rightarrow \mathbb{C}$ is an analytic function. If $\gamma_{1}, \ldots, \gamma_{m}$ are closed piecewise smooth curves in G such that

$$
n\left(\gamma_{1} ; w\right)+\cdots+n\left(\gamma_{m} ; w\right)=0
$$

for all $w \in \mathbb{C} \backslash G$, then for all $a \in G \backslash \gamma$ and $\gamma=\gamma_{1} \cup \cdots \cup \gamma_{m}$,

$$
f(a) \sum_{k=1}^{m} n\left(\gamma_{k} ; a\right)=\sum_{k=1}^{m} \frac{1}{2 \pi i} \int_{\gamma_{k}} \frac{f(\zeta)}{\zeta-a} d \zeta .
$$

Proof. The proof is similar to that of Theorem 1.9 .2 except to define suitable φ, H and g.

Theorem 1.9.4 (Cauchy's Theorem - First version). Let G be an open subset of \mathbb{C} and $f: G \rightarrow \mathbb{C}$ is an analytic function. If $\gamma_{1}, \ldots, \gamma_{m}$ are closed piecewise smooth curves in G such that

$$
n\left(\gamma_{1} ; w\right)+\cdots+n\left(\gamma_{m} ; w\right)=0
$$

for all $w \in \mathbb{C} \backslash G$, then

$$
\sum_{k=1}^{m} \int_{\gamma_{k}} f=0 .
$$

Proof. Put $f(z)(z-a)$ instead of $f(z)$, and then apply Theorem 1.9.3.

Remark. We note that Cauchy's theorem was published around 1825, while Goursat's theorem was around 1900.

Theorem 1.9.5 (Morera's Theorem). Let G be a region and $f: G \rightarrow \mathbb{C}$ be a continuous function such that

$$
\int_{T} f=0
$$

for every closed triangular curve T in G, then f is analytic on G.
Remark. A closed triangular curve is a closed three sides polygon.
Proof. It suffices to show that f has a primitive on each open disks in G. In fact, we may assume $G=B(a, R)$ since G is open.

Let $z \in B(a, R)$ and define

$$
F(z)=\int_{[a, z]} f
$$

Suppose $z_{0} \in B(a, R)$, then

$$
F(z)=\left(\int_{\left[a, z_{0}\right]}+\int_{\left[z_{0} \cdot z\right]}\right) f
$$

Figure 1.1: $B(a, R)$
So

$$
\begin{aligned}
\frac{F(z)-F\left(z_{0}\right)}{z-z_{0}} & =\frac{1}{z-z_{0}} \int_{\left[z_{0}, z\right]} f \\
& =\frac{1}{z-z_{0}} \int_{\left[z_{0}, z\right]}\left(f(\zeta)-f\left(z_{0}\right)\right) d \zeta+f\left(z_{0}\right)
\end{aligned}
$$

Hence

$$
\begin{aligned}
\left|\frac{F(z)-F\left(z_{0}\right)}{z-z_{0}}-f\left(z_{0}\right)\right| & \leq \sup _{\zeta \in\left[z, z_{0}\right]}\left|f(\zeta)-f\left(z_{0}\right)\right| \cdot\left|\frac{1}{z-z_{0}}\right| \int_{\left[z_{0}, z\right]}|d \zeta| \\
& =\sup _{\zeta \in\left[z, z_{0}\right]}\left|f(\zeta)-f\left(z_{0}\right)\right| \\
& \rightarrow 0 \quad \text { as } z \rightarrow z_{0}
\end{aligned}
$$

Hence, $F^{\prime}\left(z_{0}\right)=f\left(z_{0}\right)$. But F must be infinitely differentiable, so f is analytic on $B(a, R)$.

1.10 Homotopy version of Cauchy's Theorem

Definition 1.10.1. Let $\gamma_{0}, \gamma_{1}:[0,1] \rightarrow G$ be two closed piecewise smooth curves in a region G. Then we say that γ_{0} is homotopic to γ_{1} is there is a continuous function $\Gamma:[0,1] \times[0,1] \rightarrow G$ such that

$$
\begin{aligned}
& \Gamma(s, 0)=\gamma_{0}(s), \quad \Gamma(s, 1)=\gamma_{1}(s), \quad 0 \leq s \leq 1 ; \\
& \Gamma(0, t)=\Gamma(1, t), \quad 0 \leq t \leq 1 .
\end{aligned}
$$

Figure 1.2: γ_{0} is homotopic to γ_{1}

Remark. (i) If we write $\Gamma(s, t)=\gamma_{t}(s)$. Then the above definition does not require $\gamma_{t}(s)$ to be piecewise smooth.
(ii) If γ_{0} is homotopic to γ_{1}, we write $\gamma_{0} \sim \gamma_{1}$. Note that \sim defines equivalent classes on closed piecewise smooth curves in G :
(a) $\gamma_{0} \sim \gamma_{0}$ by the identity map,
(b) If $\gamma_{0} \sim \gamma_{1}$, then $\Lambda(s, t)=\Gamma(s, 1-t)$ would give $\gamma_{1} \sim \gamma_{0}$,
(c) If $\gamma_{0} \sim \gamma_{1}$ and $\gamma_{1} \sim \gamma_{2}$ with homotopy Γ and Λ respectively, then the homotopy $\Psi:[0,1] \times[0,1] \rightarrow G$ given by

$$
\Psi(s, t)= \begin{cases}\Gamma(s, 2 t), & 0 \leq t \leq \frac{1}{2} \\ \Lambda(s, 2 t-1), & \frac{1}{2}<t \leq 1\end{cases}
$$

shows that $\gamma_{0} \sim \gamma_{1}$.
Definition 1.10.2. A closed piecewise smooth curve γ is said to be homotopic to zero if γ is homotopic to a constant curve (written $\gamma \sim 0$).
Definition 1.10.3. A region G is a-star shaped if the line segment $[a, z]$ lies entirely in G for each $z \in G$. We simply call G star shaped if G is 0 -star shaped.

Figure 1.3: a-star shaped
Example 1.10.4. Let G be an a-star shaped region. Then every closed piecewise smooth curve γ in G is homotopic to the constant curve $\gamma_{0}(t)=a$.
Solution. Let

$$
\begin{aligned}
\Gamma(s, t) & =t \gamma_{0}(s)+(1-t) \gamma_{1}(s) \\
& =t a+(1-t) \gamma_{1}(s)
\end{aligned}
$$

for $0 \leq s, t \leq 1$.
It is easy to see that Γ is a homotopy between γ_{1} and γ_{0}.

Remark. A convex region is a-star shaped with respect to any a that belongs to G.

Definition 1.10.5. If $\gamma_{0}, \gamma_{1}:[0,1] \rightarrow G$ are two piecewise smooth curves in a region G such that $\gamma_{0}(0)=a=\gamma_{1}(1), \gamma_{0}(1)=b=\gamma_{1}(1)$. We say γ_{0} is (fixed end points) homotopic to $\gamma_{1}\left(\gamma_{0} \sim \gamma_{1}\right)$ if there exists a continuous map $\Gamma:[0,1]^{2} \rightarrow G$ such that

$$
\begin{gathered}
\Gamma(s, 0)=\gamma_{0}(s), \quad \Gamma(s, 1)=\gamma_{1}(s), \quad 0 \leq s \leq 1 ; \\
\Gamma(0, t)=a, \quad \Gamma(1, t)=b, \quad 0 \leq t \leq 1 .
\end{gathered}
$$

Figure 1.4: γ_{0} is (fixed end points) homotopic to γ_{1}
Similarly, it can be verified that \sim is an equivalence relation on the piecewise smooth curves satisfying the above definition. (See Conway p.93)

And note again that, the intermediate path $\gamma_{s}(t)=\Gamma(s, t)$ for $0 \leq$ $s \leq 1$ and t fixed, need not be piecewise smooth.
Theorem 1.10.6 (Cauchy's Theorem - Second version). Suppose f : $G \rightarrow \mathbb{C}$ is analytic and γ is a closed piecewise smooth curve in G such that $\gamma \sim 0$, then

$$
\int_{\gamma} f=0 .
$$

Theorem 1.10.7 (Cauchy's Theorem - Third version). Suppose f : $G \rightarrow \mathbb{C}$ is analytic and $\gamma_{0}, \gamma_{1}:[0,1] \rightarrow G$ are two closed piecewise smooth curves such that $\gamma_{0} \sim \gamma_{1}$, then

$$
\int_{\gamma_{0}} f=\int_{\gamma_{1}} f .
$$

Proof. Let γ_{0} and γ_{1} be as in the hypothesis, and $\Gamma: I^{2} \rightarrow G(I=$ $[0,1]$) be the corresponding continuous function. Since I^{2} is compact, Γ must be uniformly continuous on I^{2}. Thus $\Gamma\left(I^{2}\right)$ is compact and is a proper subset of G. Hence

$$
d\left(\Gamma\left(I^{2}\right), \mathbb{C} \backslash G\right)=\inf \left\{|x-y|: x \in \Gamma\left(I^{2}\right), y \in \mathbb{C} \backslash G\right\}=r>0 .
$$

There exists an integer $n>0$ such that

$$
\left|\Gamma\left(s^{\prime}, t^{\prime}\right)-\Gamma(s, t)\right|<r
$$

whenever $\left|\left(s^{\prime}, t^{\prime}\right)-(s, t)\right|^{2}<\frac{4}{n^{2}}$ and $\left(s^{\prime}, t^{\prime}\right),(s, t) \in I^{2}$.
Set

$$
J_{j k}=\left[\frac{j}{n}, \frac{j+1}{n}\right] \times\left[\frac{k}{n}, \frac{k+1}{n}\right] \quad(0 \leq j, k \leq n-1)
$$

(this forms a partition of $I \times I$) and

$$
\zeta_{j k}=\Gamma\left(\frac{j}{n}, \frac{k}{n}\right) \quad(0 \leq j, k \leq n) .
$$

As the diameter (= diagonal) of $J_{j k}$ is $\sqrt{\frac{1}{n^{2}}+\frac{1}{n^{2}}}=\frac{\sqrt{2}}{n}<\frac{2}{n}$, we must have $\Gamma\left(J_{j k}\right) \subset B\left(\zeta_{j k}, r\right)$ for $0 \leq j, k \leq n-1$. ($\cup_{j k} B\left(\zeta_{j k}, r\right)$ forms an open cover of $\Gamma\left(I^{2}\right)$; also it is a proper subset of G by the choice of $r>0$.)

Let

$$
Q_{k}=\left[\zeta_{0 k}, \zeta_{1 k}, \ldots, \zeta_{n k]}\right.
$$

be the closed polygon (since $\zeta_{0 k}=\zeta_{n k}$) for $0 \leq k \leq n$.
We will first show that

$$
\int_{\gamma_{0}} f=\int_{Q_{0}} f
$$

and

$$
\int_{Q_{n}} f=\int_{\gamma_{1}} f,
$$

then

$$
\int_{Q_{k}} f=\int_{Q_{k+1}} f \quad(0 \leq k \leq n-1) .
$$

Thus

$$
\int_{\gamma_{0}} f=\int_{Q_{0}} f=\cdots=\int_{Q_{k}} f=\cdots=\int_{Q_{n}} f=\int_{\gamma_{1}} f .
$$

Let

$$
P_{j k}=\left[\zeta_{j k}, \zeta_{j+1, k}, \zeta_{j+1, k+1}, \zeta_{j, k+1}, \zeta_{j k}\right]
$$

be a closed polygon. (See Figure 1.5)

Figure 1.5: $P_{j k}$
But $\Gamma\left(J_{j k}\right) \subset B\left(\zeta_{j k}, r\right)$, hence $P_{j k} \subset B\left(\zeta_{j k}, r\right)$ in which f is analytic. So

$$
\int_{P_{j k}} f=0 \quad(0 \leq j, k \leq n-1)
$$

by Theorem 1.5.3.
We now show $\int_{\gamma_{0}} f=\int_{Q_{0}} f$, where

$$
Q_{0}=\left[\zeta_{00}, \zeta_{10}, \ldots, \zeta_{n 0}\right] .
$$

Let $\sigma_{j}(s)=\gamma_{0}(s)$ for $\frac{j}{n} \leq s \leq \frac{j+1}{n},(0 \leq j \leq n-1)$. (See Figure
Clearly $\sigma_{j}+\left[\zeta_{j+1,0}, \zeta_{j 0}\right]$ is a closed piecewise smooth curve in $B\left(\zeta_{j 0}, r\right)$ and so

$$
\int_{\sigma_{j}+\left[\zeta_{j+1,0}, \zeta_{j 0}\right]} f=0 .
$$

Figure 1.6: $\sigma_{j}(s)$

That is

$$
\int_{\sigma_{j}} f=-\int_{\left[\zeta_{j+1,0}, \zeta_{j 0}\right]} f=\int_{\left[\zeta_{j 0}, \zeta_{j+1,0}\right]} f
$$

So

$$
\int_{\gamma_{0}} f=\sum_{j=0}^{n-1} \int_{\sigma_{j}} f=\sum_{j=0}^{n-1} \int_{\left[\zeta_{j 0}, \zeta_{j+1,0}\right]} f=\int_{Q_{0}} f .
$$

Similarly, we can prove $\int_{\gamma_{1}} f=\int_{Q_{n}} f$. Finally, we show $\int_{Q_{k}} f=$ $\int_{Q_{k+1}} f \quad(0 \leq k \leq n-1)$. Clearly we have $0=\sum_{j=0}^{n-1} \int_{P_{j k}} f$.

Figure 1.7: $P_{j k}$ and $P_{j+1, k}$
It follows from the Figure 1.7 that

$$
\int_{\left[\zeta_{j+1, k}, \zeta_{j+1, k+1}\right]} f
$$

of $\int_{P_{j k}} f$ cancels the

$$
\int_{\left[\zeta_{j+1, k+1}, \zeta_{j+1, k]}\right]} f
$$

of $\int_{P_{j+1, k}} f$. Thus

$$
0=\sum_{j=0}^{n-1} \int_{P_{j k}} f=\int_{Q_{k}} f-\int_{Q_{k+1}} f .
$$

Theorem 1.10.8. Let γ be a closed piecewise smooth curve in G with $\gamma \sim 0$. Then $n(\gamma ; a)=0$ for all $a \in \mathbb{C} \backslash G$.
Proof. The proof follows from Theorem 1.10.6. Since $\frac{1}{z-a}$ is analytic on G if $a \in \mathbb{C} \backslash G$,

$$
n(\gamma ; a)=\frac{1}{2 \pi i} \int_{\gamma} \frac{1}{\zeta-a} d \zeta=0 .
$$

We note that the converse of Theorem 1.9.8 is not true. That is, there exist a γ such that $n(\gamma ; a)=0$ for all $a \in \mathbb{C} \backslash G$ but it is not true that $\gamma \sim 0$. (See exercise). Thus Theorem 1.9 .2 and 1.9 .3 are more general than Theorem 1.10.6 and 1.10.7.

Theorem 1.10.9. If γ_{0} and γ_{1} are two piecewise smooth curves joining a to b and $\gamma_{0} \sim \gamma_{1}$, then

$$
\int_{\gamma_{0}} f=\int_{\gamma_{1}} f .
$$

Proof. Since $\gamma_{0} \sim \gamma_{1}$, so there exists a continuous map $\Gamma: I^{2} \rightarrow \mathbb{C}$ such that

$$
\begin{gathered}
\Gamma(s, 0)=\gamma_{0}(s), \quad \Gamma(s, 1)=\gamma_{1}(s), \quad 0 \leq s \leq 1 \\
\Gamma(0, t)=a, \quad \Gamma(1, t)=b, \quad 0 \leq t \leq 1
\end{gathered}
$$

Figure 1.8: $\gamma_{0} \sim \gamma_{1}$
Because $\gamma_{0}-\gamma_{1}$ is a closed piecewise smooth curve, we define

$$
\gamma(s)= \begin{cases}\gamma_{0}(3 s), & 0 \leq s \leq \frac{1}{3} \\ b, & \frac{1}{3}<s \leq \frac{2}{3} \\ \gamma_{1}(3-3 s), & \frac{2}{3}<s \leq 1\end{cases}
$$

Next we show $\gamma \sim 0$ by claiming that $\Lambda: I^{2} \rightarrow G$ is a suitable function:

$$
\Lambda(s, t)= \begin{cases}\Gamma(3 s(1-t), t), & 0 \leq s \leq \frac{1}{3} \\ \Gamma(1-t, 3 s-1+2 t-3 s t), & \frac{1}{3}<s \leq \frac{2}{3} \\ \gamma_{1}((3-3 s)(1-t)), & \frac{2}{3}<s \leq 1\end{cases}
$$

Note that

$$
\Lambda(s, t)=\gamma_{t}(s), \quad \Lambda(s, 0)=\gamma_{0}-\gamma_{1}, \quad \Lambda(s, 1)=a=b
$$

It is easy to see that Λ is continuous at $s=\frac{1}{3}$; and at $s=\frac{2}{3}$ because $\Gamma(1-t, 1)=\gamma_{1}(1-t)$. So, Λ is continuous on I^{2}.

Hence

$$
0=\int_{\gamma} f=\int_{\gamma_{0}} f-\int_{\gamma_{1}} f .
$$

Definition 1.10.10. An open set G is called simply connected if it is connected and every closed curve in G is homotopic to zero (i.e., $\gamma \sim 0$).

Figure 1.9: $\Lambda(s, t)$ and $[0,1-t] \times[t, 1]$
So we have the following version of Cauchy's Theorem.
Theorem 1.10.11 (Cauchy's Theorem - Fourth version). If G is simply connected, then $\int_{\gamma} f=0$ for every closed piecewise smooth curve and every analytic f.

The notion of simply connected region lies much deeper than it appears. We shall study this in a more detailed way in a later chapter (pending). Here we chiefly want to prove some immediate consequences of analytic function defined on simply connected region.

Theorem 1.10.12. Suppose the region G is simply connected, and $f: G \rightarrow \mathbb{C}$ is analytic. Then f has a primitive on G.

Proof. Let $a \in G$ and $\gamma:[0,1] \rightarrow G$ be a piecewise smooth curve (if closed, then by Theorem 1.5.3 immediately) in G where $\gamma(0)=a$.

Figure 1.10: $\gamma_{0}-\gamma_{1}$

Define an expression $F(z)=\int_{\gamma} f(\zeta) d \zeta$. We first verify that F is well-defined.

Since $\gamma_{0}-\gamma_{1} \sim 0$, Cauchy's Theorem implies that

$$
\int_{\gamma_{0}-\gamma_{1}} f d \zeta=\int_{\gamma_{0}} f d \zeta-\int_{\gamma_{1}} f d \zeta=0
$$

Hence F is independent on the choice of γ. Thus F is a well-defined function.

To show F is analytic and $F^{\prime}=f$, we consider $r>0$ so small such that $B\left(z_{0}, r\right) \subset G$. Replace γ by $\gamma+\left[z_{0}, z\right]$ in F :

$$
F(z)=\int_{\gamma+\left[z_{0}, z\right]} f
$$

Then we have

$$
\frac{F(z)-F\left(z_{0}\right)}{z-z_{0}}-f\left(z_{0}\right)=\frac{1}{z-z_{0}} \int_{\left[z_{0}, z\right]}\left(f(\zeta)-f\left(z_{0}\right)\right) d \zeta
$$

By the similar argument in the proof of Morera's Theorem, we can deduce that $F^{\prime}=f$ and F is analytic.

The next result lies deeper.
Theorem 1.10.13. Let G be simply connected and $f: G \rightarrow \mathbb{C}$ be an analytic function such that $f(z) \neq 0$ for any $z \in G$. Then there is an analytic function $g: G \rightarrow \mathbb{C}$ such that $f(z)=e^{g(z)}$. If $z_{0} \in G$ and $e^{w_{0}}=f\left(z_{0}\right)$, then we may choose g such that $g\left(z_{0}\right)=w_{0}$. So simply connected region implies every non-vanishing analytic function can have a logarithm.

Proof. Since f has no zeros, and $\frac{f^{\prime}}{f}$ is analytic on G. By Theorem 1.10.12, we let g to be a primitive of $\frac{f^{\prime}}{f}$. Consider

$$
\frac{d}{d z}\left(\frac{f}{e^{g}}\right)=\frac{f^{\prime}-g^{\prime} f}{e^{g}}=0
$$

Thus $f=($ constant $) e^{g}=e^{g+c}$, where c is a constant.
So, if $z_{0} \in G$ and $e^{w_{0}}=f\left(z_{0}\right)$, we may find a suitable integer k such that $w_{0}=g\left(z_{0}\right)+c+2 \pi k$. Now define $\widetilde{g}=g+c+2 \pi k$, which is the required function.

Remark. The converse of the above statement also hold, namely that, G is a simply connected region if every non-vanishing analytic function f can be represented as $f=e^{g}$ for same analytic function g on G. We refer to [1] or [3] for the detail.

1.11 Open Mapping Theorem

Definition 1.11.1. If γ is a closed piecewise smooth curve in G such that $n(\gamma ; w)=0$ for each $w \in \mathbb{C} \backslash G$. We call such curve homologous to zero $(\gamma \approx 0)$.

The following contour shows that although $\gamma \sim 0$ implies $\gamma \approx 0$, the converse is not true. One can verify that following figure has $\gamma \approx 0$ but $\gamma \nsim 0$ since $n(\gamma ; a)=0=n(\gamma ; b)$. The contour was first written down independently by C. Jordan (1887) and L. Pochhammer (1890).

Figure 1.11: Pochhammer contour

Remark. The Beta function is defined by the integral

$$
\begin{equation*}
B(x, y)=\int_{0}^{1} t^{x-1}(1-t)^{y-1} d t \tag{1.3}
\end{equation*}
$$

where $\Re(x)$ and $\Re(y)>0$ so that the integral converges. However, if we remove the restriction $\Re(x)$ and $\Re(y)>0$, then we can still compute the beta function via Pochhammer contour to
$B(x, y)=\int_{(\text {Pochhammer })}^{(1+, 0+, 1-, 0-)} t^{x-1}(1-t)^{y-1} d t=\frac{-e^{\pi i(x+y)} 4 \pi^{2}}{\Gamma(1-x) \Gamma(1-y) \Gamma(x+y)} d t$
See [9] for the detail.
By using Cauchy's Theorem, we shall see below some topological results of different natures.

Theorem 1.11.2. Let G be a region and $f: G \rightarrow \mathbb{C}$ analytic on G with zeros a_{1}, \ldots, a_{m} (counted with multiplicity). If γ is a closed piecewise smooth curve in G such that $a_{k} \notin \gamma$ for each k, and if $\gamma \approx 0$ in G, then

$$
\frac{1}{2 \pi i} \int_{\gamma} \frac{f^{\prime}}{f}(\zeta) d \zeta=\sum_{k=1}^{m} n\left(\gamma ; a_{k}\right)
$$

Proof. According to previous discussion,

$$
f(z)=\left(z-a_{1}\right) \cdots\left(z-a_{m}\right) g(z), \quad g(z) \neq 0, \quad z \in G
$$

Then for $z \neq a_{1}, \ldots, a_{m}$, we have

$$
\frac{f^{\prime}}{f}(z)=\frac{1}{z-a_{1}}+\cdots+\frac{1}{z-a_{m}}+\frac{g^{\prime}}{g}
$$

So

$$
\begin{aligned}
\frac{1}{2 \pi i} \int_{\gamma} \frac{f^{\prime}}{f}(\zeta) d \zeta & =\frac{1}{2 \pi i} \int_{\gamma} \frac{d \zeta}{\zeta-a_{1}}+\cdots+\frac{1}{2 \pi i} \int_{\gamma} \frac{d \zeta}{\zeta-a_{m}}+\int_{\gamma} \frac{g^{\prime}}{g} d \zeta \\
& =n\left(\gamma ; a_{1}\right)+\cdots+n\left(\gamma ; a_{m}\right)+\int_{\gamma} \frac{g^{\prime}}{g} d \zeta
\end{aligned}
$$

Since $\gamma \approx 0$ and $\frac{g^{\prime}}{g}$ is analytic on G, by the Cauchy Theorem - First version, we have $\int_{\gamma} \frac{g^{\prime}}{g} d \zeta=0$. This completes the proof.

Corollary 1.11.2.1. Let f, G and γ be as in the preceding theorem except that a_{1}, \ldots, a_{m} are the roots of $f(z)=\alpha$ (counted according to multiplicity). Then

$$
\frac{1}{2 \pi i} \int_{\gamma} \frac{f^{\prime}(\zeta)}{f(\zeta)-\alpha} d \zeta=\sum_{k=1}^{m} n\left(\gamma ; a_{k}\right)
$$

We next prove the important Open Mapping Theorem. But we first need the following theorem.

Theorem 1.11.3. Let $f: G \rightarrow \mathbb{C}$ be analytic where $f(a)=\alpha$. Suppose $f-\alpha$ has a zero of multiplicity m. Then we can find an $\epsilon>0$ and a $\delta>0$ such that for all ξ in $0<|\zeta-a|<\delta$, the equation $f(z)=\xi$ has exactly m simple roots in $0<|z-a|<\epsilon$. (A simple root of $f(z)=\xi$ is a zero of $f-\xi$ with multiplicity 1.)

Figure 1.12: $f: G \rightarrow \mathbb{C}, f(a)=\alpha$

Proof. Let

$$
d=\inf _{w \in \mathbb{C} \backslash G}\{|a-w|\}
$$

Since the zero a of $f-\alpha$ is isolated, we may choose $\epsilon<\frac{d}{2}$ such that $f(z)-\alpha \neq 0$ in $0<|z-a|<\epsilon$. Then we have the representation

$$
F(z)=f(z)-\alpha=(z-a)^{m} g(z)
$$

over the disk $B(a, \epsilon)$, where g is analytic and $g \neq 0$ there.
Let γ be the boundary of $B(a, \epsilon)$, and write $\sigma=f(\gamma)$. Since $\mathbb{C} \backslash \sigma$ is open, we can find a component of $\mathbb{C} \backslash \sigma$ containing α, and a number $\delta>0$ such that $B(\alpha, \delta)$ is a proper subset of this component.

Consider

$$
\begin{aligned}
n(\sigma ; \alpha) & =\frac{1}{2 \pi i} \int_{\sigma} \frac{d w}{w-\alpha} \\
& =\frac{1}{2 \pi i} \int_{\gamma} \frac{F^{\prime}(\zeta)}{F(\zeta)} d \zeta \\
& =\frac{1}{2 \pi i} \int_{\gamma} \frac{m}{\zeta-a} d \zeta+\frac{1}{2 \pi i} \int_{\gamma} \frac{g^{\prime}(\zeta)}{g(\zeta)} d \zeta \\
& =m+0=m
\end{aligned}
$$

since γ is closed and $g \neq 0$ on $B(a, \epsilon)$. (So $\frac{g^{\prime}}{g}$ has a primitive.)
According to Proposition 1.8.4, $n(\sigma ; \zeta)$ is a constant on this component for each $\xi \in B(\alpha, \delta) \backslash\{\alpha\}$. Theorem 1.11 .2 gives

$$
\begin{aligned}
n(\sigma ; \xi) & =\frac{1}{2 \pi i} \int_{\sigma} \frac{d w}{w-\xi} \\
& =\frac{1}{2 \pi i} \int_{\gamma} \frac{f^{\prime}(\zeta)}{f(\zeta)-\xi} d \zeta \\
& =\sum_{k=1}^{n} n\left(\gamma ; a_{k}\right)
\end{aligned}
$$

where a_{k} for $k=1, \ldots, n$ are the zero of $f-\xi$ in $B(a, \epsilon)$. But γ is a circle, so $n\left(\gamma ; a_{k}\right)=1$ for $1 \leq k \leq n$. But then we must have $m=n$. Theorem 1.11 .2 again implies that each of these zeros a_{k} is a simple root of $f-\xi$. This completes the proof.

We deduce immediately the following important result.
Theorem 1.11.4 (Open Mapping Theorem). Let f be a non-constant analytic function defined on a region G. Then f is an open mapping, i.e. f maps open sets onto open sets.

Proof. Suppose $U \subset G$ is open. To show $f(U)$ is open, it suffices to find a $\delta>0$ for each $\xi \in f(U)$ such that $B(\xi, \delta) \subset f(U)$. But this follows easily from Theorem 1.11.3 that there exist $\epsilon, \delta>0$ such that $B(a, \epsilon) \subset U, B(\alpha, \delta) \subset f(B(a, \epsilon))$. In fact, only part of the conclusion in Theorem 1.11.3 is used.

We now can give a second proof for the maximum modulus theorem.
Theorem 1.11.5 (Maximum Modulus Theorem). Let G be a region and $f: G \rightarrow \mathbb{C}$ is analytic. If there exists a point a in G such that $|f(z)| \leq|f(a)|$ for all $z \in G$, then f is constant.

Second proof (Topological argument). Suppose $\alpha \in f(G)$ and $f(a)=$ $\alpha, a \in G$. Then we can find a $\delta>0$ such that $B(\alpha, \delta) \subset f(G)$ by open mapping theorem. Hence there exist points in $B(\alpha, \delta)$ with modulus strictly longer than $|\alpha|$. Hence max $|f(z)|$ cannot occur at an interior of G.

We now consider the definition of an analytic function. Since the main result we use is Morera's Theorem, we could do this immediately after the proof of Morera's Theorem.

Recall that $f: G \rightarrow \mathbb{C}$ is analytic on G if f is continuously differentiable.

Theorem 1.11.6. Let G be an open set and $f: G \rightarrow \mathbb{C}$ is differentiable. Then f must be analytic on G. That is, f is differentiable if and only if f is continuous differentiable.

Proof. According to the statement of the theorem, it suffices to show f^{\prime} is continuous. But by using Morera's Theorem, we can show that f is analytic directly. See, for examples, [1], [3], [4] for a proof of Goursat's Theorem.

Remark. It follows from Theorem 1.11 .6 that we could define analytic function simply that f is merely differentiable (without continuity) at each point of an open set G.

1.12 Isolated Singularities

We have proved that every zero of an analytic function must be isolated; and as indicated that this property is not shared by real functions. The next natural question is about the singularities of analytic functions, i.e., the nature of points a such that $f(a)$ undefined, such as $f(a)=\infty$. The following is a list of examples:
1.

$$
\sqrt{z-1}
$$

has a (square-root) branch point at $z=1$.
2.

$$
\ln (z-1)
$$

has a logarithmic branch point at $z=1$.
3.

$$
e^{1 /(z-1)}
$$

has an essential singularity at $z=1$ (see below).
4.

$$
\tan [\ln (z-1)]
$$

has a non-isolated essential singularity at $z=1$ (see below).
We can deal with a small selection of singularities in this course. In the case where $f(a)=\infty$, the standard way to investigate the problem is to consider $F(z)=\frac{1}{f}$ at a i.e. $F(a)=\frac{1}{\infty}=0$. Since any zeros are isolated, we may assume F has no zeros in $0<|z-a|<\delta$ for some $\delta>0$. So F has only one zero at a i.e. any singularities of f with $f(a)=\infty$ must be isolated (just like the zeros). It turns out that there are only a few types of singularities for analytic functions, and the easiest way to study them is by considering the power series expansions of the functions around the singularities.

Theorem 1.12.1 (Laurent Series, 1843). Let $f(z)$ be analytic function in an annulus $\Gamma\left(a ; R_{1}, R_{2}\right)=\left\{z: R_{1}<|z-a|<R_{2}\right\}$. Then

$$
f(z)=\sum_{n=-\infty}^{\infty} a_{n}(z-a)^{n}
$$

and the series converges uniformly in $\Gamma\left(a ; R_{1}, R_{2}\right)=\left\{z: R_{1}<|z-a|<\right.$ $\left.R_{2}\right\}$. The coefficients a_{n} are given by the formula

$$
a_{n}=\frac{1}{2 \pi i} \int_{\gamma} \frac{f(\zeta)}{(\zeta-a)^{n+1}} d \zeta
$$

where γ is any circle in $\Gamma\left(a ; R_{1}, R_{2}\right)$ centred at a, and for all integers n.

Proof. Let r_{1} and r_{2} be two real numbers such that $R_{1}<r_{1}<r_{2}<R_{2}$, and σ be a straight line segment joining the boundary of $\Gamma\left(a ; r_{1}, r_{2}\right)$ and passing through a. Let $\gamma_{1}(t)=a+r_{1} e^{i t}$, and $\gamma_{2}(t)=a+r_{2} e^{i t}$ for $t \in[0,2 \pi]$, then any closed curve inside $\gamma:=\gamma_{2}+\sigma-\gamma_{1}-\sigma$ is ~ 0. By Cauchy's formula we obtain, for $z \in \Gamma\left(a ; r_{1}, r_{2}\right)$,

Figure 1.13: $\gamma:=\gamma_{2}+\sigma-\gamma_{1}-\sigma$

$$
\begin{aligned}
f(z)= & \frac{1}{2 \pi i} \int_{\gamma} \frac{f(\zeta)}{\zeta-z} d \zeta \\
= & \frac{1}{2 \pi i}\left(\int_{\gamma_{2}}+\int_{\sigma}-\int_{\gamma_{1}}-\int_{\sigma}\right) \frac{f(\zeta)}{\zeta-z} d \zeta \\
= & \frac{1}{2 \pi i} \int_{\gamma_{2}} \frac{f(\zeta)}{\zeta-z} d \zeta-\frac{1}{2 \pi i} \int_{\gamma_{1}} \frac{f(\zeta)}{\zeta-z} d \zeta \\
= & \frac{1}{2 \pi i} \int_{\gamma_{2}} \frac{f(\zeta)}{(\zeta-a)\left(1-\frac{z-a}{\zeta-a}\right)} d \zeta-\frac{1}{2 \pi i} \int_{\gamma_{1}} \frac{f(\zeta)}{(z-a)\left(1-\frac{\zeta-a}{z-a}\right)} d \zeta \\
= & \sum_{n=0}^{\infty}(z-a)^{n} \frac{1}{2 \pi i} \int_{\gamma_{2}} \frac{f(\zeta)}{(\zeta-a)^{n+1}} d \zeta \\
& +\sum_{n=0}^{\infty}(z-a)^{-n+1} \frac{1}{2 \pi i} \int_{\gamma_{1}} f(\zeta)(\zeta-a)^{n} d \zeta \\
= & \sum_{n=0}^{\infty} a_{n}(z-a)^{n}+\sum_{-\infty}^{-1}(z-a)^{n} \frac{1}{2 \pi i} \int_{\gamma_{1}} f(\zeta)(\zeta-a)^{-n-1} d \zeta \\
= & \sum_{n=0}^{\infty} a_{n}(z-a)^{n}+\sum_{-\infty}^{-1} a_{n}(z-a)^{n} \quad(\text { uniform convergence })
\end{aligned}
$$

where

$$
a_{n}=\frac{1}{2 \pi i} \int_{\gamma_{1}} \frac{f(\zeta)}{(\zeta-a)^{n+1}} d \zeta \quad \text { for } n \geq 0
$$

and

$$
a_{n}=\frac{1}{2 \pi i} \int_{\gamma_{2}} \frac{f(\zeta)}{(\zeta-a)^{n+1}} d \zeta \text { for } n \leq-1
$$

Let $\gamma=a+r e^{i t}$ for $t \in[0,2 \pi]$ and $R_{1}<r_{1}<r<r_{2}<R_{2}$. By constructing suitable contours involving γ, we may bring the above two line integrals over γ_{2} and γ_{1} respectively to the common curve γ. Thus we obtain the formula for a_{n} as stated in the theorem.

Remark. We remark that Laurent expansion of an analytic function in a punctured disk gives a beautiful generalization of Taylor expansion of analytic function.

Looking at the Laurent expansion of the functions in the above theorem, there are several possibilities:
(i) $a_{k}=0$ for all $k \leq-n$ for some integer $n>0$; the point a is called a pole of order n;
(ii) there are infinitely many $a_{k} \neq 0, k \leq-1$; the point a is called $a n$ essential singularity of f at a;
(iii) $a_{k}=0$ for all $k \leq-1$, then a is called a removable singularity of f at a.

- If f has a pole of order n, then

$$
f(z)=\sum_{k=1}^{n} \frac{a_{k}}{(z-a)^{k}}+\sum_{k=0}^{\infty} a_{k}(z-a)^{k}
$$

where the sum $\sum_{k=1}^{n} a_{k} /(z-a)^{k}$ is called the principal part of f at a, and $|f| \rightarrow \infty$ in the manner of $O\left(|z-a|^{-n}\right)$ as $z \rightarrow a$.

- If f has a removable singularity at a, then $f(z)=\sum_{k=0}^{\infty} a_{k}(z-a)^{k}$ in $0<|z-a|<\delta($ some $\delta>0)$. But we clearly have $f \rightarrow a_{0}$ as $z \rightarrow a$, thus we may define a new function at a by $g(z)=f(z)$ for $0<|z-a|<\delta$ and $g(z)=a_{0}$ at $z=a$. Then g is an analytic function in $|z-a|<\delta$. Thus f is almost analytic at a if it has a removable singularity at a and so from this point of view, this case is less interesting.

We shall discuss the implication of pole later. The behaviour of f near an essential singularity is very different. It is not true that $|f| \rightarrow \infty$ as $z \rightarrow a$.

Example 1.12.2. 1. The $\sin z / z$ has a removable singularity at $z=$ 0 .
2. The Euler-Gamma function $\Gamma(z)$ has simple poles at each of negative integers (see a later chapter).
3. The Weierstrass function $\wp(z)$ has double poles at the vertices of its fundamental period parallelograms (see a later chapter).
4. The $e^{1 / z}, \sin (1 / z)$ and $\cos (1 / z)$ all have an essential singularity at $z=0$.
5. Show the following Laurent expansion

$$
e^{\frac{1}{2}(z-1 / z)}=\sum_{-\infty}^{\infty} a_{k} z^{k}
$$

where

$$
a_{k}=\frac{1}{2 \pi} \int_{0}^{2 \pi} \cos (k \theta-\sin \theta) d \theta
$$

Theorem 1.12.3 (Casorita-Sokhotskii-Weierstrass-1864). Suppose f has an essential singularity at a. Then for every $\delta>0, \overline{f(\Gamma(a ; 0, \delta))}=$ \mathbb{C}.

The statement of this theorem is equivalent to given any $\rho, \epsilon>0$ and any $c \in \mathbb{C}$, there is a point z inside $0<|z-a|<\rho$ in which $|f(z)-c|<\epsilon$. That is to say, given any c, f tends to c as the limit as z tends to a through a suitable sequence of complex numbers.

Proof. We first show that f is unbounded on any punctured disks $\Gamma(a ; 0, \delta)$.

Suppose $|f(z)| \leq M$ for all $z \in \Gamma(a ; 0, \delta)$. Let $\gamma(t)=a+R e^{i t}$, $t \in[0,2 \pi]$, then

$$
\begin{aligned}
\left|a_{n}\right| & =\left|\frac{1}{2 \pi i} \int_{\gamma} \frac{f(\zeta)}{(\zeta-a)^{n+1}} d \zeta\right| \quad \text { for } n \leq-1 \\
& =\frac{1}{2 \pi}\left|\int_{0}^{2 \pi} \frac{f\left(a+R e^{i t}\right)}{\left(R e^{i t}\right)^{n+1}} i R e^{i t} d t\right| \\
& \leq M R^{-n} \\
& \rightarrow 0 \quad \text { as } R \rightarrow 0
\end{aligned}
$$

Hence $a_{n}=0$ for all $n \leq-1$ and f has a removable singularity at most. A contradiction.

Let us now assume that $\delta>0$ is chosen so small that $f-c$ has no zero in $\Gamma(a ; 0, \delta)$. Then the function $\phi(z)=\frac{1}{f-c}$ is analytic in $\Gamma(a ; 0, \delta)$. We claim that ϕ has an essential singularity at a. For if ϕ has a pole at a, then $f=\frac{1}{\phi}+c$ would be analytic at a; while if ϕ has a removable singularity, then f either has pole or analytic at a. This is a contradiction.

We now apply the result obtained above to ϕ i.e. ϕ is unbounded on $\Gamma(a ; o, \delta)$, so $|f-c|=0$ on $\Gamma(a ; 0, \delta)$. That is, given $\varepsilon>0$, there exists $z \in \Gamma(a ; 0, \delta)$ such that

$$
|\phi(z)|>1 / \varepsilon,
$$

i.e.,

$$
|f(z)-c|=|1 / \phi(z)|<\varepsilon
$$

So we could find a sequence $\varepsilon_{n}=1 / n$ and $\left\{\delta_{n}\right\}$ such that $\delta_{n} \rightarrow 0$ and $z_{n} \in \Gamma\left(a ; 0, \delta_{n}\right)$ so that $z_{n} \rightarrow a$ for and $f\left(z_{n}\right) \rightarrow c$. This completes the proof.

1.13 Rouché's theorem

This is an application of the argument principle discussed earlier.
Theorem 1.13.1 (E. Rouché). Let $f(z)$ and $g(z)$ be analytic in the domain D containing the closed, piece-wise smooth curve γ. Suppose

$$
|f(z)|>|g(z)|, \quad \text { for all } z \in \gamma
$$

Then $f(z)$ and $f(z)+g(z)$ have the same number of zeros, counting multiplicity, in the domain enclosed by γ.

Proof. It is evident from the assumption that $|f(z)|>|g(z)|$, for all $z \in \gamma$ that both $f(z)$ and $f(z)+g(z)$ do not have zeros on γ. The argument principle assets that

$$
\begin{aligned}
\Delta_{\gamma} \arg (f(z)+g(z)) & =\Delta_{\gamma} \arg \left[f(z)\left(1+\frac{g(z)}{f(z)}\right)\right] \\
& =\Delta_{\gamma} \arg f(z)+\Delta_{\gamma} \arg \left(1+\frac{g(z)}{f(z)}\right)
\end{aligned}
$$

But since

$$
1>\left|\frac{g(z)}{f(z)}\right|=\left|\left(\frac{g(z)}{f(z)}+1\right)-1\right|,
$$

on γ. It follows that $1+\frac{g(z)}{f(z)}$ can never circle around $w=0$. Hence

$$
\Delta_{\gamma} \arg (f+g)=\Delta_{\gamma} \arg f(z)+0
$$

Thus

$$
N_{f+g}=\frac{1}{2 \pi i} \int_{\gamma} \frac{(f+g)^{\prime}(z)}{f(z)+g(z)} d z=\frac{1}{2 \pi i} \int_{\gamma} \frac{f^{\prime}(z)}{f(z)} d z=N_{f}
$$

inside γ, as required.

Example 1.13.2. If $f(z)$ has zero of order two at a, and a pole of order 3 at b, where both a and b are inside γ, then

$$
\Delta_{\gamma} \arg f(z)=2 \pi(2-3)=-2 \pi .
$$

Example 1.13.3. Determine the number of roots of

$$
z^{7}-4 z^{3}+z-1=0
$$

in $|z|<1$.
On $|z|=1$, we write

$$
f(z)=-4 z^{3}, \quad g(z)=z^{7}+z-1 .
$$

Then $|f(z)|=4$ and $|g(z)| \leq|z|^{7}+|z|+1=3$ Hence $|f(z)|>|g(z)|$ on $|z|=1$. Thus Rouché's theorem asserts that $f+g$ has the same number of zeros as that of $f=-4 z^{3}$ in $|z|<1$. Thus there are 3 zeros inside $|z|<1$.

Exercise 1.13.1. Prove the open mapping theorem for analytic function by applying Rouché's theorem.

See next chapter for an hint.

Chapter 2

Conformal mappings

2.1 Stereographic Projection

One known problem with numbers in the complex plane $\mathbb{C}=\{(x, y)$: $-\infty<x, y<+\infty\}$ do not have an ordering like the real numbers on the real-axis \mathbb{R}. Riemann's (1826-1866) idea is to add an ideal point, denoted by ∞, to \mathbb{C} to obtain an extended complex plane $\widehat{\mathbb{C}}=$ $\mathbb{C} \cup\{\infty\}$. This construction can get around the problem of ordering. The resulting $\hat{\mathbb{C}}$ is compact which can be vasualised by the following construction.

We show that there is an one-to-one correspondence between

$$
S=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}: x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=1\right\}
$$

and $\widehat{\mathbb{C}}=\mathbb{C} \cup\{\infty\}$. The S is called the Riemann sphere.
Let $N=(0,0,1)$ and $z \in \mathbb{C}$. If we join the straight line between N and z, the straight line intersects the sphere S at $Z=\left(x_{1}, x_{2}, x_{3}\right)$ say. The construction clearly exhibits an one-to-one correspondence between $S \backslash\{N\}$ and \mathbb{C}. Note that $Z \rightarrow N$ as $|z| \rightarrow \infty$. We may associate N with ∞ and obtain the bijection between S and $\widehat{\mathbb{C}}$. This is known as the Stereographic projection.

Suppose $P\left(x_{1}, x_{2}, x_{3}\right)=Z \in S$ associates with $z=(x, y) \in \widehat{\mathbb{C}}$. Then we may associate z the notation P with coordinate ($x, y, 0$).

Figure 2.1: Riemann sphere
Then we have, by considering similar triangles formed by the line segment $N P$ and projecting onto the $x-, y-$ and z-axes respectively,

$$
\begin{equation*}
\frac{|N P|}{|N Z|}=\frac{x}{x_{1}}=\frac{y}{x_{2}}=\frac{1}{1-x_{3}}, \tag{2.1}
\end{equation*}
$$

so that

$$
z=x+i y=\frac{x_{1}+i x_{2}}{1-x_{3}}
$$

Then

$$
|z|^{2}=\frac{x_{1}^{2}+x_{2}^{2}}{\left(1-x_{3}\right)^{2}}=\frac{1+x_{3}}{1-x_{3}},
$$

hence

$$
x_{3}=\frac{|z|^{2}-1}{|z|^{2}+1}
$$

Then

$$
x_{1}=\frac{z+\bar{z}}{1+|z|^{2}}, \quad x_{2}=\frac{z-\bar{z}}{i\left(1+|z|^{2}\right)} .
$$

This clearly shows a one-one correspondence between $S \backslash(0,0,1)$ and \mathbb{C} with the $N=(0,0,1)$ corresponds to ∞. We also note that the upper hemisphere where $x_{3}>0$ corresponds to $|z|>1$ and the lower hemisphere of S corresponds to $|z|<1$. An advantage with this Riemann sphere model is that it puts all complex numbers including ' ∞ ' in equal footing since any number can be rotated to N and vice-verse.

From a geometrical viewpoint, it is evident that every (infinite) straight line in the z-plane is transformed into a circle on S that passes through the North pole N, and conversely. Hence, every circle (straight line included) on the z-plane corresponds to a circle/straight line on S.

Theorem 2.1.1. A circle on the Riemann sphere is mapped under the Stereographic projection into a circle (including a straight line) of the \mathbb{C}, and conversely.

Proof. Show that

1. a circle equation that lies on the Riemann sphere is an equation of the form

$$
a x_{1}+b x_{2}+c x_{3}=d
$$

subject to $0 \leq c<1$ and $a^{2}+b^{2}+c^{2}=1$ (this is the intersection of the plane and the unit sphere).
2. the above equation can be rewritten in the form

$$
a(z+\bar{z})-i b(z-\bar{z})+c\left(|z|^{2}-1\right)=d\left(|z|^{2}+1\right)
$$

3. the above equation can be further rewritten into the form

$$
(d-c)\left(x^{2}+y^{2}\right)-2 a x-2 b y+d+c=0,
$$

which is clearly a circle equation in the \mathbb{C} and it becomes a straight line. equation if and only if $c=d$.

That is, a circle on the Riemann sphere S corresponds to either a circle or a straight line on \mathbb{C}. In the case the circle on S passes through the North pole $N=(0,0,1)$, then the corresponding straight line (also considered as an unbounded circle passes through) to ∞.

Exercise 2.1.1. Show that if z and w are two points in \mathbb{C} so that their images lie on two diametrically opposite points on the Riemann sphere, then

$$
w \bar{z}+1=0 .
$$

Theorem 2.1.2. The stereographic projection is isogonal (i.e., the mapping preserves angles).

Proof. The statement of the theorem means that the tangents of two curves in the \mathbb{C} intersect at point z_{0} is equal to the angle made by two tangents at the corresponding intersection point of two image curves on the Riemann sphere. We shall make two assumptions:

1. that the Stereographic projection preserves tangents. We skip the detail verification of this fact. But this is not difficult to see since the Stereographic projection is a smooth map,
2. that without loss of generality that the two curves in \mathbb{C} are (infinite) straight lines.

Suppose the two straight line equations are given by

$$
\begin{align*}
a_{1} x+a_{2} y+a_{3} & =0 \quad\left(x_{3}=0\right) \tag{2.2}\\
b_{1} x+b_{2} y+b_{3} & =0 . \quad\left(x_{3}=0\right)
\end{align*}
$$

It follows from (2.1) that the two plane equations become respectively,

$$
\begin{aligned}
a_{1} X_{1}+a_{2} X_{2}+a_{3}\left(X_{3}-1\right) & =0 \\
b_{1} X_{1}+b_{2} X_{2}+b_{3}\left(X_{3}-1\right) & =0
\end{aligned}
$$

In the limiting case when $X_{3}=1$, we have the two tangent plane equations

$$
\begin{align*}
a_{1} X_{1}+a_{2} X_{2} & =0 \tag{2.3}\\
b_{1} X_{1}+b_{2} X_{2} & =0
\end{align*}
$$

at $N(0,0.1)$ parallel to the \mathbb{C}. Clearly the angle between the two curves in 2.2) is the same angle between the two lines in (2.3).

Note that any two intersecting circles in general positions on S can be rotated so that the intersection point passes through the North pole N. This consideration takes care of the preservation of the angle of intersection of two curves in general position in \mathbb{C} under the Stereographic projection.

Theorem 2.1.3. Let z_{1}, z_{2} be two points in \mathbb{C} and Z_{1}, Z_{2} be their images on the Riemann sphere S under the Stereographic projection. We denote $a\left(Z_{1}, Z_{2}\right)$ to be arc length between Z_{1} and Z_{2}. Then

$$
\begin{equation*}
\lim _{z_{2} \rightarrow z_{1}} \frac{a\left(Z_{1}, Z_{2}\right)}{\left|z_{1}-z_{2}\right|}=\frac{2}{1+\left|z_{1}\right|^{2}} . \tag{2.4}
\end{equation*}
$$

That is, the ratio depends on position only. So the Stereographic projection is called a pure magnification.

We easily deduce from the above theorem that
Theorem 2.1.4. Let $C=\{z=z(s): 0 \leq s \leq L\}$ be a piecewise smooth curve in \mathbb{C}. Let Γ be the image curve of C on the Riemann sphere under the Stereographic projection. Then the length $\ell(\Gamma)$ of Γ is given by

$$
\ell(\Gamma)=\int_{0}^{L} \frac{2|d z(s)|}{1+|d z(s)|^{2}} .
$$

Let $d\left(Z_{1}, Z_{2}\right)$ denote the chordal distance between Z_{1} and Z_{2} on S. We also write

$$
\chi\left(z_{1}, z_{2}\right):=d\left(Z_{1}, Z_{2}\right)
$$

where z_{1}, z_{2} are the corresponding points in \mathbb{C}.
Theorem 2.1.5. Let $z_{1}, z_{2} \in \mathbb{C}$. Then

$$
\begin{equation*}
\chi\left(z_{1}, z_{2}\right)=\frac{2\left|z_{1}-z_{2}\right|}{\sqrt{1+\left|z_{1}\right|^{2}} \sqrt{1+\left|z_{2}\right|^{2}}} . \tag{2.5}
\end{equation*}
$$

Since

$$
\chi\left(z_{1}, z_{2}\right):=d\left(Z_{1}, Z_{2}\right) \approx a\left(Z_{1}, Z_{2}\right)
$$

as $z_{1} \rightarrow z_{2}$. So the Theorem 2.1.3 follows from the equation (2.5) in the limit $z_{2} \rightarrow z_{1}$.

Proof. Let $z_{1}=\left(x_{1}, y_{1}\right)$ and $z_{2}=\left(x_{2}, y_{2}\right)$ and none equal to ∞. We construct a plane passing through the following three points:

$$
(0,0,1), \quad\left(x_{1}, y_{1}, 0\right), \quad\left(x_{2}, y_{2}, 0\right)
$$

Figure 2.2: Riemann sphere slide
Then we have the above figure.
We deduce from the Riemann sphere S that

$$
d\left(N, z_{1}\right)=\sqrt{1+\left|z_{1}\right|^{2}}, \quad d\left(N, z_{2}\right)=\sqrt{1+\left|z_{2}\right|^{2}} .
$$

One can see from similar triangles consideration on the Riemman sphere S that

$$
\frac{x_{1}}{x}=\frac{1-x_{3}}{1}=\frac{x_{2}}{y} .
$$

Hence

$$
\begin{aligned}
1+|z|^{2} & =1+x^{2}+y^{2}=1+\frac{x_{1}^{2}}{\left(1-x_{3}\right)^{2}}+\frac{x_{2}^{2}}{\left(1-x_{3}\right)^{2}} \\
& =\frac{2\left(1-x_{3}\right)}{\left(1-x_{3}\right)^{2}}=\frac{2}{1-x_{3}} .
\end{aligned}
$$

and

$$
\frac{d(N, Z)}{d(N, z)}=\frac{1-x_{3}}{1}=\frac{2}{1+|z|^{2}} .
$$

holds. This gives raise to

$$
d\left(N, Z_{1}\right)=\frac{2}{\sqrt{1+\left|z_{1}\right|^{2}}}, \quad d\left(N, Z_{2}\right)=\frac{2}{\sqrt{1+\left|z_{2}\right|^{2}}}
$$

We conclude that

$$
d\left(N, z_{1}\right) d\left(N, Z_{1}\right)=2=d\left(N, z_{2}\right) d\left(N, Z_{2}\right) .
$$

Hence the triangles $\Delta N z_{1} z_{2}$ and $\Delta N Z_{1} Z_{2}$ are similar. Hence

$$
\frac{d\left(Z_{1}, Z_{2}\right)}{d\left(z_{1}, z_{2}\right)}=\frac{d\left(N, Z_{2}\right)}{d\left(N, z_{1}\right)} .
$$

It follows from the above consideration that

$$
d\left(Z_{1}, Z_{2}\right)=d\left(z_{1}, z_{2}\right) \cdot \frac{d\left(N, Z_{2}\right)}{d\left(N, z_{1}\right)}=\frac{2\left|z_{1}-z_{2}\right|}{\sqrt{1+\left|z_{1}\right|^{2}} \sqrt{1+\left|z_{2}\right|^{2}}}
$$

as required.
We are ready to prove Theorem 2.1.3.
We observe the relation

$$
\frac{d\left(Z_{1}, Z_{2}\right)}{a\left(Z_{1}, Z_{2}\right)}=\frac{\sin \alpha}{\alpha},
$$

holds, where α is the angle between the line segments $N Z_{1}$ and $N Z_{2}$ from the above figure. Hence

$$
\frac{a\left(Z_{1}, Z_{2}\right)}{\left|z_{1}-z_{2}\right|}=\frac{d\left(Z_{1}, Z_{2}\right)}{\left|z_{1}-z_{2}\right|} \approx \frac{\chi\left(z_{1}, z_{2}\right)}{\left|z_{1}-z_{2}\right|} \rightarrow \frac{2}{1+\left|z_{1}\right|^{2}}
$$

as $z_{2} \rightarrow z_{1}$.

We also note that

$$
\chi\left(z_{1}, \infty\right)=\lim _{z_{2} \rightarrow \infty} \chi\left(z_{1}, z_{2}\right)=\frac{2}{\sqrt{1+\left|z_{1}\right|^{2}}}
$$

which follows from the Riemann sphere (geometric) or the Theorem 2.1.5 (algebraic) considerations. Thus we define the chordal distance to be

$$
\chi\left(z, z^{\prime}\right)= \begin{cases}\frac{2\left|z-z^{\prime}\right|}{\sqrt{1+|z|^{2}} \sqrt{1+\left|z^{\prime}\right|^{2}}}, & z, z^{\prime} \in \mathbb{C} \\ \frac{2}{\sqrt{1+|z|^{2}}}, & z^{\prime}=\infty\end{cases}
$$

Alternative derivation

of the chordal distance. Suppose $\left(x_{1}, x_{2}, x_{3}\right) \in S$ associates with $z=$ $(x, y) \in \widehat{\mathbb{C}}$ and $\left(x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}\right) \in S$ associates with $z^{\prime} \in \widehat{\mathbb{C}}$.

Then the distance or the length of the chord joining $\left(x_{1}, x_{2}, x_{3}\right)$ and $\left(x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}\right)$ on S is given by

$$
\sqrt{\left(x_{1}-x_{1}^{\prime}\right)^{2}+\left(x_{2}-x_{2}^{\prime}\right)^{2}+\left(x_{3}-x_{3}^{\prime}\right)^{2}} .
$$

On the other hand,

$$
\left(x_{1}-x_{1}^{\prime}\right)^{2}+\left(x_{2}-x_{2}^{\prime}\right)^{2}+\left(x_{3}-x_{3}^{\prime}\right)^{2}=2-2\left(x_{1} x_{1}^{\prime}+x_{2} x_{2}^{\prime}+x_{3} x_{3}^{\prime}\right) .
$$

Exercise 2.1.2. Show that

$$
\begin{aligned}
& x_{1} x_{1}^{\prime}+x_{2} x_{2}^{\prime}+x_{3} x_{3}^{\prime} \\
& =\frac{(z+\bar{z})\left(z^{\prime}+\bar{z}^{\prime}\right)-(z-\bar{z})\left(z^{\prime}-\bar{z}^{\prime}\right)+\left(|z|^{2}-1\right)\left(\left|z^{\prime}\right|-1\right)}{\left(1+|z|^{2}\right)\left(1+\left|z^{\prime}\right|^{2}\right)} \\
& \quad=\frac{\left(1+|z|^{2}\right)\left(1+\left|z^{\prime}\right|^{2}\right)-2\left|z-z^{\prime}\right|^{2}}{\left(1+|z|^{2}\right)\left(1+\left|z^{\prime}\right|^{2}\right)}
\end{aligned}
$$

Exercise 2.1.3. Verify the formaula for chordal distance using the above formala.
Exercise 2.1.4. Verify that $\chi\left(z_{1}, z_{2}\right)=\chi\left(\bar{z}_{1}, \bar{z}_{2}\right)=\chi\left(1 / z_{1}, 1 / z_{2}\right)$.
Exercise 2.1.5. Describe a ε-neighbourhood of a pont z_{0} in the chordal metric.

Metric space

The chordal distance $\chi\left(z_{1}, z_{2}\right)$ defines a metric on $\hat{\mathbb{C}}$. This is because

1. $\chi\left(z_{1}, z_{2}\right) \geq 0$ and with equality if and only if $z_{1}=z_{2}$;
2. $\chi\left(z_{1}, z_{2}\right)=\chi\left(z_{2}, z_{1}\right)$;
3. $\chi\left(z_{1}, z_{3}\right) \leq \chi\left(z_{1}, z_{2}\right)+\chi\left(z_{2}, z_{3}\right)$,
where the third item follows from
Exercise 2.1.6. Let $a, b, c \in \mathbb{C}$. Then

$$
(a-b)(1-\bar{c} c)=(a-c)(1+\bar{c} b)+(c-b)(1+\bar{c} a)
$$

Exercise 2.1.7. Show that the above metric space is complete.

2.2 Analyticity revisited

Local properties of one-one analytic functions

We recall that if $f: E \rightarrow P$ and there correspond only one point in E for every point in P under this f, then we say the map f is injective. This defines a function g on P, denoted by $z=g(w)$, called the inverse function or inverse mapping of f. In particular, we see that $g[f(z)]=z$.

Let $w=f(z)=u(x, y)+i v(x, y)$. Then one can view f as a mapping $\mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$ given by

$$
\binom{x}{y} \longmapsto\binom{u(x, y)}{v(x, y)}
$$

What is a criterion that guarantee the existence of an inverse mapping for the above mapping?

Standard material from calculus courses asserts that if

$$
\left|\begin{array}{ll}
\frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\
\frac{\partial v}{\partial x} & \frac{\partial v}{\partial y}
\end{array}\right| \neq 0, \quad \text { at } z_{0}=\left(x_{0}, y_{0}\right)
$$

then the Implicit function theorem asserts that an inverse function of f exists there. That is, if the Jacobian is non-zero at z_{0}. But then the Cauchy-Riemann equations give

$$
\left|\begin{array}{cc}
\frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\
\frac{\partial v}{\partial x} & \frac{\partial v}{\partial y}
\end{array}\right|=\left|\begin{array}{cc}
u_{x} & -v_{x} \\
v_{x} & u_{x}
\end{array}\right|=u_{x}^{2}+v_{x}^{2}=\left|f^{\prime}\left(z_{0}\right)\right|^{2} .
$$

This leads to the following statement.
Theorem 2.2.1. Let $f(z)$ be an analytic function on a domain D such that $f^{\prime}\left(z_{0}\right) \neq 0$. Then there is an analytic function $g(w)$ defined in a neighbourhood $N\left(w_{0}\right)$ of $w_{0}=f\left(z_{0}\right)$ such that $g(f(z))=z$ throughout this neighbourhood.

Proof. Since

$$
\left|\begin{array}{ll}
\frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\
\frac{\partial v}{\partial x} & \frac{\partial v}{\partial y}
\end{array}\right|=\left|f^{\prime}\left(z_{0}\right)\right|^{2} \neq 0
$$

so the Implicit Function theorem asserts that is a neighbourhood $N\left(w_{0}\right)$ of $w_{0}=f\left(z_{0}\right)$ in which f has a local inverse at w_{0}

$$
\binom{u}{v} \longmapsto\binom{x(u, v)}{y(u, v)} .
$$

Moreover, the analytic Implicit Function theorem asserts that the stronger conclusion that since f is analytic at z_{0} so the $g(w)$ is analytic at w_{0}.

We prove that a strong form of converse of the above statement also holds. Please note we could apply the Theorem 1.11 .3 to prove the theorem. But we prefer to apply the Rouché theorem instead.

Theorem 2.2.2. Let $f(z)$ be an one-one analytic function on a domain D. Then $f^{\prime}(z) \neq 0$ on D.

Proof. We suppose on the contrary that $f^{\prime}\left(z_{0}\right)=0$ for some z_{0} and we write $f\left(z_{0}\right)=w_{0}$. We first notice that $f^{\prime}(z) \not \equiv 0$. For otherwise, $f(z)$ is identically a constant, contradicting to the assumption that $f(z)$ is one-one on D.
Since the zeros of $f^{\prime}(z)$ are isolated, so there is a $\rho>0$ such that $f^{\prime}(z) \neq 0$ in $\left\{z: 0<\left|z-z_{0}\right|<\rho\right\}$. Because of the assumption that f is one-one, so

$$
f(z) \neq f\left(z_{0}\right) \quad \text { on } \quad\left|z-z_{0}\right|=\rho
$$

On the other hand, $|f(z)|$ is continuous on the compact set $\left|z-z_{0}\right|=\rho$ so that we can find a $\delta>0$ such that

$$
\left|f(z)-f\left(z_{0}\right)\right| \geq \delta>0 \quad \text { on } \quad\left|z-z_{0}\right|=\rho
$$

Let w^{\prime} be an arbitrary point in $\left\{w: 0<\left|w^{\prime}-w_{0}\right|<\delta\right\}$. Then the inequality

$$
\left|f(z)-w_{0}\right| \geq \delta>\left|w^{\prime}-w_{0}\right|
$$

holds, so that the Rouché theorem again implies that the function $f(z)-f\left(z_{0}\right)=f(z)-w_{0}$ and the function

$$
\left[f(z)-f\left(z_{0}\right)\right]+\left[f\left(z_{0}\right)-w^{\prime}\right]=f(z)-w^{\prime}
$$

have the same number of zeros inside $\left\{z:\left|z-z_{0}\right|<\rho\right\}$. But $f^{\prime}\left(z_{0}\right)=0$ so $f(z)-f\left(z_{0}\right)$ has at least two zeros (counting multiplicity). Hence $f(z)-w^{\prime}$ also has at least two zeros (counting multiplicity) in $\{z$: $\left.\left|z-z_{0}\right|<\rho\right\}$. But $f^{\prime}(z) \neq 0$ in $\left\{z: 0<\left|z-z_{0}\right|<\rho\right\}$, so there are at least two different zeros z_{1} and z_{2} in $\left\{z:\left|z-z_{0}\right|<\rho\right\}$ so that $f\left(z_{1}\right)=w^{\prime}$ and $f\left(z_{2}\right)=w^{\prime}$, thus contradicting to the assumption that $f(z)$ is one-one.

2.3 Angle preserving mappings

We consider geometric properties of an analytic function $f(z)$ at z_{0} such that $f^{\prime}\left(z_{0}\right) \neq 0$. Let $\gamma=\{\gamma(t): a \leq t \leq b\}$ a piece-wise smooth path such that $z_{0}=\gamma\left(t_{0}\right)$ where $a \leq t_{0} \leq b$ and $z^{\prime}\left(t_{0}\right) \neq 0$, and

$$
\Gamma:=\{w=f(z(t)): a \leq t \leq b\} .
$$

That is, $\Gamma=f(\gamma)$.
It is clear that the assumption $z^{\prime}\left(t_{0}\right) \neq 0$ above means that the path γ must have a tangent at t_{0}. Thus,

$$
\begin{aligned}
\left.\frac{d f[z(t)]}{d t}\right|_{t=t_{0}} & =\left.\left.\frac{d f(z)}{d z}\right|_{z=z_{0}} \cdot \frac{d z}{d t}\right|_{t=t_{0}} \\
& =f^{\prime}\left(z_{0}\right) \cdot z^{\prime}\left(t_{0}\right) \neq 0
\end{aligned}
$$

since $f^{\prime}\left(z_{0}\right) \neq 0$ and $z^{\prime}\left(t_{0}\right) \neq 0$. We deduce

$$
\left.\operatorname{Arg} \frac{d f[z(t)]}{d t}\right|_{t=t_{0}}=\left.\operatorname{Arg} \frac{d f(z)}{d z}\right|_{z=z_{0}}+\left.\operatorname{Arg} \frac{d z}{d t}\right|_{t=t_{0}}
$$

Let $\theta_{0}=z^{\prime}\left(t_{0}\right)$ denote the inclination angle of the tangent to γ at z_{0} and positive real axis, and let $\varphi_{0}:=\left.\operatorname{Arg} \frac{d f[z(t)]}{d t}\right|_{t=t_{0}}$ denote the inclination angle of the tangent to Γ at $w_{0}=f\left(z_{0}\right)$. Thus

$$
\operatorname{Arg} f^{\prime}\left(z_{0}\right)=\varphi_{0}-\theta_{0} .
$$

Now let $\gamma_{1}(t): z_{1}(t): a \leq t \leq b$ and $\gamma_{2}(t): z_{2}(t): a \leq t \leq b$ be two paths such that they intersect at z_{0}. Then

$$
\varphi_{1}-\theta_{1}=\operatorname{Arg} f^{\prime}\left(z_{0}\right)=\varphi_{2}-\theta_{2}
$$

That is,

$$
\varphi_{2}-\varphi_{1}=\theta_{2}-\theta_{1} .
$$

This shows that the difference of tangents of $\Gamma_{2}=f\left(\gamma_{2}\right)$ and $\Gamma_{1}=f\left(\gamma_{1}\right)$ at w_{0} is equal to difference of tangents of γ_{2} and γ_{1} at z_{0}.

Figure 2.3: Conformal map at z_{0}
Definition 2.3.1. An analytic $f: D \rightarrow \mathbb{C}$ is called conformal at z_{0} if $f^{\prime}\left(z_{0}\right) \neq 0$. f is called conformal in D if f is conformal at each point of the domain D.

We call $\left|f^{\prime}\left(z_{0}\right)\right|$ the scale factor of f at z_{0}.

Theorem 2.3.2. Let $f(z)$ be analytic at z_{0} and that $f^{\prime}\left(z_{0}\right) \neq 0$. Then

1. $f(z)$ preserves angles (i.e., isogonal) and its sense at z_{0};
2. $f(z)$ preserves scale factor, i.e., a pure magnification at z_{0} in the sense that it is independent of directions of approach to z_{0}.

We consider a converse to the above statement.
Theorem 2.3.3. Let $w=f(z)=f(x+i y)=u(x, y)+i v(x, y)$ be defined in a domain D with continuous $u_{x}, u_{y}, v_{x}, v_{y}$ such that they do not vanish simultaneously. If either

1. f is isogonal (preserve angles) at every point in D,
2. or f is a pure magnification at each point in D, then either f or \bar{f} is analytic in D.

Proof. Let $z=z(t)$ be a path passing through the point $z_{0}=z\left(t_{0}\right)$ in D. We write $w(t)=f(z(t))$. Then

$$
w^{\prime}\left(t_{0}\right)=\frac{\partial f}{\partial x} x^{\prime}\left(t_{0}\right)+\frac{\partial f}{\partial y} y^{\prime}\left(t_{0}\right),
$$

That is,

$$
\begin{equation*}
w^{\prime}\left(t_{0}\right)=\frac{1}{2}\left(\frac{\partial f}{\partial x}-i \frac{\partial f}{\partial y}\right) z^{\prime}\left(t_{0}\right)+\frac{1}{2}\left(\frac{\partial f}{\partial x}+i \frac{\partial f}{\partial y}\right) \overline{z^{\prime}\left(t_{0}\right)} \tag{2.6}
\end{equation*}
$$

That is,

$$
\frac{w^{\prime}\left(t_{0}\right)}{z^{\prime}\left(t_{0}\right)}=\frac{\partial f}{\partial z}\left(z_{0}\right)+\frac{\partial f}{\partial \bar{z}}\left(z_{0}\right) \cdot \frac{\overline{z^{\prime}\left(t_{0}\right)}}{z^{\prime}\left(t_{0}\right)}
$$

where we have adopted new notation

$$
\frac{\partial f}{\partial z}:=\frac{1}{2}\left(\frac{\partial f}{\partial x}-i \frac{\partial f}{\partial y}\right), \quad \frac{\partial f}{\partial \bar{z}}:=\frac{1}{2}\left(\frac{\partial f}{\partial x}+i \frac{\partial f}{\partial y}\right) .
$$

If f is isogonal, then the $\arg \frac{w^{\prime}\left(t_{0}\right)}{z^{\prime}\left(t_{0}\right)}$ is independent of $\arg z^{\prime}\left(t_{0}\right)$ in the above expression. This renders the expression (2.6) to be independent of $\arg z^{\prime}\left(t_{0}\right)$. Therefore, the only way for this to hold in (2.6) is that

$$
0=\frac{\partial f}{\partial \bar{z}}:=\frac{1}{2}\left(\frac{\partial f}{\partial x}+i \frac{\partial f}{\partial y}\right),
$$

which represent the validity of the Cauchy-Riemann equations at z_{0}. Thus f is analytic at z_{0}. This establishes the first part.

We note that the right-hand side of (2.6) represents a circle of radius

$$
\left|\frac{1}{2}\left(\frac{\partial f}{\partial x}+i \frac{\partial f}{\partial y}\right)\right|
$$

centered at $\partial f / \partial z$. Suppose now that we assume that f is a pure magnification. Then the (2.6) representation this circle must either
have its radius vanishes which recovers the Cauchy-Riemann equations, or the centre is at the origin, i.e.,

$$
0=\frac{\partial f}{\partial z}=\frac{1}{2}\left(\frac{\partial f}{\partial x}-i \frac{\partial f}{\partial y}\right)
$$

or the equivalently $\overline{f(z)}$ is analytic at z_{0} and hence over D.

Remark. If $\overline{f(z)}$ is analytic at z_{0}, then it means that f preserves the size of the angle but reverse its sense.

Example 2.3.4. Consider $w=f(z)=e^{z}$ on \mathbb{C}. Clearly $f^{\prime}(z)=e^{z} \neq 0$ so that the exponential function is conformal throughout \mathbb{C}. Observe

$$
w=e^{z}=e^{x}+e^{i y}:=\operatorname{Re}^{i \phi},
$$

so that the line $x=a$ in the is mapped onto the circle $R=e^{a}$ in the w-plane, while the horizontal line $y=b(-\infty<x<\infty)$ is mapped to the line $\left\{R e^{i b}: 0<R<+\infty\right\}$. One sees that the lines $x=a$ and $y=b$ are at right-angle to each other. Their images, namely the concentric circles centred at the origin and infinite ray at angle b from the x-axis from the origin are also at right angle at each other. The infinite horizontal strip

$$
G=\{z=x+i y:|y|<\pi,-\infty<x<\infty\}
$$

is being mapped onto the slit-plane $\mathbb{C} \backslash\{z: z \leq 0\}$. Moreover, the image of any vertical shift of G by integral multiple of 2π under f will cover the slit-plane again. So the $f(\mathbb{C})$ will cover the slit-plane an infinite number of times.

Figure 2.4: Exponential map

2.4 Möbius transformations

We study mappings initiated by A. F. Möbius (1790-1868) on the \mathbb{C} that map \mathbb{C} to \mathbb{C} or even between $\widehat{\mathbb{C}}$. Möbious considered

The mapping

$$
w=f(z)=\frac{a z+b}{c z+d}, \quad a d-b c \neq 0
$$

is called a Möbius transformation, a linear fractional transformation, a homographic transformation. In the case when $c=0$, then a Möbious transformation reduces to a linear function $f(z)=a z+b$ which is a combination of a translation $f(z)=z+b$ and a rotation/magnification $f(z)=a z$. If $a d-b c=0$, then the mapping degenerates into a constant.

We recall that a function f having a pole of order m at z_{0} is equivalent to $1 / f$ to have a zero of order m at z_{0}. Similarly, a function have a pole of order m at ∞ means that $1 / f\left(\frac{1}{z}\right)$ to have a zero of order m at $z=0$.

The mapping w is defined on \mathbb{C} except at $z=-d / c$, where $f(x)$ has a simple pole. On the other hand,

$$
f(1 / \zeta)=\frac{a / \zeta+b}{c / \zeta+d}=\frac{a+b \zeta}{c+d \zeta}=\frac{a}{c}
$$

when $\zeta=0$. That is, $f(\infty)=a / c$. So $f(z)$ is a one-one map between $\widehat{\mathbb{C}}=\mathbb{C} \cup\{\infty\}$. One can easily check that the inverse f^{-1} of f is given by

$$
f^{-1}(w)=-\frac{w d-b}{c w-a}, \quad w \neq \frac{a}{c} .
$$

Thus $f^{-1}: \frac{a}{c} \mapsto \infty, \infty \mapsto-\frac{d}{c}$ (Since

$$
f^{-1}\left(\frac{1}{\eta}\right)=-\frac{d / \eta-b}{c / \eta-a}=-\frac{d-b \eta}{c-a \eta}=-\frac{d}{c}
$$

as $\eta=0$. Thus $f^{-1}(\infty)=-\frac{d}{c}$. Similarly, since

$$
\left.\frac{1}{f^{-1}(w)}\right|_{a / c}=-\left.\frac{c w-a}{d w-b}\right|_{w=a / c}=0 .
$$

Thus $f^{-1}\left(\frac{a}{c}\right)=\infty$.)
Theorem 2.4.1. The above Möbius map is conformal on the Riemann sphere.

Proof. Let $c \neq 0$. Then

$$
f^{\prime}(z)=\frac{a d-b c}{(c z+d)^{2}} \neq 0
$$

whenever $z \neq-\frac{d}{c}$. Hence $f(z)$ is conformal at every point except perhaps when $z=-d / c$ where f has a simple pole. So we should check if $\frac{1}{f(z)}$ is conformal at $z=-d / c$. But

$$
\begin{aligned}
\left.\left(\frac{1}{f(z)}\right)^{\prime}\right|_{z=-d / c} & =-\left.\frac{f^{\prime}(z)}{f(z)^{2}}\right|_{-d / c}=\frac{a d-b c}{(c z+d)^{2}} \times\left(\frac{c z+d}{a z+b}\right)^{2} \\
& =-\left.\frac{a d-b c}{(a z+b)^{2}}\right|_{-d / c}=-\frac{(a d-b c) c^{2}}{(a d-b c)^{2}}=\frac{-c^{2}}{a d-b c} \neq 0 .
\end{aligned}
$$

Hence f is conformal at $-d / c$, whenever $c \neq 0$.
Similarly, in order to check if f is conformal at ∞, we consider, when $c \neq 0$

$$
\left(f\left(\frac{1}{\zeta}\right)\right)^{\prime}=\left(\frac{a+b \zeta}{c+d \zeta}\right)^{\prime}=\frac{b c-a d}{(c+d \zeta)^{2}}=\frac{b c-a d}{c^{2}} \neq 0
$$

when $\zeta=0$ and whenever $c \neq 0$. Hence f is conformal at ∞ if $c \neq 0$.
If $c=0$, then we consider $f(z)=\frac{a z+b}{d}=\alpha z+\beta$ instead. Since $f^{\prime}(z)=\alpha \neq 0$ for all $z \in \mathbb{C}$, so f is conformal everywhere. It remains to consider

$$
\frac{1}{f(1 / \zeta)}=\frac{1}{\alpha / \zeta+\beta}=\frac{\zeta}{\alpha+\beta \zeta}
$$

Hence $f(\infty)=\infty$. We now consider the conformality at ∞ :

$$
\left(\frac{1}{f(1 / \zeta)}\right)_{\zeta=0}^{\prime}=\left.\frac{\alpha}{(\alpha+\beta \zeta)^{2}}\right|_{\zeta=0}=\frac{1}{\alpha} \neq 0
$$

as required.

Exercise 2.4.1. Complete the above proof by considering the case when $c=0$.

Exercise 2.4.2. Show that

1. the composition of two Möbius transformations is still a Möbius transformation.
2. For each Möbius transformation f, there is an inverse f^{-1}.
3. If we denote I be the identity map, then show that the set of all Möbius transformations M forms a group under composition.

Theorem 2.4.2. Let $w=f(z)=\frac{a z+b}{c z+d}$. Then $f(z)$ maps any circle in the z-plane to a circle in the w-plane.

Remark. We regard any straight lines to be circles having infinite radii $(+\infty)$.

Proof. We note that any $\frac{a z+b}{c z+d}$ can be written as

$$
\begin{aligned}
w= & \frac{a}{c}\left[\frac{z+b / a}{z+d / c}\right]=\frac{a}{c}\left[1+\frac{b / a-d / c}{z+d / c}\right] \\
& =\frac{a}{c}\left[1+\left(\frac{b c / a-d}{1}\right) \frac{1}{c z+d}\right] \\
& =\frac{a}{c}+\left(\frac{b c-a d}{c}\right)\left(\frac{1}{c z+d}\right),
\end{aligned}
$$

Showing that w can be decomposed by transformations of the basic types:

1. $w=z+b$ (translation),
2. $w=e^{i \theta_{0}} z$ (rotation),
3. $w=k z(k>0$, scaling $)$,
4. $w=1 / z$ (inversion).

In fact, we can write the $T(z)$ as a compositions of four consecutive mappings in the forms

$$
w_{1}=c z+d, \quad w_{2}=\frac{1}{w_{1}}, \quad w_{3}=\left(\frac{b c-a d}{c}\right) w_{2}, \quad w_{4}=\frac{a}{c}+w_{3},
$$

From the geometric view point, the translation $z+b$ or rotation $w=$ $e^{i \theta_{0}} z$ all presences circles (lines). So it remains to consider scaling
$w=k z(k>0)$ and inversion $w=1 / z$.
Let us consider the circle equation (centred at $z_{0}=\left(x_{0}, y_{0}\right)$ with radius R). Then

$$
\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}=R^{2} .
$$

That is,

$$
x^{2}+y^{2}-2 x_{0} x-2 y_{0} y+\left(x_{0}^{2}+y_{0}^{2}-R^{2}\right)=0 .
$$

Substituting $z=x+i y, \bar{z}=x-i y$

$$
z \bar{z}+\frac{-2}{2}\left(z_{0}+\bar{z}_{0}\right) \frac{1}{2}(z+\bar{z})-\frac{2}{2 i}\left(z_{0}-\bar{z}_{0}\right) \frac{1}{2 i}(z-\bar{z})+z_{0} \bar{z}_{0}-R^{2} .
$$

This can be rewritten as

$$
z \bar{z}+\bar{B} z+B \bar{z}+D=0
$$

where $B=-z_{0}, D=x_{0}^{2}+y_{0}^{2}-R^{2}$.
Conversely, suppose $B=-z_{0},|B|^{2}-D=R^{2}>0$, then the above equation represents a circle equation centred at $-B=z_{0}$ with radius

$$
R=\sqrt{|B|^{2}-D}
$$

In fact, $|z-(-B)|=\sqrt{|B|^{2}-D}$. We consider the scaling : $w=k z$. The circle equation becomes

$$
\frac{1}{k^{2}} w \bar{w}+\frac{\bar{B}}{k} w+\frac{B}{k} \bar{w}+D=0 .
$$

Thus

$$
w \bar{w}+k \bar{B} w+k B \bar{w}+k^{2} D=0
$$

Clearly, $k^{2} D$ is a real number, and $\sqrt{k^{2}|B|^{2}-k^{2} D}=k \sqrt{|B|^{2}-D}>0$. Hence the above equation is a circle equation in the w-plane.
It remains to consider inversion $w=1 / z$. Then the equation becomes

$$
\frac{1}{w \bar{w}}+\frac{\bar{B}}{w}+\frac{B}{\bar{w}}+D=0
$$

or

$$
w \bar{w}+\frac{B}{D} w+\frac{\bar{B}}{D} \bar{w}+\frac{1}{D}=0 .
$$

clearly $1 / D$ is a real number, and $|B / D|^{2}-1 / D=\frac{1}{D^{2}}\left(|B|^{2}-D\right)>0$. So the equation is a circle equation in the w-plane.

2.5 Cross-ratios

Let

$$
\begin{equation*}
T(z)=\frac{a z+b}{c z+d} \tag{2.7}
\end{equation*}
$$

be a Möbius transformation, and let $w_{1}, w_{2}, w_{3}, w_{4}$ be the respectively images of the points $z_{1}, z_{2}, z_{3}, z_{4}$. Then it is routine to check that

$$
w_{j}-w_{k}=\frac{a d-b c}{\left(c z_{j}+d\right)\left(c z_{k}+d\right)}\left(z_{j}-z_{k}\right), \quad j, k=1,2,3,4 .
$$

Then

$$
\begin{equation*}
\left(w_{1}-w_{3}\right)\left(w_{2}-w_{4}\right)=\frac{(a d-b c)^{2}}{\prod_{j=1}^{4}\left(c z_{j}+d\right)}\left(z_{1}-z_{3}\right)\left(z_{2}-z_{4}\right) \tag{2.8}
\end{equation*}
$$

Similarly, we have

$$
\begin{equation*}
\left(w_{1}-w_{4}\right)\left(w_{2}-w_{3}\right)=\frac{(a d-b c)^{2}}{\prod_{j=1}^{4}\left(c z_{j}+d\right)}\left(z_{1}-z_{4}\right)\left(z_{2}-z_{3}\right) . \tag{2.9}
\end{equation*}
$$

Dividing the (2.8) by (2.9) yields

$$
\begin{equation*}
\frac{\left(w_{1}-w_{3}\right)\left(w_{2}-w_{4}\right)}{\left(w_{1}-w_{4}\right)\left(w_{2}-w_{3}\right)}=\frac{\left(z_{1}-z_{3}\right)\left(z_{2}-z_{4}\right)}{\left(z_{1}-z_{4}\right)\left(z_{2}-z_{3}\right)} . \tag{2.10}
\end{equation*}
$$

Definition 2.5.1. Let $z_{1}, z_{2}, z_{3}, z_{4}$ be four distinct numbers in \mathbb{C}. Then

$$
\begin{equation*}
\left(z_{1}, z_{2}, z_{3}, z_{4}\right):=\frac{\left(z_{1}-z_{3}\right)\left(z_{2}-z_{4}\right)}{\left(z_{1}-z_{4}\right)\left(z_{2}-z_{3}\right)}=\frac{z_{1}-z_{3}}{z_{1}-z_{4}}: \frac{z_{2}-z_{3}}{z_{2}-z_{4}} \tag{2.11}
\end{equation*}
$$

is called the cross-ratio of the four points. If, however, when any one of $z_{1}, z_{2}, z_{3}, z_{4}$ is ∞, then the cross-ratio becomes

$$
\begin{aligned}
& \left(\infty, z_{2}, z_{3}, z_{4}\right):=\frac{z_{2}-z_{4}}{z_{2}-z_{3}}, \\
& \left(z_{1}, \infty, z_{3}, z_{4}\right):=\frac{z_{1}-z_{3}}{z_{1}-z_{4}}, \\
& \left(z_{1}, z_{2}, \infty, z_{4}\right):=\frac{z_{2}-z_{4}}{z_{1}-z_{4}}, \\
& \left(z_{1}, z_{2}, z_{3}, \infty\right):=\frac{z_{1}-z_{3}}{z_{2}-z_{3}},
\end{aligned}
$$

respectively.
The equation (2.10) implies that we have already proved the following theorem.

Theorem 2.5.2. Let T be any Möbius transformation. Then

$$
\begin{equation*}
\left(T z_{1}, T z_{2}, T z_{3}, T z_{4}\right)=\left(z_{1}, z_{2}, z_{3}, z_{4}\right) . \tag{2.12}
\end{equation*}
$$

Remark. The above formula means that the cross-ratio of four points is preserved under any Möbius transformation $T(z)$.

Example 2.5.3. We note that the cross-ratio when written as

$$
\left(z, z_{2}, z_{3}, z_{4}\right)=\frac{\left(z-z_{3}\right)\left(z_{2}-z_{4}\right)}{\left(z-z_{4}\right)\left(z_{2}-z_{3}\right)}=\frac{z-z_{3}}{z-z_{4}}: \frac{z_{2}-z_{3}}{z_{2}-z_{4}}
$$

is a Möbius transformation of z that maps the points z_{2}, z_{3}, z_{4} to $1,0, \infty$ respectively.

Theorem 2.5.4. Let z_{1}, z_{2}, z_{3} and w_{1}, w_{2}, w_{3} be two sets of three arbitrary complex numbers. Then there is a unique Möbius transformation $T(z)$ that satisfies $T\left(z_{i}\right)=w_{j}, j=1,2,3$.

Proof. The cross-ratio formula

$$
\frac{w-w_{3}}{w-w_{4}}: \frac{w_{2}-w_{3}}{w_{2}-w_{4}}=\frac{z-z_{3}}{z-z_{4}}: \frac{z_{2}-z_{3}}{z_{2}-z_{4}}
$$

does the trick.

Example 2.5.5. Find a Möbius transformation w that maps $-1, i, 1$ to $-1,0,1$ respectively.
It follows that

$$
\frac{w-0}{w-1}: \frac{-1-0}{-1-1}=\frac{z-i}{z-1}: \frac{-1-i}{-1-1}
$$

So

$$
\frac{2 w}{w-1}=\frac{z-i}{z-1}\left(\frac{1}{1+i}\right)
$$

Hence

$$
w=\frac{1+i z}{i+z} .
$$

Arrangements

The above arrangement of the four points $z_{1}, z_{2}, z_{3}, z_{4}$ in the construction of our cross-ratio is not special. One can try the remaining twenty three different permutations of $z_{1}, z_{2}, z_{3}, z_{4}$ in the construction. However, we note that
$\lambda:=\left(z_{1}, z_{2}, z_{3}, z_{4}\right)=\left(z_{2}, z_{1}, z_{4}, z_{3}\right)=\left(z_{3}, z_{4}, z_{1}, z_{2}\right)=\left(z_{4}, z_{3}, z_{2}, z_{1}\right)$
so that the list reduces to six only. They are given by

$$
\left(z_{2}, z_{3}, z_{1}, z_{4}\right)=\frac{\lambda-1}{\lambda}, \quad\left(z_{3}, z_{1}, z_{2}, z_{4}\right)=\frac{1}{1-\lambda}
$$

$\left(z_{2}, z_{1}, z_{3}, z_{4}\right)=\frac{1}{\lambda}, \quad\left(z_{3}, z_{2}, z_{1}, z_{4}\right)=\frac{\lambda}{\lambda-1}, \quad\left(z_{1}, z_{3}, z_{2}, z_{4}\right)=1-\lambda$.

The above list contains all six distinct values for the cross-ratio for distinct $z_{1}, z_{2}, z_{3}, z_{4}$. If, however, two of the points $z_{1}, z_{2}, z_{3}, z_{4}$ coincide, then the list of values will reduce further. More precisely, if $\lambda=0$ or 1 , then the list reduces to three, namely $0,1, \infty$. If $\lambda=-1,-1 / 2$ or 2 , then the list reduces to three again with values $-1,1 / 2,2$. There is another possibility that

$$
\lambda=\frac{1 \pm i \sqrt{3}}{2} .
$$

See exercise.
Moreover, if we put $z_{2}=1, z_{3}=0, z_{4}=\infty$, then the cross-ratio becomes

$$
(\lambda, 1,0, \infty)=\lambda,
$$

which means that λ is a fixed point of the map.
Theorem 2.5.6. Let $z_{1}, z_{2}, z_{3}, z_{4}$ be four distinct points in $\hat{\mathbb{C}}$. Then their cross-ratio $\left(z_{1}, z_{2}, z_{3}, z_{4}\right)$ is real if and only if the four points lie on a circle (including a straight line).

Proof. Let $T z=\left(z_{1}, z_{2}, z_{3}, z\right)$.
We first prove that if $z_{1}, z_{2}, z_{3}, z_{4}$ lie on a circle/straight-line in $\widehat{\mathbb{C}}$, then $T z$ is real. But by the fundamental property that T is the unique Möbius map that maps z_{1}, z_{2}, z_{3} onto $0,1, \infty$. Hence T is real on $T^{-1} \mathbb{R}$. It remains to show that the whole circle/straight-line passing through z_{1}, z_{2}, z_{3} has $T z$ real.

If $T z$ is real, then we have $T z=\overline{T z}$. Hence

$$
\frac{a w+b}{c w+d}=\frac{\bar{a} \bar{w}+\bar{b}}{\bar{c} \bar{w}+\bar{d}} .
$$

Cross multiplying yields

$$
(a \bar{c}-c \bar{a})\left|w^{2}\right|+(a \bar{d}-c \bar{b}) w+(b \bar{c}-d \bar{a}) \bar{w}+b \bar{d}-d \bar{b}=0
$$

which is a straight-line if $a \bar{c}-c \bar{a}=0$ (and hence $a \bar{d}-c \bar{b} \neq 0$). Moreover, in the case when $a \bar{c}-c \bar{a} \neq 0$, the above equation can be written in the form

$$
\left|w+\frac{\bar{a} d-\bar{c} b}{\bar{a} c-\bar{c} a}\right|=\left|\frac{a d-b c}{\bar{a} c-\bar{c} a}\right|,
$$

which is an equation of a circle.

Exercise 2.5.1. Verify that

$$
(\lambda, 1,0, \infty)=\lambda
$$

Then use this identity to give a different proof of the above theorem: $\left(z_{1}, z_{2}, z_{3}, z_{4}\right)$ is real if and only if the four points $z_{1}, z_{2}, z_{3}, z_{4}$ lie on a circle.

Exercise 2.5.2. Show that if one of z_{2}, z_{3}, z_{4} is ∞, the corresponding cross-ratio still maps the triple onto $1,0, \infty$. Namely the

$$
\begin{aligned}
& \left(z, \infty, z_{3}, z_{4}\right):=\frac{z-z_{3}}{z-z_{4}} \\
& \left(z, z_{2}, \infty, z_{4}\right):=\frac{z_{2}-z_{4}}{z-z_{4}} \\
& \left(z, z_{2}, z_{3}, \infty\right):=\frac{z-z_{3}}{z_{2}-z_{3}}
\end{aligned}
$$

2.6 Inversion symmetry

We already know that the point z and its conjugate \bar{z} are symmetrical with respect to the real-axis. If we take the real-axis into a circle C by a Möbius transformation T, then we say that the points $w=T z$ and $w^{*}=T \bar{z}$ are symmetric with respect to C. Since the symmetry is a geometric property, so the w and w^{*} are independent of T. For suppose
there is another Möbius transformation that maps the real-axis onto the C, then the composite map $S^{-1} T$ maps the \mathbb{R} onto itself. Thus the images,

$$
S^{-1} w=S^{-1} T z, \quad S^{-1} w^{*}=S^{-1} T \bar{z}
$$

are obviously conjugates. Hence we can define
Definition 2.6.1. Two points z and z^{*} are said to be symmetrical with respect to the circle C passing through z_{1}, z_{2}, z_{3} if and only if

$$
\left(z^{*}, z_{1}, z_{2}, z_{3}\right)=\overline{\left(z, z_{1}, z_{2}, z_{3}\right)} .
$$

In order to see what is the relationship between z and z^{*}, we consider the following special case.

Example 2.6.2. When $z_{3}=\infty$. Then the symmetry yields

$$
\frac{z^{*}-z_{2}}{z-z_{4}}=\frac{\bar{z}_{2}-\bar{z}_{4}}{\bar{z}_{1}-\bar{z}_{4}} .
$$

That is,

$$
\left|z^{*}-z_{2}\right|=\left|z-z_{2}\right|
$$

first showing that the z and z^{*} are equal distances to z_{2} (which is arbitrary on C). And

$$
\Im\left(\frac{z^{*}-z_{2}}{z_{1}-z_{2}}\right)=-\Im\left(\frac{z-z_{2}}{z_{1}-z_{2}}\right)
$$

finally showing that the z and z^{*} are on different sides of C.

Theorem 2.6.3. Let z and z^{*} be symmetrical with respect to a circle C of radius R and centred at a. Then

$$
z^{*}=\frac{R^{2}}{\bar{z}-\bar{a}}+a .
$$

Proof. We note that

$$
\left(z_{j}-a\right) \overline{\left(z_{j}-a\right)}=R^{2}, \quad j=1,2,3 .
$$

Thus we have

$$
\begin{aligned}
\overline{\left(z, z_{1}, z_{2}, z_{3}\right.} & =\overline{\left(z-a, z_{2}-a, z_{3}-a, z_{3}-a\right)} \\
& =\left(\bar{z}-\bar{a}, \frac{R^{2}}{z_{1}-a}, \frac{R^{2}}{z_{2}-a}, \frac{R^{2}}{z_{3}-a},\right) \\
& =\left(\frac{R^{2}}{z-a}, z_{1}-a, z_{2}-a, z_{3}-a\right) \\
& =\left(\frac{R^{2}}{z-a}+a, z_{1}, z_{2}, z_{3},\right) \\
& :=\left(z^{*}, z_{2}, z_{3}, z_{3}\right)
\end{aligned}
$$

as required.
We deduce immediately that
Theorem 2.6.4. A Möbius transformation carries a circle C_{1} into a circle C_{2} also transforms any pair of symmetric points of C_{1} into a pair of symmetric points of C_{2}.
Remark. 1. $\left(z^{*}-a\right)(\bar{z}-\bar{a})=R^{2}$,
2. The symmetry point $a^{*}=\infty$ for the centre a above.
3. The expression

$$
\frac{z^{*}-a}{z-a}=\frac{R^{2}}{(\bar{z}-\bar{a})(z-a)}>0
$$

implying that z and z^{*} lie on the same half-line from a.
We briefly mention the issue of orientation. Suppose we have a circle C. Then there is an analytic method to distinguish the inside/outside of the circle by the cross-ratio. Since the cross-ration

Figure 2.5: Inversion: z and z^{*}
is invariant with respect to any Möbius transformation, so it is sufficient to consider the inside/outside issue of the real-axis \mathbb{R} since we can always map the circle C onto the \mathbb{R}. Let us write

$$
\left(z_{1}, z_{2}, z_{3}, z\right)=\frac{a z+b}{c z+d}
$$

where a, b, c, d are real coefficients (since $z_{1}, z_{2}, z_{3} \in \mathbb{R}$). Then

$$
\Im\left(z, z_{1}, z_{2}, z_{3}\right)=\frac{a d-b c}{|c z+d|^{2}} \Im z .
$$

Suppose we choose $z_{1}=1, z_{2}=0$ and $z_{3}=\infty$. Then a previous formulai

$$
(z, 1,0, \infty)=z
$$

implies that $\Im(z, 1,0, \infty)=\Im z$, so that $\Im(i, 1,0, \infty)>0$ and $\Im(-i, 1,0, \infty)<0$. The ordered triple, namely $1,0, \infty$ clearly indicates that the point i is on the right of \mathbb{R} (in that order) and the other point $-i$ is on the left of \mathbb{R} (in that order). But any circle C can be brought to the real-axis \mathbb{R} while keeping the cross-ratio unchanged. So we have

Definition 2.6.5. Let C be a given circle in $\hat{\mathbb{C}}$. An orientation of C is determined by the direction of a triple z_{1}, z_{2}, z_{3} (i.e., $z_{1} \mapsto z_{2} \mapsto z_{3}$
) lying on C. Let $z \notin C$. The point z is said to lie on the right of C if $\Im\left(z, z_{1}, z_{2}, z_{3}\right)>0$ of the oriented circle. The point z is said to lie on the left of C if $\Im\left(z, z_{1}, z_{2}, z_{3}\right)<0$ of the oriented circle.

Definition 2.6.6. We define an absolute orientation for each finite circle with respect to ∞ in the sense that the ∞ is on its right (we call this outside), otherwise, on its left (we call this inside).

2.7 Explicit conformal mappings

Example 2.7.1. Find a Möbius mapping that maps the upper halfplane \mathbb{H} onto itself.
Suppose $f(z)=\frac{a z+b}{c z+d}$ maps the upper half-plane onto itself.
Then $f(z)$ must map any three points $\left\{x_{1}, x_{2}, x_{3}\right\}$ on the x-axis in the order $x_{1}<x_{2}<x_{3}$ respectively to three points $u_{1}<u_{2}<u_{3}$ on real-axis. It follows that is "no turning" on the real-axis, thus implying that

$$
\arg f^{\prime}\left(x_{1}\right)=0 \quad \text { or } \quad f^{\prime}\left(x_{1}\right)>0
$$

Moreover, one can solve for the coefficients a, b, c and d by solving

$$
u_{i}=\frac{a x_{i}+b}{c x_{i}+d}, \quad i=1,2,3
$$

One notices that a, b, c and d are therefore all real constants. But

$$
f^{\prime}\left(x_{1}\right)=\frac{a d-b c}{\left(c x_{1}+d\right)^{2}}>0
$$

implying that $a d-b c>0$. Since f must map $\hat{\mathbb{C}}$ one-one onto $\hat{\mathbb{C}}$, the upper half-plane onto itself. Thus we deduce that

$$
f(z)=\frac{a z+b}{c z+d}, \quad a d-b c>0
$$

Conversely, suppose

$$
w=f(z)=\frac{a z+b}{c z+d},
$$

where a, b, c and d are real and $a d-b c>0$. Then for all real x,

$$
f^{\prime}(x)=\frac{a d-b c}{(c x+d)^{2}}>0, \quad \text { and } \quad \arg f^{\prime}(x)=0 .
$$

That is, there is "no turning" on the real-axis. Therefore w must map the real-axis onto the real-axis, and hence Therefore w must map the upper half-plane onto upper half-plane.

Exercise 2.7.1. Prove directly, that is without applying f^{\prime}, that it is necessary sufficient that $a d-b c>0$ for

1. f maps \mathbb{H} into \mathbb{H};
2. that the above map is "onto".

Example 2.7.2. Construct a Möbius mapping f that maps upper half-plane into upper half-plane such that $0 \mapsto 0$ and $i \mapsto 1+i$.

According to the last example, we must have

$$
f(z)=\frac{a z+b}{c z+d}, \quad a d-b c>0
$$

where a, b, c and d are real. Since $f(0)=0$ implying that $b=0$. On the other hand,

$$
1+i=f(i)=\frac{a i}{c i+d}=\frac{i}{e i+f},
$$

say. That is, $e-f=0$ and $e+f=1$, or $e=f=\frac{1}{2}$. Hence

$$
w=\frac{2 z}{z+1}
$$

Example 2.7.3. Show that a Möbius mapping f that maps the upper half-plane \mathbb{H} onto $\triangle=\{z:|z|<1\}$ if and only if

$$
w=f(z)=e^{i \theta_{0}} \frac{z-\alpha}{z-\bar{\alpha}}, \quad \Im \alpha>0, \quad \theta_{0} \in \mathbb{R} .
$$

Suppose $f: \mathbb{H} \rightarrow \triangle$. It follows that f must map the x-axis onto $|w|=1$. Let us consider the images of $z=0,1$ and ∞. Since $f(z)=$ $\frac{a z+b}{c z+d}, a d-b c \neq 0$. Thus $1=|f(0)|=\left|\frac{b}{d}\right|$, implying $|b|=|d|$. We also require $f(\infty)$ to lie on $|w|=1$ which is necessary finite. But we know from a previous discussion that

$$
|f(\infty)|=\left|f\left(\frac{1}{\zeta}\right)\right|_{\zeta=0}=\left|\frac{a+b \zeta}{c+d \zeta}\right|_{\zeta=0}=\left|\frac{a}{c}\right|=1
$$

implying that $|a|=|c|$. So

$$
w=\frac{a z+b}{c z+d}=\frac{a}{c} \times \frac{z+b / a}{z+d / c}=\frac{a}{c} \frac{z-z_{0}}{z-z_{1}}
$$

where $\left|z_{0}\right|=|b / a|=|d / c|=\left|z_{1}\right|$. Since $|a / c|=1$, so there exists a real θ_{0} such that $\frac{a}{c}=e^{i \theta_{0}}$. Thus

$$
w=e^{i \theta_{0}} \frac{z-z_{0}}{z-z_{1}}, \quad\left|z_{0}\right|=\left|z_{1}\right| .
$$

Consider

$$
1=|f(1)|=\left|\frac{z-z_{0}}{z-z_{1}}\right|
$$

implying $\left|z-z_{0}\right|=\left|z-z_{1}\right|$ or

$$
\left(1-z_{1}\right)\left(1-\bar{z}_{1}\right)=\left(1-z_{0}\right)\left(1-\bar{z}_{0}\right) .
$$

Notice that $\left|z_{1}\right|=\left|z_{0}\right|$. Hence

$$
1-z_{1}-\bar{z}_{1}+\left|z_{1}\right|^{2}=1-z_{0}-\bar{z}_{0}+\left|z_{0}\right|^{2} .
$$

Thus

$$
2 \Re\left(z_{1}\right)=z_{1}+\bar{z}_{1}=z_{0}+\bar{z}_{0}=2 \Re\left(z_{0}\right)
$$

or $\Re\left(z_{1}\right)=\Re\left(z_{0}\right)$. Hence $z_{1}=z_{0}$ or $z_{1}=\bar{z}_{0}$. We must have $z_{1}=\bar{z}_{0}$, for if $z_{1}=z_{0}$, then $f(z)$ is identically a constant. Thus

$$
f(z)=e^{i \theta_{0}}\left(\frac{z-z_{0}}{z-\overline{z_{0}}}\right)
$$

Since $f\left(z_{0}\right)=0$ so $\Im\left(z_{0}\right)>0$.
Conversely, suppose

$$
f(z)=e^{i \theta}\left(\frac{z-\alpha}{z-\bar{\alpha}}\right), \quad z \in \mathbb{H} .
$$

Then $|w|<|f|=\left|\frac{z-\alpha}{z-\bar{\alpha}}\right|<1$. If z lies on the lower half-plane, then $|w|<|f|=\left|\frac{z-\alpha}{z-\bar{\alpha}}\right|>1$. If z lies on the real axis, then $|w|=\left|\frac{z-\alpha}{z-\bar{\alpha}}\right|=$ 1. Since f maps $\hat{\mathbb{C}}$ to $\hat{\mathbb{C}}$ in a one-one manner, so f must maps the \mathbb{H} onto $|w|<1$.

Remark. If $\Im\left(z_{0}\right)=\Im(\alpha)<0$, then f maps the upper half-plane onto the lower half-plane.

Exercise 2.7.2. Find a Möbius transformation $w: \mathbb{H} \rightarrow \triangle, \quad i \mapsto 0$. So

$$
w=f(z)=e^{i \theta_{0}}\left(\frac{z-i}{z+i}\right)
$$

Exercise 2.7.3. Let $\triangle=\{z:|z|<1\}$. Show that a Möbius transformation f that $f: \triangle \rightarrow \triangle$ if and only if there exists $\theta_{0},|\alpha|<1$ such that

$$
w=f(z)=e^{i \theta_{0}} \frac{z-\alpha}{1-\bar{\alpha} z} .
$$

2.8 Orthogonal circles

We follow the ideas of Riemann and Klein to visualise the effects of conformal mappings. We use the toy models of Möbius transformations to allow us to have a glimpse.

Consider the map

$$
w=h(z)=k \frac{z-a}{z-b},
$$

where k is some non-zero constant to be chosen later. The map carries $z=a$ to $w=0$ and $z=b$ to $w=\infty$. This means that any straightline passing through the origin in the w-plane has its preimage to pass through the points $z=a$ and $z=b$, and this preimage must be a circle (may be a generalised circle, i.e., a straight-line) in the z-plane.

On the other hand, the circles centred at the orgin in the w-plane are of the form $|w|=\rho$ for some $\rho>0$. That is,

$$
\left|\frac{z-a}{z-b}\right|=\rho /|k| .
$$

Hence the loci of the $h^{-1}\{|w|=\rho /|k|\}$, which must also be a circle, also lies on the z-plane. The relation

$$
|z-a|=(\rho /|k|)|z-b|
$$

describes the loci of the point z so that the distances of it to a and b are in a constant ratio. Such circles, denoted by C_{2}, are called Apollonius' circles and the points a and b are called the limit points. It is clear that the family of concentric circles $|w|=\rho /|k|$ are always at right angles with any straight-line through the origin in the w-plane. So their preimages, denoted by C_{1} are orthogonal to the Apollonius circles C_{2}. In general, we denoted by C_{1}^{\prime} and by C_{2}^{\prime} the images of $C!$ and Apollonius circles C_{2}, respectively, under a Möbius transformation in the w-plane. Obviously, the C_{1}^{\prime} and C_{2}^{\prime} are orthogonal to each other at their intersections.

We have the following theorem.

Figure 2.6: Orthogonal circles

Theorem 2.8.1. Let a and b be two given points, C_{1} and C_{2} as defined above. Then
(i) there is exactly one C_{1} and one C_{2} through each point in \mathbb{C} except at the limit point a and b in the z-plane;
(ii) the tangent of each C_{1} and that of each C_{2} are orthogonal to each other at the points of intersections;
(iii) reflection in C_{1} transforms every C_{2} into itself and every C_{1} into another C_{1};
(iv) reflection in a C_{2} transforms every C_{1} into itself and every C_{2} into another C_{2};
(v) the limit points are symmetric with respect to each C_{2}, but not with respect to any other circle.

Proof. We consider the special case that $a=0$ and $b=0$ so that the circles passing through 0 and ∞ become straightlines passing through the origin in the z-plane. Then
(i) it is clear since there is only one straightline passing through any non-zero finite point and the origin, and only one circle intersecting with the straightline and orthogonal to it at that point;
(ii) follows since the C_{2} are concentric circles;
(iii) also follows since it is clearly that any reflection of a concentric circle C_{2} with respect to any straight line passing through the origin remains unchange. Reflection of any C_{1} (straightline) with respect to a C_{1} is obviously another C_{1};
(iv) follows from Theorem 2.6 .3 when considering symmetric points lying on a straightline is reflected upon each other lying on the same straightline with respect to a C_{2}. So a C_{1} is mapped onto itself with respect to any C_{2}. Let C_{2} relfect with respect to another C_{2}. Then parts (i) and (ii) imply that each point of the image of C_{2} upon reflection must be orthogonal to each C_{1} and this implies the image must be a circle. The image circle C_{2} must be different from its preimage except itself because of the symmetric principle Theorem 2.6.3;
(v) this is obvious because of the choice.

Having established the special case $a=0$ and $b=0$, the general case (i-v) for arbitrary a and b follow since one can map a C_{1} by a Möbius transformation to a straightline C_{1}^{\prime} passing through the origin and then each corresponding C_{2} becomes a circle C_{2}^{\prime} centred at the origin so that C_{2} must be orthogonal to C_{1} because any Möbius transformation is conformal on \mathbb{C}.

Fixed points

The general Möbius transformation T that carries a to a^{\prime} and b to b^{\prime} can be written as

$$
\frac{w-a^{\prime}}{w-b^{\prime}}=k \frac{z-a}{z-b}
$$

which is an application of cross-ratios. Suppose we impose the requirement that $a=a^{\prime}$ and $b=b^{\prime}$. That is, we assume that

$$
z=T(z)=\frac{a z+b}{c z+d},
$$

which will have two fixed points $T a=a$ and $T b=b$ since we have a quadratic equation in z. In the exceptional circumstance, we have a double root from the quadratic equation so that we are left with one double root. The transformation T maps C_{1} to C_{1}^{\prime}, C_{2} to C_{2}^{\prime} and a, b to a^{\prime}, b^{\prime}.

Theorem 2.8.2. Let $w=T(z)$ be a Möbius transformation that satisfies,

$$
\frac{w-a}{w-b}=k \frac{z-a}{z-b}
$$

Then
(i) the whole circular net consists of C_{1} and C_{2} are mapped onto itself. That is, the union of C_{1}^{\prime} and C_{2}^{\prime} are the same as the union of C_{1} and C_{2};
(ii) when the images C_{1}^{\prime} and C_{2}^{\prime} are plotted on the same graph as C_{1} and C_{2}, then
(a) the argk represents the difference of the angle made by the tangents at the point of intersections between the circles C_{1} and C_{1}^{\prime};
(b) the

$$
|k|=\frac{|w-a| /|w-b|}{|z-a| /|z-b|}
$$

measures the ratio of the above right-hand side concerning the Apollonius circles C_{2} and C_{2}^{\prime},
(iii) $C_{1}=C_{1}^{\prime}$ if $k>0$ (with orientation reversed if $k<0$), where the points on $T z$ on C_{1} flow toward b upon increasing the value of k, and we call T hyperbolic;
(iv) $C_{2}=C_{2}^{\prime}$ if $|k|=1$, then as $\arg k$ increase, the $T z$ circulates along C_{2}, and we call T elliptic.

Proof. Exercise.

Definition 2.8.3. If two fixed points of a Möbius transformation T coincide, then we call the transformation parabolic.

Rotations of the Riemann sphere

Let us consider a subgroup R of the set of all Möbius transformation that represent the rotation of the Riemann sphere S about its centre. Let us assume that the axis of rotation passes through the antipodal points Z_{0} and Z_{1} whose images on \mathbb{C} are z_{0} and z_{1}. Then we know that they are z_{0} and $z_{1}=-1 / \bar{z}_{0}$ since $z_{0} \bar{z}_{1}+1=0$.

Theorem 2.8.4. The Möbius transformation

$$
\begin{equation*}
\frac{w-z_{0}}{1+\bar{z}_{0} w}=k \frac{z-z_{0}}{1+\bar{z}_{0} z}, \quad k=\cos \alpha+i \sin \alpha \tag{2.13}
\end{equation*}
$$

(i) leaves the points z_{0} and $-1 / \bar{z}_{0}$ invariant;
(ii) leaves the points Z_{0} and Z_{1} corresponding to z_{0} and $-1 / \bar{z}_{0}$ respectively, on the Riemann sphere S invariant;
(iii) rotates the plane that intersects the S in a great circle passing through Z_{0} and Z_{1} by an angle of α.

Proof. The statements (i) and (ii) are clear. It remains to verify the (iii). It is left as an exercise for the reader to check that if $T z=w$,

$$
\left|\frac{w-z_{0}}{1+\bar{z}_{0} w}\right|=\left|\frac{z-z_{0}}{1+\bar{z}_{0} z}\right|=\rho>0
$$

then their chordal distance is

$$
\chi\left(z, z_{0}\right)=\chi\left(w, z_{0}\right)=\frac{\rho}{\sqrt{1+\rho^{2}}} .
$$

Let Z and W be the images of z and w respectively. Then it follows from (2.13) that the T is a rotation of the Riemann sphere S through the plane containing the great circle passing through the points Z_{0}, Z and Z_{1} to the plane containing the great circle Z_{0}, W and Z_{1}.

2.9 Extended Maximum Modulus Theorem

Let us recall some knowledge about metric spaces. Let (X, d) be a metric space. Then $F \subset X$ is closed if $X \backslash F$ is open. Let $A \subset X$ be a subset, the closure \bar{A} of A is defined by

$$
\cap\{F: F \text { is closed and } A \supset F\} .
$$

The boundary ∂A of A is defined by $\partial A=\bar{A} \cap \overline{(X \backslash A)}$. Let G be a subset of $\widehat{\mathbb{C}}$. We write

$$
\partial_{\infty} G= \begin{cases}\partial G & \text { if } G \text { is bounded; } \\ \partial G \cup\{\infty\} & \text { if } G \text { is unbounded. }\end{cases}
$$

to be the extended boundary of G in $\widehat{\mathbb{C}}$. If $a=\infty$, then the $B(a, r)$ is understood in terms of chordal metric.

Example 2.9.1. Let $G=\left\{z:|\arg z|<\frac{\pi}{2}\right\}$. Then

$$
\partial G=\{z=x+i y: x=0\}, \quad \partial_{\infty} G=\partial G \cup\{\infty\} .
$$

Figure 2.7: $G=\left\{z:|\arg z|<\frac{\pi}{2}\right\}$

Definition 2.9.2. Let $G \subset \mathbb{C}$ and $f: G \rightarrow \mathbb{R}$ be continuous. Suppose $a \in \partial_{\infty} G$, then we define

$$
\limsup _{z \rightarrow a} f(z)=\lim _{r \rightarrow 0}\left(\sup _{z}\{f(z): z \in G \cap B(a, r)\}\right)=L
$$

and

$$
\liminf _{z \rightarrow a} f(z)=\lim _{r \rightarrow 0}\left(\inf _{z}\{f(z): z \in G \cap B(a, r)\}\right)=l .
$$

If $a \neq \infty$, the above definition can be written as:
Given $\epsilon>0$, there exists $r>0$ such that

$$
L-\epsilon<\sup _{z}\{f(z): z \in G \cap B(a, r)\}<L+\epsilon .
$$

In particular, $f(z)<L+\epsilon$ for all $z \in G \cap B(a, r)$.
Similarly, given $\epsilon>0$, there exists $r>0$ such that

$$
l-\epsilon<\inf _{z}\{f(z): z \in G \cap B(a, r)\}<l+\epsilon .
$$

In particular, $f(z)>l-\epsilon$ for all $z \in G \cap B(a, r)$.
If $a=\infty$, we understand $B(a, r)$ is with the chordal metric and the limsup, liminf have similar interpretations.

Note also that, it follows easily $\lim _{z \rightarrow a} f(z)$ exists if and only if $L=l\left(a \in \partial_{\infty} G\right)$.
Theorem 2.9.3 (Maximum Modulus Theorem - Extended version). Let $G \subset \mathbb{C}$ be a region and $f: G \rightarrow \mathbb{C}$ is analytic. Suppose

$$
\limsup _{z \rightarrow a}|f(z)| \leq M
$$

for some $M>0$ and all $a \in \partial_{\infty} G$. Then $|f(z)| \leq M$ for all $z \in G$.
Proof. Let

$$
H=\{z \in G:|f(z)|>M+\delta\}
$$

for a fixed $\delta>0$. We aim to show that $H=\emptyset$. Since then $|f| \leq M$ because $\delta>0$ is arbitrary. It follows from the elementary fact in real analysis that H is open because $|f|$ is continuous. We next show that H has no intersection with a region near the ∞ and in particular $H \cap \partial_{\infty} G=\emptyset$, and hence H is a bounded set.

By the hypothesis $\lim \sup _{z \rightarrow a}|f(z)| \leq M$ for all $a \in \partial_{\infty} G$, for the above $\delta>0$, there exists $r>0$ such that

$$
|f(z)|<M+\delta
$$

for all $z \in G \cap B(a, r)$. Hence $\bar{H} \subset G$. This argument works whether G is bounded or unbounded, and $a=\infty$. Thus $H \cap \partial_{\infty} G=\emptyset$ and hence H is bounded. Therefore \bar{H} is a compact set.

Note that $|f(z)|=M+\delta$ when $z \in \partial H$ since $\bar{H} \subset\{z \in G:$ $|f(z)| \geq M+\delta\}$. Thus either f is constant on H by Theorem 1.7.2 (hence f is constant on G by Identity theorem since H is open and non-empty) or $H=\emptyset$. But if f is constant on G, where $|f|=M+\delta$, then it contradicts the hypothesis that $|f|<M+\delta$ near $\partial_{\infty} G$. Thus $H=\emptyset$. This completes the proof.

We shall apply the maximum modulus theorem to characterize certain analytic map of unit disk. We first recall

Theorem 2.9.4 (Schwarz's Lemma). Let $\Delta=\{z:|z|<1\}$ be the unit disk. Suppose $f: \Delta \rightarrow \mathbb{C}$ is analytic such that $|f(z)| \leq 1$ for each $z \in \Delta$, and $f(0)=0$. Then $|f(z)| \leq|z|$ for all $z \in \Delta$ and $\left|f^{\prime}(0)\right| \leq 1$. Moreover, $f(z)=e^{i \theta} z$ for a fixed θ whenever $\left|f^{\prime}(0)\right|=1$ or $|f(z)|=$ $|z|$ for some $z \neq 0$.

Proof. Define

$$
F(z)= \begin{cases}\frac{f(z)}{z}, & z \neq 0 \\ f^{\prime}(0), & z=0 .\end{cases}
$$

F is thus analytic on Δ.
Moreover, $\left.\left|F(z)=\left|\frac{f(z)}{z}\right| \leq \frac{1}{|z|} \rightarrow 1\right.$ as $| z \right\rvert\, \rightarrow 1$. It follows from Theorem 2.9 .3 that $|F(z)| \leq 1$.

If $|F(z)|=1$ for some $z \in \Delta$ (i.e. either $|f(z)|=|z|$ for some $z \neq 0$ or $\left|f^{\prime}(0)\right|=1$), then F is a constant $e^{i \theta}$ for some $\theta \in[0,2 \pi]$ by the maximum modulus theorem 1.7 .2 since $|F| \leq 1$ for all $z \in \Delta$. And so $f(z)=e^{i \theta} z$.

Exercise. Suppose $\phi(z)$ is analytic on $|z| \leq R$, where $|\phi(z)| \leq 1$ and $\phi(0)=0$. Show that $|\phi(z)| \leq \frac{r}{R}$ on $|z|=r$, where $r<R$.

Proposition 2.9.5. Suppose $|a|<1$, then

$$
\varphi_{a}(z)=\frac{z-a}{1-\bar{a} z}
$$

is a conformal map mapping Δ onto $\Delta, \partial \Delta$ to $\partial \Delta$. Moreover, $\varphi_{a}^{-1}=$ $\varphi_{-a}, \varphi_{a}^{\prime}(0)=1-|a|^{2}$ and $\varphi_{a}^{\prime}(a)=\left(1-|a|^{2}\right)^{-1}$.
Proof. Since $|a|<1, \varphi_{a}$ is clearly analytic. In fact, φ_{a} is conformal (Exercise). We only show

$$
\begin{aligned}
\left|\varphi_{a}\left(e^{i \theta}\right)\right| & =\left|\frac{e^{i \theta}-a}{1-\bar{a} e^{i \theta}}\right| \\
& =\left|e^{i \theta} \cdot \frac{e^{i \theta}-a}{e^{-i \theta}-\bar{a}}\right| \\
& =\frac{\left|e^{i \theta}-a\right|}{\left|e^{-i \theta}-\bar{a}\right|}=1
\end{aligned}
$$

Hence $\varphi_{a}(\partial \Delta)=\partial \Delta$. The remaining conclusion is left as an exercise.

Proposition 2.9.6. Suppose $f: \Delta \rightarrow \Delta$ is analytic and $f(a)=\alpha$. Then

$$
\left|f^{\prime}(a)\right| \leq \frac{1-|\alpha|^{2}}{1-|a|^{2}} . \quad\left(\text { max. value of }\left|f^{\prime}(a)\right|\right)
$$

Moreover, equality occurs if and only if $f(z)=\varphi_{-\alpha}\left(c \varphi_{a}(z)\right),|c|=1$.

Remark. We may assume $|\alpha|<1$. Otherwise f is a constant.
Proof. Define $g=\varphi_{\alpha} \circ f \circ \varphi_{-a}$, Then $g(\Delta) \subset \Delta$, and $g(0)=\varphi_{\alpha}(f(a))=$ $\varphi_{\alpha}(\alpha)=\frac{\alpha-\alpha}{1-\bar{\alpha} \alpha}=0$. Clearly g is analytic and thus $|g(z)| \leq|z|$ and $\left|g^{\prime}(0)\right| \leq 1$ by Schwarz's Lemma. But

$$
g^{\prime}(0)=\frac{1-|a|^{2}}{1-|\alpha|^{2}} f^{\prime}(a) .
$$

Thus

$$
\begin{equation*}
\left|f^{\prime}(a)\right| \leq \frac{1-|\alpha|^{2}}{1-|a|^{2}} \tag{2.14}
\end{equation*}
$$

Equality will occur if and only if there exists a c such that $\left|g^{\prime}(0)\right|=$ $|c|=1$ and $g=c z$.

We can now prove the converse of Proposition 2.9.5.
Theorem 2.9.7. Let $f: \Delta \rightarrow \Delta$ be an one-to-one analytic function onto Δ. Suppose $f(a)=0$. Then there is $a c$ such that $|c|=1$ and

$$
f=c \varphi_{a}=c \frac{z-a}{1-\bar{a} z} .
$$

Proof. Since f is bijective, we let $g: \Delta \rightarrow \Delta$ to be f^{-1}. So $g(f(z))=z$ for all $z \in \Delta$. We apply (2.14) to both f and g to derive the inequalities:

$$
\left|f^{\prime}(a)\right| \leq \frac{1}{1-|a|^{2}} \quad \text { and } \quad\left|g^{\prime}(0)\right| \leq 1-|a|^{2} .
$$

On the other hand, $1=g^{\prime}(0) f^{\prime}(a)$. Thus, $\left|f^{\prime}(a)\right|=\left(1-|a|^{2}\right)^{-1}$ since

$$
\frac{1}{1-|a|^{2}} \leq\left|f^{\prime}(a)\right| \leq \frac{1}{1-|a|^{2}}
$$

Then, since $\varphi_{0}(z)=z$, Proposition 2.9.6 gives $f=c \varphi_{a}$ for some c with $|c|=1$.

Remark. A simple consequence of the maximum modulus of entire functions is that the function $M(r)=M(r, f)=\max _{|z|=r}|f(z)|$ is an increasing function of r, i.e. $M\left(r_{1}\right) \leq M\left(r_{2}\right)$ if $r_{1} \leq r_{2}$.

2.10 Phragmén-Lindelöf principle

Example 2.10.1. Let $f(z)=\exp \left(\gamma z^{a}\right), \gamma>0, a \geq \frac{1}{2}$, be defined on \mathbb{C}.

Note that $|f(z)|=\exp \left(r^{a} \gamma \cos (a \theta)\right)$, and $\cos (a \theta)<0$ if

$$
S_{n}:(2 n-1) \frac{\pi}{2 a}<\theta<(2 n+1) \frac{\pi}{2 a}
$$

for all odd integers $n, \cos (a \theta)>0$ for $\theta \in S_{n}$ and for all even integers; and $|f(z)|=1$ if $\theta=\frac{\pi}{2 a}(2 n+1)$ for all integers n. Note that each S_{n} has an opening $\frac{\pi}{a}$.

We conclude that $|f| \rightarrow 0$ (so bounded) on each sector S_{n} (n odd); and $|f| \rightarrow \infty$ on S_{n} (n even); and f is bounded on the boundary of S_{n}.

Clearly, $\log M(r, f)=\gamma r^{a}$ and it is possible for an entire function to be bounded on two rays making angle of $\frac{\pi}{a}$ with each other without being bounded inside the sectors S_{n} (n even). Phragmén (1863-1937) observed that this example is the best possible in 1904.
Theorem 2.10.2 (Phragmén). Let $G=\left\{z:|\arg z|<\frac{\pi}{2 a}, a \geq \frac{1}{2}\right\}$ and $f: G \rightarrow \mathbb{C}$ is analytic. If f is bounded on ∂G and

$$
\log M(r, f)=o\left(r^{a}\right)
$$

then f is bounded on G.
So for each analytic function f on G and bounded on ∂G, either f is bounded on G or

$$
\limsup _{r \rightarrow \infty} \frac{\log M(r, f)}{r^{a}}>0 .
$$

We shall prove a more general result than that by Phragmén.

Theorem 2.10.3 (Phragmén-Lindelöf Theorem). Let G be a simply connected region and $f: G \rightarrow \mathbb{C}$ be analytic. Suppose there exists a non-vanishing, bounded analytic function $w(z): G \rightarrow \mathbb{C}$ such that $|w(z)| \leq 1$ on G. Moreover, if $\partial_{\infty} G=A \cup B$, then
(i) $\limsup _{z \rightarrow a}|f(z)| \leq M, \quad$ for every $a \in A$;
(ii) $\limsup _{z \rightarrow b}|w(z)|^{\epsilon}|f(z)| \leq M, \quad$ for every $b \in B R$ and $\epsilon>0$, then, $|f(z)| \leq M$ for all $z \in G$.

Proof. Set $F(z)=w(z)^{\epsilon} f(z)$ for $z \in G$. Since $w \neq 0$ on G and so we can find an analytic branch for $\log w$ and thus $w^{\epsilon}=\exp (\epsilon \log w)$ is a well-defined analytic function (a branch). It follows from the hypotheses (i) and (ii) that

$$
\limsup _{z \rightarrow z_{0} \in \partial G}|F(z)| \leq M .
$$

By the maximum modulus principle (extended version), we deduce immediately that $|F(z)| \leq M$ must hold for all $z \in G$. Thus

$$
|f(z)| \leq|w(z)|^{-\epsilon} M, \quad \text { for all } z \in G
$$

Since $\epsilon>0$ is arbitrary, we may let $\epsilon \rightarrow 0$ to obtain

$$
|f(z)| \leq M, \quad z \in G
$$

as required.
Theorem 2.10.4 (Phragmén-Lindelöf (1908)). Let $a \geq 1 / 2$ and

$$
G=\left\{z:|\arg z|<\frac{\pi}{2 a}\right\} .
$$

Suppose $f: G \rightarrow \mathbb{C}$ is analytic and $\lim _{\sup }^{z \rightarrow a}{ }|f(z)| \leq M$ for all $a \in \partial_{\infty} G$, where $M>0$ is a fixed constant. Suppose further that there exist constants $K, b<a$ such that

$$
|f(z)| \leq K \exp \left(r^{b}\right) \quad \text { as } z \rightarrow \infty, \quad z \in G .
$$

Then $|f(z)| \leq M$ for each $z \in G$.

Proof. We choose a constant c such that $b<c<a$, and define

$$
F(z)=w(z)^{\epsilon} f(z)
$$

in G, where $\epsilon>0, w(z)=\exp \left(-z^{c}\right)$. Notice that

$$
|w|=\exp \left(-r^{c} \cos c \theta\right) \leq 1
$$

Let $z=r e^{i \theta}, \theta= \pm \frac{\pi}{2 a}$. Then $|w(z)|=\exp \left(-r^{c} \cos c \theta\right) \leq 1$.
Hence for $a \in \partial G$,

$$
\begin{aligned}
\limsup _{z \rightarrow a}|F(z)| & =\underset{z \rightarrow a}{\limsup }|w(z)|^{\epsilon}|f(z)| \\
& \leq \limsup _{z \rightarrow a}^{\lim \sup }|f(z)| \leq M .
\end{aligned}
$$

For $z \in G$,

$$
\begin{aligned}
|F(z)| & =|w(z)|^{\epsilon}|f(z)| \\
& \leq K \exp \left[-\epsilon r^{c} \cos (c \theta)+r^{b}\right] \\
& \rightarrow 0<M
\end{aligned}
$$

when $|z| \rightarrow \infty$, since $\cos c \theta>0, \theta \in\left(-\frac{\pi}{2 a}, \frac{\pi}{2 a}\right), c<a$.
It follows from Theorem 2.10 .3 that, $|f(z)| \leq M$ for all $z \in G$.
We shall consider a generalization of Theorem 2.10 .4 below. It follows from Example 2.10 .1 and the hypothesis of Theorem 2.10.4 that we cannot relax the size of the angle in G or the constant b there. But this is exactly what we try to do.

Theorem 2.10.5 ("Generalisation"). Assuming the hypothesis and notation in Theorem 2.10.4, but f satisfies, instead, for each $\delta>0$, there exists $K>0$ such that

$$
|f(z)| \leq K \exp \left(\delta r^{a}\right) \quad(K=K(\delta))
$$

uniformly in G. Then $|f(z)| \leq M$ for all $z \in G$.

Proof. Let

$$
F(z)=\exp \left(-\epsilon z^{a}\right) f(z)
$$

in G, where $\epsilon>0$ is a fixed constant choosing arbitrarily. We may suppose $0<\delta<\epsilon$ since $\delta>0$ is arbitrary. Suppose $z=r \in \mathbb{R}$, then

$$
\begin{aligned}
|F(z)| & =\left|\exp \left(-\epsilon z^{a}\right)\right||f(z)|=\exp \left[-\epsilon r^{a} \cos 0\right]|f(r)| \\
& \leq K \exp \left[(\delta-\epsilon) r^{a}\right] \\
& \rightarrow 0
\end{aligned}
$$

as $r \rightarrow \infty$. Hence $|F(z)| \leq M^{\prime}$ for all $z>0$, where $M^{\prime}=\sup \{|F(z)|:$ $z>0\}$.

We now apply Theorem 2.10 .4 to the sector

$$
S_{1}: \theta \in\left(0, \frac{\pi}{2 a}\right) \quad \text { and } \quad S_{2}: \theta \in\left(-\frac{\pi}{2 a}, 0\right) .
$$

By the hypothesis $|F| \leq M$ on the rays $\theta=\pi / 2 a$ and $\theta=-\pi / 2 a$. We conclude that $|F| \leq \max \left\{M, M^{\prime}\right\}$ on S_{1} and S_{2}. We claim that $M^{\prime} \leq M$. For suppose $M^{\prime}>M$, then we can find a $z=x_{0} \in \mathbb{R}$ such that $\left|f\left(x_{0}\right)\right|=M^{\prime}$. This is a contradiction to maximum modulus principle unless F reduces to a constant, and so $M^{\prime} \leq M$.

We completes the proof by letting $\epsilon \rightarrow 0$ in $|f| \leq \exp \left(\epsilon r^{a}\right) M$.

Chapter 3

Riemann Mapping Theorem

Let G be an open set in \mathbb{C}. We consider families of analytic functions $\left\{f_{n}\right\}, f_{n}: G \rightarrow \mathbb{C}$ and ask for condition on $\left\{f_{n}\right\}$ so that we could extract a convergent subsequence $\left\{f_{n_{k}}\right\}$ which converges uniformly in a certain sense. Such consideration is of fundamental importance in complex function theory. As an application, we shall prove the celebrated Riemann mapping theorem at the end of this chapter. We shall develop the theory step by step, first to continuous functions and then to analytic and meromorphic functions. On the other hand, we shall consider functions with values in a general complete metric space Ω although $\Omega=\mathbb{C}$ or $\Omega=\widehat{\mathbb{C}}$ is our primary considerations.

3.1 Metric Space

Definition 3.1.1. Let (Ω, d) to denote a complete metric space with the metric d on Ω. Suppose G is an open subset of \mathbb{C}, then $C(G, \Omega)$ denotes the set of all continuous functions from G to Ω.

In order to develop $C(G, \Omega)$ to have a meaning of compactness, we have to clarify several issues, such as how to turn $C(G, \Omega)$ into a metric space, what are the topology on it etc.

Let us first recall some basic facts about point-set topology.
Definition 3.1.2. (i) A metric space S is complete if every Cauchy sequence converges;
(ii) A subset X of a metric space S is compact if and only if every open covering of X contains a finite subcovering. (Heine-Borel property) (See Ahlfors p.60)

Proposition 3.1.3. Let X be a compact subset of a metric space. Then X is complete and bounded.

Proof. Let $\left\{x_{n}\right\}$ be a Cauchy sequence and suppose that $x_{n} \nrightarrow y$ for any $y \in X$ as $n \rightarrow \infty$. Then there exists an $\epsilon>0$ such that $d\left(x_{n}, y\right)>$ 2ϵ for infinitely many n. With the same ϵ, there exists n_{0} such that $d\left(x_{n}, x_{m}\right)<\epsilon$ for $n, m>n_{0}$. We choose a $n>n_{0}$ such that $d\left(x_{n}, y\right)>$ 2ϵ. Then $2 \epsilon<d\left(x_{n}, y\right) \leq d\left(x_{n}, x_{m}\right)+d\left(x_{m}, y\right)<\epsilon+d\left(x_{m}, y\right)$ for all $m>n_{0}$. So $d\left(x_{m}, y\right)>\epsilon$ for all $m>n_{0}$, i.e. all open balls $B(y, \epsilon)$ contains only finitely many x_{n}.

Let U be the union of open balls which contain only a finite number of x_{n}. If we suppose $\left\{x_{n}\right\}$ dose not converge, then U is an open covering of X all open balls contains only finitely many x_{n} by the preceding paragraph, or considering if any one of the open balls contain an infinite number of x_{n}, then $\left\{x_{n}\right\}$ will converge by the preceding paragraph.

Then, since X is compact, we could find a finite subcovering of the original covering. But this implies $\left\{x_{n}\right\}$ is a finite sequence. A contradiction. Hence x_{n} must converge.

Fix an $x_{0} \in X$. Then $\cup_{r>0} B\left(x_{0}, r\right)$ is am open covering of X. Thus $X \subset B\left(x_{0}, r_{1}\right) \cup \cdots \cup B\left(x_{0}, r_{m}\right)$. Let $\tilde{r}=\max _{1 \leq i \leq m} r_{i}$. So for any $x, y \in X, d(x, y) \leq d\left(x, x_{0}\right)+d\left(x_{0}, y\right)<2 \tilde{r}$ and thus X is bounded.

In fact, a compact set is not just bounded, but totally bounded.
Definition 3.1.4. A subset X of a metric space S is totally bounded if for every $\epsilon>0, X$ can be covered by finitely many balls of radius ϵ.

Theorem 3.1.5. A metric space is compact if and only if it is complete and totally bounded.

Proof. It remains to prove a compact set is totally bounded in " \Longrightarrow ". But this is easy, since $\cup_{x \in X} B(x, \epsilon)$ is an open cover of X. We extract a finite subcover $B\left(x_{1}, \epsilon\right) \cup \cdots \cup B\left(x_{m}, \epsilon\right)$ of X by compactness.
$" \Longleftarrow "$ We now assume X to be complete and totally bounded. Suppose X has an open covering U which does not contain any finite subcovering. Let $\epsilon_{n}=1 / 2^{n}$. We know that X can be covered by finitely many $B\left(x, \epsilon_{1}\right)$, hence there must exist a $B\left(x_{1}, \epsilon_{1}\right)$ has no finite subcovering otherwise X must have a finite subcovering. But $B\left(x_{1}, \epsilon_{1}\right)$ is itself totally bounded (why?), hence there exists a ball $B\left(x_{2}, \epsilon_{2}\right)$ which does not admit a finite subcovering. Continuing the process, we obtain a sequence $\left\{x_{n}\right\}$ with the property that $B\left(x_{n}, \epsilon_{n}\right)$ has no finite subcovering and $x_{n+1} \in B\left(x_{n}, \epsilon_{n}\right)$. But then

$$
\begin{aligned}
d\left(x_{n}, x_{n+p}\right) & \leq d\left(x_{n}, x_{n+1}\right)+d\left(x_{n+1}, x_{x+2}\right)+\cdots+d\left(x_{n+p-1}, x_{n+p}\right) \\
& <\epsilon_{n}+\epsilon_{n+1}+\cdots+\epsilon_{n+p-1}<\frac{1}{2^{n-1}} .
\end{aligned}
$$

Thus $\left\{x_{n}\right\}$ is a Cauchy sequence and suppose $x_{n} \rightarrow y$. This y must belong to a $B(y, \delta)$ which belongs to an open set in the original cover U. We choose n so large that $d\left(x_{n}, y\right)<\delta / 2$ and $\epsilon_{n}<\delta / 2$. But $d(x, y) \leq d\left(x, x_{m}\right)+d\left(x_{n}, y\right)<\delta / 2+\delta / 2$ whenever $d\left(x, x_{n}\right)<\epsilon_{n}<\delta / 2$. That is $B\left(x_{n}, \epsilon_{n}\right) \subset B(y, \delta) \subset$ an open subset of U. A contradiction since $B\left(x_{n}, \epsilon_{n}\right)$ has no finite subcovering by construction.

We state the following results without proofs.
Corollary 3.1.5.1. A subset of \mathbb{R} or \mathbb{C} is compact is and only if it is closed and bounded.

Theorem 3.1.6. A metric space is compact if and only if every infinite sequence has a limit point.

Corollary 3.1.6.1. Any infinite sequence in a closed and bounded subset of \mathbb{R} and \mathbb{C} has a convergent subsequence.

Theorem 3.1.6 can be rephrased as a metric space is compact if and only if every infinite sequence has a convergent subsequence. We called such space to have the Bolzano-Weierstrass property.

We shall return to the question asked at the beginning of this chapter namely how to make $C(G, \Omega)$ to have the Bolzano-Weierstrss property. But for $C(G, \Omega)$ we have another name.

Definition 3.1.7. A family $\mathcal{F} \subset C(G, \Omega)$ is normal if each infinite sequence in F contains a convergent subsequence converges to a function in $C(G, \Omega)$. (Note that the precise definition is not given at this stage.)

Note that this definition differs to a subset to be sequentially compact (i.e. Theorem 3.1 .6) in a metric space, because we do not require the limit of the infinite sequence to be in the subset.

Our first question is how to turn $C(G, \Omega)$ into a metric space. The problem being that G is an open set and even continuous functions may not behave well on an open set. So compact sets are much more suitable for our consideration especially for an infinite sequence. We shall first investigate some fundamental point-set topology result to see how one can approximate an open set by compact subsets.

Proposition 3.1.8. Suppose that G is an open set, then there exists a sequence $\left\{K_{n}\right\}$ of compact subsets of G such that $G=\cup_{n=1}^{\infty} K_{n}$. Moreover, the sequence can be chosen so that
(i) $K_{n} \subset$ int K_{n+1}
(ii) for each compact subset K of G, we can find an n such that $K \subset K_{n}$;
(iii) every component of $\widehat{\mathbb{C}} \backslash K_{n}$ contains a component of $\widehat{\mathbb{C}} \backslash G$.

Proof. Let $A \subset X$ and $x \in X$, recall that the distance from x to A is defined by

$$
d(x, A)=\inf \{d(z, a): a \in A\}
$$

, where (X, d) is any metric space.

One way to construct the compact subset K_{n} is to let K_{n} consist of all points in G at distance $\leq n$ from the origin, and at distance $\geq 1 / n$ from the boundary ∂G. That is, we define

$$
K_{n}=\{z \in G:|z| \leq n\} \cap\{z \in G: d(z, \mathbb{C} \backslash G) \geq 1 / n\}
$$

which is bounded; and being the intersection of two closed sets must itself be closed. The interior int K_{n} is just $\{z \in G:|z|<n\} \cap\{z \in$ $G: d(z, \mathbb{C} \backslash G)>1 / n\}$. Hence int $K_{n+1} \supset K_{n}$ and (i) is satisfied. It is also easy to see from the definition of K_{n} that $G=\cup_{1}^{\infty} K_{n}$.

But since also $K_{n+1} \supset$ int K_{n+1}, we get $G=\cup_{1}^{\infty}$ int K_{n} as well. Suppose now K is a compact subset of $G . G=\cup_{1}^{\infty}$ int K_{n} implies that $\left\{\operatorname{int} K_{n}\right\}$ forms an open cover of G and also of K. But K is compact so we can find a finite subcovering \cup_{1}^{N} int K_{n} of K. Since \cup_{1}^{N} int $K_{n} \subset$ int $K_{N} \subset K_{N}$, there exists an N such that $K \subset K_{N}$.

To prove part (iii), we need to show every component of $\widehat{\mathbb{C}} \backslash K_{n}$ contains a component of $\widehat{\mathbb{C}} \backslash G$. Since $K_{n} \subset G$ for each n, we have $\widehat{\mathbb{C}} \backslash G \subset \widehat{\mathbb{C}} \backslash K_{n}$. It follows that the unbounded component of $\widehat{\mathbb{C}} \backslash G$ must be a subset of the unbounded component of $\widehat{\mathbb{C}} \backslash K_{n}$ for each n. It also follows from the definition of K_{n} that the unbounded component of $\widehat{\mathbb{C}} \backslash K_{n}$ must contain $\{z:|z|>n\}$ as a subset. So for any bounded component D (open) of $\widehat{\mathbb{C}} \backslash K_{n}$, it must contain a point z such that $d(z, \mathbb{C} \backslash G)<1 / n$. By definition we can therefore find a $w \in \mathbb{C} \backslash G$ such that $|w-z|<1 / n$. But then $z \in B(w, 1 / n) \subset \widehat{\mathbb{C}} \backslash K_{n}$. Since disks are connected and z is in the component D of $\widehat{\mathbb{C}} \backslash K_{n}, B(w, 1 / n) \subset D$. If D_{1} is the component of $\widehat{\mathbb{C}} \backslash G$ that contains w, then it follows that $D_{1} \subset D$.

The sequence of compact sets K_{n} such that $\cup K_{n}=G, K_{n} \subset K_{n+1}$ is called an exhaustion of G by compact sets.

Metric Space $C(G, \Omega)$

Suppose (S, d) is a metric space then it is easy to show that

$$
d^{\prime}(s, t)=\frac{d(s, t)}{1+d(s, t)} \quad(s, t \in S)
$$

is also a metric on S, and hence (S, d^{\prime}) is another metric space. (Verify that $d^{\prime}(s, t) \leq d^{\prime}(s, q)+d^{\prime}(q, t)$ and $d^{\prime}(s, t)=0 \Longleftrightarrow s=t$.)

It is also not difficult to check that d and d^{\prime} induce the same topology on S i.e. a subset T is open in (S, d) if and only if it is open in $\left(S, d^{\prime}\right)$; a sequence is a Cauchy sequence in (S, d) if and only if it is a Cauchy sequence in (S, d^{\prime}), etc.

Let G be an open set in \mathbb{C} and according to Proposition 3.1.8, there is an exhaustion of G by the compact set $\left\{K_{n}\right\}, K_{n} \subset$ int $K_{n+1}, G=$ $\cup_{1}^{\infty} K_{n}$. Suppose $f, g \in C(G, \Omega)$, and we recall that $C(G, \Omega)$ denotes the set of all continuous functions $f: G \rightarrow \Omega$. We define

$$
\rho_{n}(f, g)=\sup \left\{d(f(z), g(z)): z \in K_{n}\right\} .
$$

It is easy to see that ρ_{n} is a metric on $C\left(K_{n}, \Omega\right)$ for each n since (Ω, d) is a metric space. We further define

$$
\begin{aligned}
\rho(f, g) & =\sum_{n=1}^{\infty} \frac{1}{2^{n}} \cdot \frac{\rho_{n}(f, g)}{1+\rho_{n}(f, g)} \\
& \leq \sum_{n+1}^{\infty} \frac{1}{2^{n}}=1
\end{aligned}
$$

since $\rho_{n}(f, g) /\left(1+\rho_{n}(f, g)\right) \leq 1$. By the above discussion ρ satisfies the triangle inequality, $\rho(f, g)=\rho(g, f)$. Finally suppose $\rho(f, g)=0$. Then $\rho_{n}(f, g)=0$ and $f=g$ on K_{n}. But $G=\cup K_{n}$. So $f=g$ identically on G. So ρ is a metric on $C(G, \Omega)$ and $(C(G, \Omega), \rho)$ is a metric space. (We shall see later that $(C(G, \Omega), \rho)$ is in fact a complete metric space.)

If $f_{m} \rightarrow f$ in $C(G, \Omega)$ with sequence to ρ, then $f_{m} \rightarrow f$ uniformly on each compact subset K_{n} of G. (See later if this is unclear to you at this point.)

Since the construction of the metric space $(C(G, \Omega), \rho)$ depends on a particular exhaustion $\left\{K_{n}\right\}$, we naturally ask will $\left\{K_{n}\right\}$ affects the topology on $(C(G, \Omega), \rho)$ i.e. if O is open with respect to $\left\{K_{n}\right\}$, would O be still open with respect to another exhaustion? To do so, we require the following characterization of open sets in $(C(G, \Omega), \rho)$ in terms of the metric d on Ω.

Proposition 3.1.9. Let ρ be the above metric defined on $C=C(G, \Omega)$.
(i) For every $\epsilon>0$, there exist $a \delta>0$ and a compact set $K \subset G$ such that for $f, g \in C$, $\sup \{d(f(z), g(z): z \in K\}<\delta$ implies $\rho(f, g)<\epsilon$.
(ii) Conversely, if we are given $a \delta>0$ and a compact set $K \subset G$, there exists an $\epsilon>0$ such that for $f, g \in C, \rho(f, g)<\epsilon$ implies $\sup \{d(f(z), g(z): z \in K\}<\delta$.
Proof. (i) Let $\epsilon>0$ be given, we choose an integer p so large such that $\sum_{p+1}^{\infty} 1 / 2^{n}<\epsilon / 2$. Let $\delta>0$ be chosen so small such that for $0<t<\delta$, we have $t /(t+1)<\epsilon / 2$. Recall that $G=$ $\cup K_{n}$, now let $K=K_{p}$, and consider those f and g such that $\sup \{d(f(z), g(z)) ; z \in K\}<\delta$. But $\rho_{k}(f, g) \leq \rho_{p}(f, g)$ for $1 \leq$ $k \leq p$. Hence

$$
\begin{aligned}
\rho(f, g) & =\sum_{1}^{\infty} \frac{\rho_{k}(f, g)}{2^{k}\left(1+\rho_{k}(f, g)\right)}=\left(\sum_{1}^{p}+\sum_{p+1}^{\infty}\right) \frac{\rho_{k}(f, g)}{2^{k}\left(1+\rho_{k}(f, g)\right)} \\
& \leq \sum_{1}^{p} \frac{1}{2^{k}} \cdot \frac{\epsilon}{2}+\sum_{p+1}^{\infty} \frac{1}{2^{k}} \\
& <\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon
\end{aligned}
$$

as required.
(ii) Suppose now a $\delta>0$ and a compact set $K \subset G$ is given. Suppose $\cup K_{n}=G$ is an exhaustion of G by compact set. Then there exists an integer p such that $K \subset K_{p}$. Choose $\epsilon>0$ so small such that $\frac{2^{p} \epsilon}{1-2^{p} \epsilon}<\delta$.
Suppose $\rho(f, g)<\epsilon$, then

$$
\frac{\rho_{p}(f, g)}{2^{p}\left(1+\rho_{p}(f, g)\right.}<\epsilon,
$$

i.e.

$$
\rho_{p}(f, g)<\frac{2^{p} \epsilon}{1-2^{p} \epsilon}<\delta .
$$

Thus $\sup \{d(f(z), g(z)): z \in K\} \leq \rho_{p}(f, g)<\delta$ as required.

What is an open ball in (C, ρ) ?
Ans: $B(f, \epsilon)=\{g: \rho(g, f)<\epsilon\}$.
What about an open set in (C, ρ) ?
Ans: Since open set is an union of open balls, or for each f in the open set, there exists an $\epsilon>0$ such that $B(f, \epsilon)$ is a proper subset of the open set.

We immediately obtain:
Proposition 3.1.10. A set $U \subset(C, \rho)$ is open if and only if for each $f \in U$, there exist a compact set $K \subset G$ and $a \delta>0$ such that

$$
U \supset\{g: d(f(z), g(z))<\delta: z \in K\}
$$

Proposition 3.1.10 clearly indicates that any open set U of (C, ρ) is independent of the particular exhaustion $\left\{K_{n}\right\}$ used to define ρ_{n} and hence ρ. This answers the question raised before Proposition 3.1.9.

Here we again answer a claim made before Proposition 3.1.9,
Proposition 3.1.11. Let $\left\{f_{n}\right\}$ be an infinite sequence in $(C(G, \Omega), \rho)$. Then $f_{n} \rightarrow f \in(C(G, \Omega), \rho)$ if and only if $\left\{f_{n}(z)\right\}$ converges to $f(z)$ uniformly on every compact subset of G.

Proof. " " Let $K \subset G$ be an arbitrary compact set. By (ii) of Proposition 3.1.8, there exists a compact set K_{N} in the exhaustion $\cup K_{n}=G$ so that $K \subset K_{N} \subset K_{n}$ for all $n \geq N$. Thus $\rho_{N}\left(f_{m}, f\right) \rightarrow 0$ as $m \rightarrow \infty$ since

$$
\frac{\rho_{N}\left(f_{m}, f\right)}{2^{N}\left(1+\rho_{N}\left(f_{m}, f\right)\right)} \leq \sum_{1}^{\infty} \frac{\rho_{N}\left(f_{m}, f\right)}{2^{N}\left(1+\rho_{N}\left(f_{m}, f\right)\right)}=\rho\left(f_{m}, f\right) \rightarrow 0
$$

as $m \rightarrow \infty$. But

$$
\sup \left\{d\left(f_{m}(z), f(z)\right): z \in K\right\} \leq \sup \left\{d\left(f_{m}(z), f(z)\right): z \in K_{N}\right\} \rightarrow 0
$$

as $m \rightarrow \infty$ by Proposition 3.1.9(ii). Hence $f_{m} \rightarrow f$ on any compact set $K \subset G$.

The converse is left as an exercise.
So far we have not used the assumption at the beginning that Ω is a complete metric space.

Theorem 3.1.12. $(C(G, \Omega), \rho)$ is a complete metric space.
Proof. Suppose $\left\{f_{n}\right\}$ is a Cauchy sequence in $(C(G, \Omega), \rho)$. That is, given $\epsilon>0$, there exists a $N>0$ such that $\rho\left(f_{n}, f_{m}\right)<\epsilon$ whenever $n, m>N$.

By Proposition 3.1.9(ii), given any compact set $K \subset G$ and $\delta>0$, we have

$$
\begin{equation*}
\sup \left\{d\left(f_{n}(z), f_{m}(z): z \in K\right\}<\delta\right. \tag{3.1}
\end{equation*}
$$

whenever $n, m>N$. That is, $\left\{f_{n}(z)\right\}$ is a Cauchy sequence in \mathbb{C}. Thus $f_{n}(z)$ must converge to a complex number $f(z)$, say. This is true for every $z \in K$. So we obtain a function by $f: K \rightarrow \mathbb{C}, z \mapsto f(z)$.

We need to verify that $f_{n} \rightarrow f$ with respect to ρ and that $f \in$ $C(G, \Omega)$. Let z be an arbitrary element of K, then there exists an $m_{0}=m_{0}(z)$ such that $d\left(f_{m}(z), f(z)\right)<\delta$ for $m>m_{0}$.

Let $n>N$ and $z \in K$, we have

$$
\begin{equation*}
d\left(f_{n}(z), f(z)\right) \leq d\left(f_{n}(z), f_{m}(z)\right)+d\left(f_{m}(z), f(z)\right) \leq \delta+\delta=2 \delta \tag{3.2}
\end{equation*}
$$

by choosing $m>m_{0}$ sufficiently large. It follows from (3.1) that (3.2) holds uniformly for all $z \in K$ and $n>N$. That is, $f_{n} \rightarrow f$ uniformly on every compact subset K of G. Proposition 3.1.10 implies that $\rho\left(f_{n}, f\right) \rightarrow 0$ as $n \rightarrow \infty$. Moreover since $f_{n} \rightarrow f$ uniformly on K, f must be continuous. Since K is arbitrary, f must be continuous on G by Proposition 3.1.8, i.e. $f \in C(G, \Omega)$.

Recall that a family $\mathcal{F} \subset C(G, \Omega)$ is normal if every infinite sequence has a subsequence which converges to a function in $C(G, \Omega)$. Note that the limit is not required to be a member of \mathcal{F}. This and Theorem 3.1.6 imply that

Proposition 3.1.13. A family $\mathcal{F} \subset C(G, \Omega)$ is normal if and only if $\overline{\mathcal{F}}$ is compact (or \mathcal{F} is relatively compact in $C(G, \Omega)$).

We now relate the concepts of normality and total boundedness. We recall, from Theorem 3.1.5 that, a subset is compact if and only if it is complete and totally bounded. Hence Proposition 3.1.13 can be rephrased as: $\mathcal{F} \subset C(G, \Omega)$ is normal if and only if $\overline{\mathcal{F}}$ is complete and totally bounded. \mathcal{F} being a subset of $\overline{\mathcal{F}}$ is also totally bounded, i.e. given $\epsilon>0, \mathcal{F} \subset \cup_{1}^{N} B\left(f_{i}, \epsilon\right)$ for some $\left\{f_{1}, \ldots, f_{N}\right\}$ of \mathcal{F}. So for every $\epsilon>0$, there exist $f_{1}, \ldots, f_{N} \in \mathcal{F}$ such that for every $f \in \mathcal{F}$, there exist an i such that $\rho\left(f, f_{i}\right)<\epsilon$.

We now state this in terms of the original metric d.

Exercise.

Let $S=\left\{x=\left(x_{1}, x_{2}, \ldots\right): x_{i} \in \mathbb{R}\right.$, only finitely many $\left.x_{i} \neq 0\right\}$. Then (S, d) is a metric space, where $d(x, y)=\max \left\{\left|x_{i}-y_{i}\right|\right\}$. Is (S, d) complete? Show that the δ-neighbourhoods are not totally bounded.

Theorem 3.1.14. A set $\mathcal{F} \subset C(G, \Omega)$ is normal if and only if for every compact set $K \subset G$ and $\delta>0$, there exist $f_{1}, \ldots, f_{n} \in \mathcal{F}$ such that for each $f \in \mathcal{F}$, there exists an i among $\{1, \ldots, n\}$ with

$$
\begin{equation*}
\sup \left\{d\left(f(z), f_{i}(z)\right): z \in K\right\}<\delta . \tag{3.3}
\end{equation*}
$$

Proof. Suppose \mathcal{F} is normal; hence $\overline{\mathcal{F}}$ is compact and thus totally bounded. So for each $\epsilon>0$, there exist f_{1}, \ldots, f_{n} among \mathcal{F} such that $\mathcal{F} \subset \cup_{1}^{n} B\left(f_{i}, \epsilon\right)$.

Let $K \subset G$ be compact and $\delta>0$ be given. According to Proposition 3.1.9(ii), we may choose $\epsilon>0$ such that for each $f \in B\left(f_{i}, \epsilon\right)$, we have

$$
\sup \left\{d\left(f(z), f_{i}(z)\right): z \in K\right\}<\delta .
$$

Conversely, suppose \mathcal{F} has the property (3.3), then it is clear that $\overline{\mathcal{F}}$ also has this property (3.3). By Proposition 3.1.13, it is equivalent
to show that $\overline{\mathcal{F}}$ is a compact subset of (C, ρ) in order to show that \mathcal{F} is normal. But $\overline{\mathcal{F}}$ is compact if and only if it is complete and totally bounded. Since $\overline{\mathcal{F}}$ satisfies (3.3), $\overline{\mathcal{F}}$ is totally bounded by Proposition 3.1.9(i). But $\overline{\mathcal{F}}$ is a closed subset of the complete metric space (C, ρ), so it must be complete also. This proves that \mathcal{F} is normal.

We have essentially established the theory part of Normal family. However, it is still too general to be applicable. For example, one main result is by Montel: A family of analytic functions is normal if and only if the family is locally bounded. We shall define the term locally bounded precisely later. It essentially means each f in the family is bounded on every ball. To make the connection, we still need to establish several links, some of them are very important on their own.

3.2 Arzela-Ascoli Theorem

Definition 3.2.1. A set $\mathcal{F} \subset C(G, \Omega)$ is equicontinuous at a point $z_{0} \in G$ if for every $\epsilon>0$, there is a $\delta>0$ such that for $\left|z-z_{0}\right|<\delta$, $d\left(f(z), f\left(z_{0}\right)\right)<\epsilon$ for every $f \in \mathcal{F}$.

Similarly, \mathcal{F} is equicontinuous over a set $E \subset G$ if for every $\epsilon>0$, there exists a $\delta>0$ such that for $\left|z-z^{\prime}\right|<\delta, d\left(f(z), f\left(z^{\prime}\right)\right)<\epsilon$ whenever $z, z^{\prime} \in E$ and for every $f \in \mathcal{F}$.

Remark. If $\mathcal{F}=\{f\}$, then \mathcal{F} is equicontinuous at z_{0} means just f is continous at z_{0}. And $\mathcal{F}=\{f\}$ is equicontinous over a set $E \subset G$ if f is uniformly continuous over E.

Lemma 3.2.2 (Lebesgue's Covering Lemma). Let (X, d) be a compact metric space. If \mathcal{G} is an open covering of X, then there is an $\epsilon>0$ such that for each $x \in X$, there is a set $G \in \mathcal{G}$ with $B(x, \epsilon) \subset G$.

Proof. Since X is compact, Theorem 3.1.6 implies that every infinite sequence has a convergent subsequence. Let \mathcal{G} be an open cover of X, suppose on the contrary that there is no such $\epsilon>0$ can be found. In particular, for every integer n there is a point $x_{n} \in X$ such that $B\left(x_{n}, 1 / n\right)$ is not contained in any member G of \mathcal{G}. But $\left\{x_{n}\right\}$ must
have a subsequence $\left\{x_{n_{k}}\right\}$ converging to $x_{0} \in X$, say. There must be a $G_{0} \in \mathcal{G}$ such that $x_{0} \in G_{0}$. Choose $\epsilon>0$ such that $B\left(x_{0}, \epsilon\right) \subset G_{0}$. Let $N>0$ such that $d\left(x_{0}, x_{n_{k}}\right)<\epsilon / 2$ for all $n_{k}>N$. We further choose n_{k} such that $n_{k} \geq \max \{N, 2 / \epsilon\}, y \in B\left(x_{n_{k}}, 1 / n_{k}\right)$. Then $d\left(x_{0}, y\right) \leq$ $d\left(x_{0}, x_{n_{k}}\right)+d\left(x_{n_{k}}, y\right)<\epsilon / 2+\epsilon / 2=\epsilon$. That is $B\left(x_{n_{k}}, 1 / n_{k}\right) \subset B\left(x_{0}, \epsilon\right) \subset$ $G_{0} \in \mathcal{G}$. A contradiction.

Remark. The $\epsilon>0$ in the above lemma is known as Lebesgue's number.

Proposition 3.2.3. Suppose $\mathcal{F} \subset C(G, \Omega)$ is equicontinuous at each point of G. Then \mathcal{F} is equicontinuous over each compact subset of G.

Proof. Let $K \subset G$ be a compact set and fix $\epsilon>0 . \mathcal{F}$ is equicontinuous at each point w of K means that there exists a $\delta_{w}>0$ such that $d\left(f(w), f\left(w^{\prime}\right)\right)<\epsilon / 2$, for all $f \in \mathcal{F}$ and $\left|w-w^{\prime}\right|<\delta_{w}$.

The set $\left\{B\left(w, \delta_{w}\right): w \in K\right\}$ forms an open cover of K. By Lebesgue's Covering Lemma, there exists a $\delta>0$ such that for each $z \in K, B(z, \delta)$ is contained in one of these $B\left(w, \delta_{w}\right)$. So if $z^{\prime} \in B(z, \delta)$, then $d\left(f(z), f\left(z^{\prime}\right)\right) \leq d(f(z), f(w))+d\left(f(w), f\left(z^{\prime}\right)\right)<\epsilon / 2+\epsilon / 2=\epsilon$ for all $f \in F$ whenever $z^{\prime} \in B(z, \delta)$. Hence \mathcal{F} is equicontinuous over K.

Theorem 3.2.4 (Arzela-Ascoli Theorem). A set $\mathcal{F} \subset C(G, \Omega)$ is normal if and only if
(i) \mathcal{F} is equicontinuous at each point of G;
(ii) for each $z \in G, \overline{\{f(z): f \in \mathcal{F}\}}$ is compact in Ω.

We shall postpone the proof of Arzela-Ascoli Theorem and give an application first. (Full detail will be given later.)

Theorem 3.2.5 (Montel's Theorem). Let $H(G)$ be a subset of $C(G, \Omega)$ of all analytic functions $f: G \rightarrow \Omega=\mathbb{C}$. (Note that $H(G)$ is complete.) Then $F \subset H(G)$ is normal if and only if \mathcal{F} is locally bounded.

In order to prove the Arzela-Ascoli Theorem, we need the following lemma.

Lemma 3.2.6 (Cantor Diagonalization Process). Let $\left(X_{n}, d_{n}\right)$ be a metric space for each $n \in \mathbb{N}$, and let $X=\Pi_{1}^{\infty} X_{n}$ be their Cartesian product. Let $\xi=\left(x_{n}\right), \eta=\left(y_{n}\right) \in X$. Then

$$
d(\xi, \eta)=\sum_{n=1}^{\infty} \frac{d_{n}\left(x_{n}, y_{n}\right)}{2^{n}\left(1+d_{n}\left(x_{n}, y_{n}\right)\right)}
$$

defines a metric on $X((X, d)$ is a metric space $)$. Let

$$
\xi^{k}=\left(x_{n}^{k}\right)_{k=1}^{\infty}=\left(x_{1}^{k}, x_{2}^{k}, x_{3}^{k}, \ldots\right) \in X
$$

then $\xi^{k} \rightarrow \xi=\left(x_{n}\right)$ say, in (X, d) if and only if $x_{n}^{k} \rightarrow x_{n} \in X_{n}$ for each n as $k \rightarrow \infty$.

Moreover (X, d) is compact if $\left(X_{n}, d\right)$ is compact for each n.
Proof. It is left to the reader to verify that (X, d) is a metric space.
$" \Longrightarrow " S u p p o s e ~ f i r s t ~ t h a t ~ \xi^{k} \rightarrow \xi$ in (X, d), i.e. $d\left(\xi^{k}, \xi\right) \rightarrow 0$ as $k \rightarrow \infty$. Then, for each $n \in \mathbb{N}, d_{n}\left(x_{n}^{k}, x_{n}\right) \rightarrow 0$ as $k \rightarrow \infty$ since

$$
\lim _{k \rightarrow \infty} \frac{d_{n}\left(x_{n}^{k}, x_{n}\right)}{1+d_{n}\left(x_{n}^{k}, x_{n}\right)} \leq \lim _{k \rightarrow \infty} d\left(\xi^{k}, \xi\right) 2^{n}=0
$$

$" \Longleftarrow "$ Suppose now that $d_{n}\left(x_{n}^{k}, x_{n}\right) \rightarrow 0$ for each $n \in \mathbb{N}$ as $k \rightarrow \infty$.
Given $\epsilon>0$, we choose l so large that $\sum_{n=l+1}^{\infty} 1 / 2^{n}<\epsilon / 2$, and choose a $\delta>0$ so small that $\frac{t}{1+t}<\frac{\epsilon}{2}$ if $t<\delta$. Since $d_{n}\left(x_{n}^{k}, x_{n}\right) \rightarrow 0$ as $k \rightarrow \infty$, there exists a $K>0$ such that $d_{n}\left(x_{n}^{k}, x_{n}\right)<\delta$ if $k>K$ for $1 \leq n \leq l$. Hence

$$
\begin{aligned}
d\left(\xi^{k}, \xi\right) & =\left(\sum_{1}^{l}+\sum_{l+1}^{\infty}\right) \frac{d_{n}\left(x_{n}^{k}, x_{n}\right)}{2^{n}\left(1+d_{n}\left(x_{n}^{k}, x_{n}\right)\right)} \\
& <\sum_{1}^{l} \frac{1}{2^{n}} \cdot \frac{\epsilon}{2}+\sum_{l+1}^{\infty} \frac{1}{2^{n}}<\epsilon
\end{aligned}
$$

by the choice of l and k above. Hence $d\left(\xi^{k}, \xi\right) \rightarrow 0$ as $k \rightarrow \infty$. This proves the first part of the lemma.

Suppose now that $\left(X_{n}, d_{n}\right)$ is compact for each $n \in \mathbb{N}$. By Theorem 3.1.6 it suffices to prove that every infinite sequence contains a convergent subsequence. We now come to describe the famous Cantor diagonalization process. Let $\xi^{k}=\left(x_{n}^{k}\right)=\left(x_{1}^{k}, x_{2}^{k}, x_{3}^{k}, \ldots\right), k=1,2,3, \ldots$, be a sequence in (X, d) where each $x_{n}^{k} \in\left(X_{n}, d_{n}\right)$

Since X_{1} is assumed to be compact, so $\left(x_{1}^{k}\right)_{1}^{\infty}$ has a convergent subsequence converges to a point x_{1} say, in X_{1} (by Theorem 3.1.6). So there is a subset of \mathbb{N} denoted by \mathbb{N}_{1} such that $k \in \mathbb{N}_{1}$. Similarly since X_{2} is compact, we can find a subset of \mathbb{N}_{1} denoted by \mathbb{N}_{2} such that $x_{2}^{k} \rightarrow x_{2} \in X_{2}$ as $k \rightarrow \infty, k \in \mathbb{N}_{2}$. It is to be noted that $x_{1}^{k} \rightarrow x_{1}$ and $x_{2}^{k} \rightarrow x_{2}$ as $k \rightarrow \infty, k \in \mathbb{N}_{2}$. By the same method we may repeat the above procedure for X_{3}, X_{4}, \ldots and obtain $\mathbb{N}_{2} \supset \mathbb{N}_{3} \supset \mathbb{N}_{4} \supset \mathbb{N}_{5} \supset \cdots$.

We now let k_{j} be the j-th element in \mathbb{N}_{j}, then

$$
\xi^{k_{j}}=\left(x_{1}^{k_{j}}, x_{2}^{k_{j}}, x_{3}^{k_{j}}, \ldots\right)
$$

converges to $\xi=\left(x_{n}\right)=\left(x_{1}, x_{2}, x_{3}, \ldots\right)$ as $k_{j} \rightarrow \infty$ with j. To see this, we note that $\lim _{k_{j} \rightarrow \infty} x_{n}^{k_{j}}=x_{n}$ for each n, since $k_{j} \in \mathbb{N}_{j} \subset \mathbb{N}_{n}$ when $j \geq n$. This completes the proof.

Now we are ready to prove the Arzela-Ascoli Theorem (Theorem 3.2.4).

Proof of Arzela-Ascoli Theorem. " \Longrightarrow "Let us first assume that \mathcal{F} is normal. We deal with (ii) first. So fix a $z \in G$ and define a map $F: C(G, \Omega) \rightarrow \Omega$ by $f \mapsto f(z)$. We aim to prove that F is a continuous mapping. Proposition 3.1.9(ii) implies that given $f, g \in C(G, \Omega)$ and $\epsilon>0$, we can find a $\delta>0$ such that

$$
d(f(z), g(z))<\epsilon \quad \text { whenever } \quad \rho(f, g)<\delta . \quad(K=\{z\})
$$

The statement is equivalent to

$$
d(F(f), F(g))<\epsilon \quad \text { whenever } \quad \rho(f, g)<\delta .
$$

That is, F is a continuous mapping from $C(G, \Omega)$ to Ω. Since \mathcal{F} is normal, and so $\overline{\mathcal{F}}$ is compact, it follows $F(\overline{\mathcal{F}})$ is also compact in Ω.

Since this argument works for each $z \in G$, it completes the argument.
We now show that \mathcal{F} is equicontinuous at each point z_{0} of G. Fix $z_{0} \in G$, and let $\epsilon>0$ be given. We choose $R>0$ such that $\overline{B\left(z_{0}, R\right)} \subset$ G. Let $K=\overline{B\left(z_{0}, R\right)}$ which is a compact set. According to Theorem 3.1.14, there exist $f_{1}, \ldots, f_{n} \in \mathcal{F}$ such that for each $f \in \mathcal{F}$, there exists a $k \in\{1, \ldots, n\}$ with

$$
\sup \left\{d\left(f(z), f_{k}(z)\right): z \in \overline{B\left(z_{0}, R\right)}=K\right\}<\frac{\epsilon}{3}
$$

We now make use of the fact that f_{k} is continuous at z_{0}. That is, there exists a $0<\delta<R$ such that $\left|z-z_{0}\right|<\delta$ implies

$$
d\left(f_{k}(z), f_{k}\left(z_{0}\right)\right)<\frac{\epsilon}{3}
$$

for $1 \leq k \leq n$. Therefore given $\epsilon>0, f \in \mathcal{F}$, there exists a $\delta>0$ (with a suitable k) such that $\left|z-z_{0}\right|<\delta$ implies

$$
\begin{aligned}
d\left(f(z), f\left(z_{0}\right)\right) & \leq d\left(f(z), f_{k}(z)\right)+d\left(f_{k}(z), f_{k}\left(z_{0}\right)\right)+d\left(f_{k}\left(z_{0}\right), f\left(z_{0}\right)\right) \\
& <\frac{\epsilon}{3}+\frac{\epsilon}{3}+\frac{\epsilon}{3}=\epsilon
\end{aligned}
$$

$" \Longleftarrow "$ We now prove the converse. So suppose (i) and (ii) of the theorem hold. Let $\left\{z_{n}\right\}$ be an rational enumeration of G (i.e. z_{n} has rational real and imaginary parts, $\left.z_{n} \in G\right)$. We define

$$
X_{n}=\overline{\left\{f\left(z_{n}\right): f \in \mathcal{F}\right\}} \subset \Omega
$$

for every n. By (ii) of the hypothesis $\left(X_{n}, d\right)$ is a compact metric space. Hence Lemma 3.2.6 implies $X=\prod_{1}^{\infty} X_{n}$, with the metric as defined in Lemma 3.2.6, is again a compact metric space .

For each $f \in \mathcal{F}$ we define a sequence

$$
\tilde{f}=\left(f\left(z_{1}\right), f\left(z_{2}\right), f\left(z_{3}\right), \ldots\right) \in X
$$

Suppose $\left\{f_{k}\right\}$ is an infinite sequence in \mathcal{F}, we shall prove $f_{k} \rightarrow f \in$ $C(G, \Omega)$ by proving that $\left\{f_{k}\right\}$ is a Cauchy sequence in the $C(G, \Omega)$. But $C(G, \Omega)$ is complete and hence \mathcal{F} must be normal.

As for \tilde{f}, we define

$$
\widetilde{f_{k}}=\left(f_{k}\left(z_{1}\right), f_{k}\left(z_{2}\right), \ldots\right)
$$

which is an infinite sequence in the compact metric space X. By Theorem 3.1.6 $\left\{\widetilde{f_{k}}\right\}$ has a convergent subsequence which we still denote by $\left\{f_{k}\right\}$. Suppose $\lim _{k \rightarrow \infty} f_{k}\left(z_{n}\right)=w_{n}$, Lemme 3.2.6 implies $\lim _{k \rightarrow \infty} \widetilde{f_{k}}=\xi=\left(w_{n}\right)$.

So our strategy is to show given $\epsilon>0, K$ is an arbitrary compact subset, there exists a $J>0$ such that

$$
d\left(f\left({ }_{k}(z), f_{j}(z)\right)<\epsilon \quad \text { whenver } k, j>J\right.
$$

and for $z \in K$. Then by Proposition 3.1 .9 (i), $\left\{f_{k}\right\}$ will be a Cauchy sequence in $C(G, \Omega)$.

Since K is compact, let $R=\operatorname{dist}(K, \partial G)>0$, and

$$
K_{1}=\left\{z \in G: d(z, K) \leq \frac{R}{2}\right\} .
$$

So K_{1} is again compact and $K \subset$ int $K_{1} \subset K_{1} \subset G$.
We clearly have the values of f_{k} at z_{n} when k is large, $f_{k}\left(z_{n}\right) \sim w_{n}$ (k sufficiently large). We use the hypothesis that \mathcal{F} is equicontinuous over K to gain control of $f_{k}(z)$ when z is close to one of z_{n}. Since \mathcal{F} is equicontinuous at each point of G, it is equicontinuous over K_{1}. That is, with the $\epsilon>0$ given above, we can find a $\delta>0$ such that $\delta<\frac{R}{2}$ and

$$
d\left(f(z), f\left(z^{\prime}\right)\right)<\frac{\epsilon}{3}
$$

for all $f \in \mathcal{F}$ whenever $\left|z-z^{\prime}\right|<\delta$ and $z, z^{\prime} \in K_{1}$. Let $D=\left\{z_{n}\right\} \cap K_{1}=$ $\left\{\xi_{i}\right\}$. Then the open sets $\left\{B\left(\xi_{i}, \delta\right): \xi_{i} \in D\right\}$ is an open cover of K. (See Figure 3.1)

But K is compact, so we can find a subcovering of disks with centres $\xi_{1}, \xi_{2}, \ldots, \xi_{n} \in D$.

Note that $\lim _{k \rightarrow \infty} f_{k}\left(\xi_{i}\right)$ exists for each i, hence there exists a $J>0$ such that for $j, k>J, d\left(f_{k}\left(\xi_{i}\right), f_{j}\left(\xi_{i}\right)\right)<\frac{\epsilon}{3}$ for each of $i=1, \ldots, n$.

Figure 3.1: $\left\{B\left(\xi_{i}, \delta\right): \xi_{i} \in D\right\}$
Now let z be an arbitrary point in $K, z \in B\left(\xi_{i}, \delta\right)$ for some i, so

$$
\begin{aligned}
d\left(f_{k}(z), f_{j}(z)\right) & \leq d\left(f_{k}(z), f_{k}\left(\xi_{i}\right)\right)+d\left(f_{k}\left(\xi_{i}\right), f_{j}\left(\xi_{i}\right)\right)+d\left(f_{j}\left(\xi_{i}\right), f_{j}(z)\right) \\
& <\underbrace{\frac{\epsilon}{3}}_{\text {equicontinuous }}+\underbrace{\frac{\epsilon}{3}}_{\text {convergence }}+\underbrace{\frac{\epsilon}{3}}_{\text {equicontinuous }}=\epsilon
\end{aligned}
$$

provided $j, k>J$. This completes the proof.

3.3 Normal Family of Analytic Functions

Let G be an open subset of \mathbb{C} and let $H(G)$ be a subset of $C(G, \mathbb{C})$ consisting of analytic functions $f: G \rightarrow \mathbb{C}$. Thus almost all basic properties of $C(G, \Omega)$ are carried over to $H(G)$. However, it is not clear that if $H(G)$ is closed (and hence complete).

Theorem 3.3.1. Suppose $\left\{f_{n}\right\}$ is a sequence in $H(G)$ and $f \in C(G, \Omega)$ such that $f_{n} \rightarrow f$. Then $f \in H(G)$, and $f_{n}^{(k)} \rightarrow f^{(k)}$ for each $k \geq 1$.

Proof. Let T be a triangle contained inside a disk $D \subset G$. Since T is a compact set, $\left\{f_{n}\right\}$ converges to f uniformly over T. Hence $\int_{T} f=$ $\lim \int_{T} f_{n}=0$ by Cauchy's Theorem. But this is true for every T, Morera's Theorem implies that f must be analytic on every disk $D \subset$ G. That is, f is analytic on G.

To show $f_{n}^{(k)} \rightarrow f^{(k)}$, this follows from Cauchy's integral formula. Let $a \in G$. Then there exists $R>r$ such that $B(a, r) \subset B(a, R) \subset G$. Let $\gamma=\partial B(a, R)$ then Cauchy's integral formula gives, for $z \in B(a, r)$,

$$
f_{n}^{(k)}(z)-f^{(k)}(z)=\frac{k!}{2 \pi i} \int_{\gamma} \frac{f_{n}(w)-f(w)}{(w-z)^{k+1}} d w .
$$

Let $M_{n}=\max \left\{\left|f_{n}(w)-f(w)\right|: w \in \gamma\right\}$. Then $M_{n} \rightarrow 0$ as $n \rightarrow \infty$ since $f_{n} \rightarrow f$ in $C(G, \Omega)$. Thus

$$
\begin{aligned}
\left|f_{n}^{(k)}(z)-f^{(k)}(z)\right| & \leq \frac{k!}{2 \pi} M_{n} \int_{0}^{2 \pi} \frac{1}{(R-r)^{k+1}} R d \theta \\
& =\frac{k!M_{n} R}{(R-r)^{k+1}} \rightarrow 0 \quad \text { as } n \rightarrow \infty .
\end{aligned}
$$

Hence $f_{n}^{(k)} \rightarrow f^{(k)}$ uniformly on $B(a, r)$. Suppose K is an arbitrary compact set of G. Then we can find a_{1}, \ldots, a_{m} such that $K \subset \cup_{1}^{m} B\left(a_{i}, r\right)$. So $f_{n}^{(k)} \rightarrow f^{(k)}$ uniformly on K and thus $\rho\left(f_{n}^{(k)}, f^{(k)}\right) \rightarrow 0$ in $H(G)$ by Proposition 3.1.11.

Corollary 3.3.1.1. (i) $H(G)$ is a complete metric space;
(ii) If each $f_{n}: G \rightarrow \mathbb{C}$ is analytic and $\sum_{n=1}^{\infty} f_{n}(z)$ converges uniformly on compact sets to f, then

$$
f^{(k)}(z)=\sum_{n=1}^{\infty} f_{n}^{(k)}(z)
$$

Note that both Theorem 3.3.1 and Corollary 3.3.1.1 have no analogues in real variable theory. Can you think of some examples?

Here is again an unusual theorem.
Theorem 3.3.2 (Hurwitz's Theorem). Let G be a region and $f_{n}: G \rightarrow$ \mathbb{C} are in $H(G)$. Suppose $f_{n} \rightarrow f \not \equiv 0, \overline{B(a, R)} \subset G$ and $f(z) \neq 0$ on $|z-a|=R$, then there is an integer N such that for $n \geq N, f$ and f_{n} have the same number of zeros in $B(a, R)$.

Proof. Let us recall Rouché's Theorem: (see Conway p.125) Suppose f and g are analytic in a neighborhood of $\overline{B(a, R)}$ and have no zeros on $|z-a|=R$. Suppose further that

$$
|f(z)+g(z)|<|f(z)+|g(z)|
$$

for all $|z-a|=R$, then f and g have the same number of zeros with due count of multiplicities of multiple zeros.

Since $f(z) \neq 0$ on $|z-a|=R$, therefore

$$
\delta=\inf \{|f(z)|:|z-a|=R\}>0 .
$$

The hypothesis $f_{n} \rightarrow f$ uniformly on $|z-a|=R$ implies there is an N such that $f_{n} \neq 0$ for all $n \geq N$. But

$$
\left|f(z)-f_{n}(z)\right|<\frac{\delta}{2}<|f(z)| \leq|f(z)|+\left|f_{n}(z)\right|
$$

for all n sufficiently large. We conclude the theorem by applying Rouché's theorem.

Corollary 3.3.2.1. Suppose G is a region and $\left\{f_{n}\right\} \subset H(G), f_{n} \rightarrow f$ in $H(G)$. Suppose $f_{n}(z) \neq 0$ for each $z \in G$ and n, then either $f \equiv 0$ or $f(z) \neq 0$ for all $z \in G$.

Definition 3.3.3. A family $\mathcal{F} \subset H(G)$ is locally bounded if each $a \in G$, there is a $M>0$ and an $r>0$ such that for all $f \in \mathcal{F}$,

$$
|f(z)| \leq M, \quad \text { for all } z \in B(a, r)
$$

We immediately deduce
Proposition 3.3.4. A family $\mathcal{F} \subset H(G)$ is locally bounded if and only if for each compact set $K \subset G$ there is a constant M such that

$$
|f(z)| \leq M, \quad \text { for all } f \in \mathcal{F} \text { and } z \in K
$$

Theorem 3.3.5 (Montel's Theorem). A family $\mathcal{F} \subset H(G)$ is normal if and only if \mathcal{F} is locally bounded.

Proof." \Longrightarrow "Suppose \mathcal{F} is normal and not locally bounded. By Proposition 3.3.4, there exists a compact set $K \subset G$ and $f \in \mathcal{F}$ such that $\sup \{|f(z)|: z \in K\}=\infty$. So we can find a sequence $\left\{f_{n}\right\} \subset \mathcal{F}$ such that $\sup \left\{\left|f_{n}(z)\right|: z \in K\right\} \geq n$. But \mathcal{F} is normal, so there exist a subsequence $f_{n_{k}} \rightarrow f$ uniformly on any compact subsets. That is $\sup \left\{\left|f_{n_{k}}(z)-f(z)\right|: z \in K\right\} \rightarrow 0$ as $k \rightarrow \infty$.

Since $f \in H(G)$ and $|f| \leq M, z \in K$ for some $M>0$. But

$$
\begin{aligned}
n_{k} & \leq \sup \left\{\left|f_{n_{k}}(z)\right|: z \in K\right\} \\
& \leq \sup \left\{\left|f_{n_{k}}(z)-f(z)\right|: z \in K\right\}+\sup \{|f(z)|: z \in K\} \\
& \rightarrow 0+M \text { as } \quad k \rightarrow \infty
\end{aligned}
$$

A contradiction.
$" \Longleftarrow "$ Suppose now that \mathcal{F} is locally bounded. Then the set $\overline{\{f(z): f \in \mathcal{F}\}}$ is clearly compact, and it remains to show \mathcal{F} is equicontinuous at each point of G. Let $a \in G$ and $\epsilon>0$ be given. Tt follows from the hypothesis that there exists an $M>0$ and $r>0$ such that for all $f \in \mathcal{F},|f(z)| \leq M$ for $z \in \overline{B(a, r)}$. Now choose a z in $|z-a|<\frac{r}{2}$ $(z \in B(a, r / 2))$. Put $\gamma(t)=a+r e^{i t}, 0 \leq t \leq 2 \pi$. Then we have, for $w \in \gamma,|w-z| \geq|w-a|-|a-z|>\frac{r}{2}$. An application of Cauchy's integral formula on γ gives

Figure 3.2: $z \in B(a, r / 2)$

$$
\begin{aligned}
|f(z)-f(a)| & \leq \frac{1}{2 \pi}\left|\int_{\gamma} \frac{f(w)(z-a)}{(w-a)(w-z)} d w\right| \\
& \leq \frac{1}{2 \pi} 2 \pi \frac{M|z-a|}{\left|r e^{i t}\right| \frac{r}{2}}\left|i r e^{i t}\right|=\frac{2 M}{r}|z-a|<\epsilon \quad \text { (independent of } f \text {) }
\end{aligned}
$$

provided we choose $\delta<\min \left\{\frac{r}{2}, \frac{r}{2 M} \epsilon\right\}$. Hence given $\epsilon>0$, there exists a $\delta>0$ such that $|f(z)-f(a)|<\epsilon$ for all $f \in \mathcal{F}$ and $z \in B(a, \delta)$.

Corollary 3.3.5.1. $\mathcal{F} \subset H(G)$ is compact if and only if \mathcal{F} is closed and locally bounded.

Example 3.3.6. Let S be the normalized class of one-to-one conformal mapping on the unit disk with Taylor's expansion

$$
f(z)=z+a_{2} z^{2}+a_{3} z^{3}+\cdots .
$$

It is well-known that

$$
\frac{|z|}{(1+|z|)^{2}} \leq|f(z)| \leq \frac{|z|}{(1-|z|)^{2}}, \quad \text { for all }|z|<1 \text { and } f \in S
$$

Montel's theorem implies that S is a normal family.

Theorem 3.3.7 (Another theorem of Montel). Let G be a region and $F \subset H(G)$. Suppose each $f \in \mathcal{F}$ omits same two fixed values $a, b \in \mathbb{C}$ in their range. Then \mathcal{F} is normal.

The above theorem is called as Fundamental normality test.
Remark (Bieberbach conjecture). $\left|a_{n}\right| \leq n$, for all $n \geq 2$ and $f \in S$. Proved by de Branges in 1984.

3.4 Riemann Mapping Theorem

Definition 3.4.1. Two regions G_{1} and G_{2} in \mathbb{C} are said to be conformally equivalent if there exists an one-to-one analytic map f with $f\left(G_{1}\right)=G_{2}$.

We note that Louville's theorem implies that \mathbb{C} is not equivalent to the unit disk Δ.

Theorem 3.4.2 (Riemann Mapping Theorem). Let $G \subset \mathbb{C}$ be a simply connected region where its complement contains at least one point. Let $a \in G$. Then there is a unique one-to-one analytic mapping $f: G \rightarrow \mathbb{C}$ that satisfies $f(G)=\Delta=\{z:|z|<1\}$ and $f(a)=0, f^{\prime}(a)>0$.

Suppose f and g are Riemann mappings for G_{1} and G_{2} respectively with $f\left(G_{1}\right)=\Delta, g\left(G_{2}\right)=\Delta$. Then $g^{-1} \circ f: G_{1} \rightarrow G_{2}$ is an one-to-one analytic map such that $\left(g^{-1} \circ f\right)\left(G_{1}\right)=G_{2}$.

It is clear to see that conformally equivalent is an equivalence relation mapping all simply connected regions where their complements are non-empty.

Proof of Riemann Mapping Theorem. Let G be a region as assumed in the theorem. We shall divide the proof into five stages. Let $a \in G$, we define the family

$$
\mathcal{F}=\left\{f \in H(G): f \text { one-to-one, } f(G) \subset \Delta, f(a)=0, f^{\prime}(a)>0\right\} .
$$

The theorem will be proved if we can find a $f \in \mathcal{F}$ such that $f(G)=\Delta$.
(A) (\mathcal{F} is non-empty). Let $b \in \mathbb{C} \backslash G$ is non-empty by the hypothesis. Since G is simply connected, Theorem 1.10 .13 asserts that we can find an analytic function g with

$$
g(z)=\sqrt{z-b}=\exp \left(\frac{1}{2} \log (z-b)\right), \quad g(z)^{2}=z-b .
$$

It is easily observed that g is one-to-one analytic function.
Then the open mapping theorem (Theorem ??) asserts that there is a real number $r>0$ with $B(g(a), r) \subset g(G)$. We next show $B(-g(a) . r) \cap g(G)=\emptyset$. For suppose there exists a $z \in G$ with $g(z) \in B(-g(a), r)$, then

$$
|g(z)-(-g(a))|<r .
$$

This inequality can be written as

$$
|-g(z)-g(a)|<r .
$$

In other words, $-g(z) \in B(g(a), r)$. Hence there exists a $w \in$ G such that $g(w)=-g(z)$, squaring both sides yields $w-b=$ $g(w)^{2}=g(z)^{2}=z-b$. So $w=z$, and $2 g(z)=0$. A contradiction. Hence $B(-g(a), r) \cap g(G)=\emptyset$.

Figure 3.3: $T \circ g: G \rightarrow \Delta$

For any three points fixed on $\partial B(-g(a), r)$, we can always find a unique Möbius mapping $T(z)=\frac{a z+b}{c z+d}(: \mathbb{C} \rightarrow \mathbb{C})$ such that $T(\partial B(-g(a), r))=\partial \Delta$ and $T\left(\mathbb{C} \backslash \frac{c z+d}{B(-g(a), r)}\right)=\Delta$. Hence $T \circ g:$ $G \rightarrow \Delta$. It remains to make $T \circ g$ a member of \mathcal{F}. But this is easy. Suppose $T \circ g(a)=\alpha$, then we define $\varphi_{\alpha}=\frac{z-\alpha}{1-\bar{\alpha} z}$ which is an automorphism with $\varphi_{\alpha}(\alpha)=0$. Hence $\left(\varphi_{\alpha} \circ T \circ g\right)(G) \subset \Delta$ with $\left(\varphi_{\alpha} \circ T \circ g\right)(a)=0$.

Since each of φ_{α}, T and g is conformal, so is $\varphi_{\alpha} \circ T \circ g$. That is, $\left(\varphi_{\alpha} \circ T \circ g\right)^{\prime}(z) \neq 0$ for all $z \in G$. We finally choose a suitable θ, so that $e^{i \theta}\left(\varphi_{\alpha} \circ T \circ g\right) \in \mathcal{F}$. Hence \mathcal{F} is non-empty.
(B) $(\overline{\mathcal{F}}=\mathcal{F} \cup\{0\})$. Note that the zero function 0 is not conformal. Let $\left\{f_{n}\right\}$ be a sequence in \mathcal{F}. Suppose $f_{n} \rightarrow f$. We show either $f \in \mathcal{F}$ (not identically zero) or $f \equiv 0$. We first deduce that $f(a)=0$ and $f^{\prime}(a) \geq 0$ since the convergence is uniform on every compact subsets of G.
Let $z_{1}, z_{2} \in G$. We choose an $r>0$ so small that $z_{1} \notin \overline{B\left(z_{2}, r\right)}$. Then $f_{n}(z)-f_{n}\left(z_{1}\right) \neq 0$ on $\overline{B\left(z_{2}, r\right)}$ since $f_{n} \in \mathcal{F}$ and so one-toone. According to Corollary 3.3.2.1, we have

$$
f_{n}(z)-f_{n}\left(z_{1}\right) \rightarrow f(z)-f\left(z_{1}\right)= \begin{cases}\neq 0, & \text { for all } z \in \overline{B\left(z_{2}, r\right)} \\ \equiv 0, & \text { for all } z \in \overline{B\left(z_{2}, r\right)}\end{cases}
$$

If $f(z) \equiv f\left(z_{1}\right)$ for all $z \in \overline{B\left(z_{2}, r\right)}$, then $f(z) \equiv 0$ on G since $f(a)=0$. If, however, $f(z) \neq f\left(z_{1}\right)$ for all $z \in \overline{B\left(z_{2}, r\right)}$, this means $f\left(z_{2}\right) \neq f\left(z_{1}\right)$ whenever $z_{1} \neq z_{2}$. So f is one-to-one on G. But this implies $f^{\prime}(z) \neq 0$ for each $z \in G$, and in particular $f^{\prime}(a)>0$. Hence $f \in \mathcal{F}$ as required.
(C) (Existence of the largest $\left.f^{\prime}(a)>0\right)$. Note that (C) and (D) below are related. Consider the mapping $H(G) \rightarrow \mathbb{C}$ given by $f \mapsto f^{\prime}(a)$ (a is already fixed in G). By Theorem 3.3.1 the mapping $f \rightarrow$
$f^{\prime}(a)$ is continuous. But \mathcal{F} is locally bounded (since $|f|<1$ for each $f \in \mathcal{F}$) and so normal. That is, $\overline{\mathcal{F}}$ is compact by Proposition 3.1.13. The image of $\overline{\mathcal{F}}$ under the above continuous mapping must also be compact in \mathbb{C}. Hence there exists a $f \in \overline{\mathcal{F}}$ such that $f^{\prime}(a) \geq g^{\prime}(a)>0$ for all $g \in \mathcal{F}$. But $\mathcal{F} \neq \emptyset$ by (A) so there exists a non-constant $f \in F$ such that $f^{\prime}(a) \geq g^{\prime}(a)>0$ for all $g \in \mathcal{F}$.
(D) (The f found in (C) has $f(G)=\Delta$). We suppose that there exists a $w \in \Delta$ such that $f(z) \neq w$ for all $z \in G$. Then the function

$$
\frac{f-w}{1-\bar{w} f} \neq 0
$$

for all $z \in G$. We may define an analytic branch $h: G \rightarrow \mathbb{C}$ by

$$
(h(z))^{2}=\frac{f(z)-w}{1-\bar{w} f(z)}
$$

Let

$$
k(z)=\frac{\left|h^{\prime}(a)\right|}{h^{\prime}(a)} \frac{h(z)-h(a)}{1-\overline{h(a)} h(z)}
$$

It is not difficult to observe that $h(G) \subset \Delta$ and $k(G) \subset \Delta$. We also have $k(a)=0$ and $k^{\prime}(z) \neq 0$. In fact, $k \in \mathcal{F}$ since

$$
\begin{aligned}
k^{\prime}(a) & =\frac{\left|h^{\prime}(a)\right|}{h^{\prime}(a)} h^{\prime}(a) \frac{1-|h(a)|^{2}}{\left(1-|h(a)|^{2}\right)^{2}} \\
& =\frac{\left|h^{\prime}(a)\right|}{1-|h(a)|^{2}}>0
\end{aligned}
$$

On the other hand, $|h(a)|^{2}=\left|\frac{f(a)-w}{1-\bar{w} f(a)}\right|=\left|\frac{0-w}{1-0}\right|=|w|$.
Notice that

$$
2 h(z) h^{\prime}(z)=\frac{d}{d z}(h(z))^{2}=\frac{f^{\prime}(z)\left(1-|w|^{2}\right)}{(1-\bar{w} f(z))^{2}}
$$

Thus

$$
2 h(a) h^{\prime}(a)=f^{\prime}(a)\left(1-|w|^{2}\right)
$$

Finally,

$$
\begin{aligned}
& k^{\prime}(a)=\frac{\left|h^{\prime}(a)\right|}{1-|h(a)|^{2}}=\frac{\frac{f^{\prime}\left(a \mid\left(1-|w|^{2}\right)\right.}{2|h(a)|}}{1-|h(a)|^{2}} \\
&=f^{\prime}(a)\left(\frac{1+|w|}{2 \sqrt{|w|}}\right) \\
&>f^{\prime}(a)
\end{aligned}
$$

A contradiction. This completes the proof of (D).
(E) (Uniqueness of f). Suppose g also satisfies (A)-(D), then $f \circ$ $g^{-1}: \Delta \rightarrow \Delta$ is an one-to-one, onto analytic map. Notice that $f \circ g^{-1}(0)=f(a)=0$. So Theorem 2.9.7 shows that there is a constant $c=e^{i \theta}$ and $f \circ g^{-1}(z)=c z$ for all $z \in \Delta$. That is $f(z)=c g(z)$ for all $z \in G$ which gives $0<f^{\prime}(a)=c g^{\prime}(a)$. But $g^{\prime}(a)>0$, so $c=1$ and $f(z)=g(z)$.

Remark. The simply connectedness implies the existence of analytic square root function which is all we need to prove the conclusion.

Corollary 3.4.2.1. Among the simply connected regions, there are only two equivalence classes; one consisting of \mathbb{C} alone and the other containing proper simply connected regions.

3.5 Boundary Correspondence of Conformal Mappings

Suppose f is a conformal mapping from the unit disc Δ to a simply connected domain D. We are concerned with under what circumstance that we could extend the f to the boundary $|z|=1$.

Lemma 3.5.1. Let $f: \Delta \rightarrow \mathbb{C}$ be continuous, $f(\Delta)=D$. Suppose $\lim _{z \rightarrow \xi} f(z)$ exists for every ξ with $|\xi|=1$. Then the function $\tilde{f}: \Delta \rightarrow$ $\overline{\mathbb{C}}$ defined by

$$
\tilde{f}(z)= \begin{cases}f(z), & |z|<1 \\ \lim _{z \rightarrow \xi} f(z), & |\xi|=1\end{cases}
$$

is the unique continuous extension of f to $|z| \leq 1$. Moreover, $f(\Delta)=$ \bar{D}.

The lemma provides a way to define a possible meaning of a continuous extension of f to $|z|=1$. Interested reader can consult Palka's book [8, Chap. XI] or Ahlfors' [1].

Definition 3.5.2. A plane domain/region G is finitely connected along its boundary if corresponding to each point z of ∂G and each $r>0$, there exists an $s \in(0, r)$ such that $G \cap B(z, s)$ intersects at most finitely many components of the open set $G \cap B(z, r)$.

Theorem 3.5.3 (Väisälä \& Näkki). Let $f: \Delta \rightarrow \mathbb{C}$ be conformal. The f can be extended to a continuous mapping \tilde{f} of $\bar{\Delta}$ onto $\overline{f(\Delta)}$ if and only if $f(\Delta)$ is finitely connected along its boundary.

Definition 3.5.4. A plane domain/region G is locally connected along its boundary if corresponding to each point z of ∂G and each $r>0$, there exists an $s \in(0, r)$ such that $G \cap B(z, s)$ intersects exactly one component of $G \cap B(z, r)$.

Theorem 3.5.5. Let $f: \Delta \rightarrow \mathbb{C}$ be conformal. Then f can be extended to a homeomorphism \tilde{f} of $\overline{f(\Delta)}$ if and only if $f(\Delta)$ is locally connected along its boundary.

finitely connected at z_{0}

not finitely connected at z_{0}

Figure 3.4: Finitely connectedness along different boundaries
Definition 3.5.6. A set J of points in \mathbb{C} is called a Jordan curve if J is the boundary of some simple closed path. (J is compact and hence bounded.)

Theorem 3.5.7 (Jordan Curve Theorem, Jordan 1887). The complement of a Jordan curve J has exactly two components, each having J as its boundary. One of these components is a bounded set (the inside of J), while the other is unbounded (the outside of J).

Definition 3.5.8. A domain/region $G \subset \mathbb{C}$ with the property that ∂G is a Jordan curve is called a Jordan domain.

Theorem 3.5.9 (Caratheodory-Osgood Theorem). A conformal mapping f of Δ onto a domain D can be extended to a homeomorphism of $\bar{\Delta}$ onto $\bar{\Delta}$ if and only if D is a Jordan domain.

3.6 Space of Meromorphic Functions

Definition 3.6.1. Let $M(G) \subset C(G, \widehat{\mathbb{C}})$ denote the space of meromorphic functions on the region G.

Theorem 3.6.2. Let $\left\{f_{n}\right\} \subset M(G), f_{n} \rightarrow f$ in $C(G, \widehat{\mathbb{C}})$. Then either f is meromorphic or $f \equiv \infty$. If each $\left\{f_{n}\right\}$ is analytic or $f \equiv \infty$.

Corollary 3.6.2.1. $M(G) \cup\{\infty\}$ is a complete metric space. (w.r.t. spherical metric)
Corollary 3.6.2.2. $H(G) \cup\{\infty\}$ is closed in $C(G, \widehat{\mathbb{C}})$.
Example 3.6.3. $f_{n}(z)=n\left(z^{2}-n\right)$ is analytic on \mathbb{C} for each n. The $f_{n} \rightarrow \infty$ uniformly on each compact subset of \mathbb{C}. While $\left\{f_{n}^{\prime}(z)\right\}=$ $\{2 n z\}$ is not a normal family, since $f_{n}^{\prime}(0)=0$ and $f_{n}^{\prime}(z) \rightarrow \infty$ for $z \neq 0$. So \mathcal{F} is normal $\nRightarrow \mathbb{F}^{\prime}$ is normal.

Definition 3.6.4. $\rho(f)(z)=\frac{2\left|f^{\prime}(z)\right|}{1+|f(z)|^{2}}$ is called the spherical derivative of f. It is defined even at the poles of f.

Recall that the chordal distance under the stereographic projection is given by

$$
\begin{aligned}
d\left(f\left(z_{1}\right), f\left(z_{2}\right)\right. & =\frac{2\left|f\left(z_{1}\right)-f\left(z_{2}\right)\right|}{\sqrt{\left(1+\left|f\left(z_{1}\right)\right|^{2}\right)\left(1+\left|f\left(z_{2}\right)\right|^{2}\right)}} \\
& \sim \frac{2\left|f^{\prime}\left(z_{1}\right)\right| d z}{1+\left|f\left(z_{1}\right)\right|^{2}} \quad \text { as } z_{2} \rightarrow z_{1} .
\end{aligned}
$$

Let γ be the curve in \mathbb{C}. The length of $f(\gamma)$ under the stereographic projection on the Riemann sphere is given by

$$
\int_{\gamma} \rho(f)(z)|d z| .
$$

Theorem 3.6.5. $\mathcal{F} \subset M(G)$ is normal in $C(G, \widehat{\mathbb{C}})$ if and only if $\rho(f)(z)$ is locally bounded on \mathcal{F}.

3.7 Schwarz's reflection principle

Let $G \subset \mathbb{C}$ be a region, and $\bar{G}=\{\bar{z}: z \in G\}$. Clearly if a region G is symmetrical with respect to \mathbb{R}, then $\bar{G}=G$.

Theorem 3.7.1. Suppose $\bar{G}=G$. We denote $G_{+}=\{z \in G: \Im z>0\}$, $G_{-}=\{z \in G: \Im z<0\}$ and $G_{0}=G \cap \mathbb{R}$. Suppose $f: G_{+} \cup G_{0} \rightarrow \mathbb{C}$ is continuous, analytic on G_{+}such that f is real on G_{0}. Then

$$
g(z):= \begin{cases}f(z) & z \in G_{+} \tag{3.4}\\ \overline{f(\bar{z})} & z \in G_{0} \cup G_{-}\end{cases}
$$

is analytic on G.

Figure 3.5: Schwarz's relfection along the \mathbb{R}

Remark. We note that if f is only defined on G_{+}and continuous and real on G_{0}, then we can use the above g to extend f across to G_{-} by reflection. By the identity theorem applied to \mathbb{R}, so that such an extension is unique.

Proof. It is clear that g is analytic on G_{+}and G_{-}. It remains to consider if g is analytic on G_{0}. That is, if g is analytic in a neighbourhood $B\left(x_{0}, r\right)$, where x_{0} real and for every $x_{0} \in G_{0}$ and a corresponding $r>0$. We could achieve this by proving for each triangle T within $B\left(x_{0}, r\right)$ the integral $\int_{T} g d z=0$. Then g is analytic in $B\left(x_{0}, r\right)$ by Morera's theorem. Thus, if the triangle T lies entirely in G_{+}with no intersection with G_{0}, then $\int_{T} f=0$ since f is analytic there. Similarly if T lies entirely in G_{-}. So we assume that $T \cap G_{0} \neq \emptyset$.

Figure 3.6: One triangle and one quadrilaterial
In general, either $T \cap G_{0}$ is a single point or it is a line segment. The former consideration obviously gives $\int_{T} f=\int_{T} g=0$. The latter means that the G_{0} deivdes the T into two pieces. Without loss of generality, we may assume that $G_{+} \cup G_{0}$ contains the triangle $T^{\prime}=[a, b, c, a]$ part of T and $[a, b]$ lies on G_{0}, leaving the quadrilateral part in $G_{-} \cup G_{0}$.

Notice that $g=f$ is uniformly continues on T^{\prime} since T^{\prime} is a compact set. That is, given $\varepsilon>0$, there is a $\delta>0$ such that if $z, z^{\prime} \in T^{\prime}$, and $\left|z-z^{\prime}\right|<\delta$, then

$$
\left|f(z)-f\left(z^{\prime}\right)\right|<\varepsilon
$$

We construct a sub-triangle $T^{\prime \prime}=[\alpha, \beta, c, \alpha]$ of T^{\prime} such that one of

Figure 3.7: Integration along the quadrilaterial
the sides $[\alpha, \beta]$ is parallel and close to $[a, b]$ and hence to the \mathbb{R}. We may parametrise the horizontal line segments $[a, b]$ and $[\beta, \alpha]$ by

$$
(1-t) t a+t b, \quad(1-t) \alpha+t \beta, \quad(0 \leq t \leq 1)
$$

So now with the given $\varepsilon>0$, we choose $\delta>0$ so that

$$
|\alpha-a|<\delta, \quad|\beta-b|<\delta \quad(0 \leq t \leq 1)
$$

hence

$$
\begin{aligned}
|(1-t) \alpha+t \beta-((1-t) t a+t b)| & \leq(1-t)|\alpha-a|+t|\beta-b| \\
& \leq \delta(1-t+t) \\
& =\delta
\end{aligned}
$$

This implies

$$
\mid f[(1-t) \alpha+t \beta]-f[(1-t) t a+t b)] \mid<\varepsilon, \quad(0 \leq t \leq 1)
$$

Thus

$$
\begin{aligned}
\mid \int_{[a, b]} f- & \int_{[\alpha, \beta]} \mid \\
& =\left|(b-a) \int_{0}^{1} f[(1-t) t a+t b)-(\beta-\alpha) \int_{0}^{1} f[(1-t) \alpha+t \beta] d t\right| \\
& \leq|b-a|\left|\int_{0}^{1} f[(1-t) t a+t b)-(\beta-\alpha) \int_{0}^{1} f[(1-t) \alpha+t \beta] d t\right| \\
& \quad+|(b-a)-(\beta-\alpha)|\left|\int_{0}^{1} f[(1-t) \alpha+t \beta] d t\right| \\
& \leq|b-a| \varepsilon+|(b-a)-(\beta-\alpha)| M \\
& \leq \varepsilon \ell\left(T^{\prime}\right)+|(b-a)-(\beta-\alpha)| M \\
& \leq \varepsilon \ell\left(T^{\prime}\right)+2 \delta M
\end{aligned}
$$

where $\ell\left(T^{\prime}\right)$ stands for the length of the parameter of T^{\prime}, and $M=$ $\max \left\{|f(z)|: z \in T^{\prime}\right\}$. The estimates of the remaining integrals are easy:

$$
\left|\int_{[a, \alpha]} f\right| \leq|\alpha-a| M \leq M \delta, \quad\left|\int_{[b, \beta]} f\right| \leq|\beta-b| M \leq M \delta .
$$

We finally deduce

$$
\begin{aligned}
\left|\int_{T} f\right| & =\left|\int_{T^{\prime}} f+\int_{[a, b, \beta, \alpha, a]} f\right| \\
& =\left|\int_{[a, b, \beta, \alpha, a]} f\right| \\
& =\left|\int_{[a, b]} f-\int_{[\alpha, \beta]}\right|+\left|\int_{[a, \alpha]} f\right|+\left|\int_{[b, \beta]} f\right| \\
& \leq \varepsilon \ell\left(T^{\prime}\right)+4 \delta M \\
& \leq \varepsilon\left(\ell\left(T^{\prime}\right)+4 M\right)
\end{aligned}
$$

since we may choose $\delta<\varepsilon$. This shows that $\int_{T^{\prime}} f=0$. We conclude that f is analytic in $B\left(x_{0}, r\right)$. Hence g is analytic on G.

The above is called Schwarz' ${ }^{1}$ reflection principle. We can map the above upper half-plane onto a circle and the real-axis \mathbb{R} to $|z-a|=r$.

[^1]Theorem 3.7.2 (Schwarz reflection principle: second version). Let G_{1} denote a simply-connected domain interior to $C_{a}:=\{z:|z-a|=$ $r\}$ with an arc γ on C_{a} such that every point of $\operatorname{int}(\gamma)$ has a semicircular neighbourhood in $B(a, r) \cap \gamma$. Let $f: G_{1} \rightarrow \mathbb{C}$ be analytic and continuous on $G_{1} \cup \gamma$. Suppose $f(\gamma)=\Gamma$ consists of an arc of the circle $C_{b}:=\{w:|w-b|=R\}$. Then we can extend f to the region G_{2}, obtained by reflecting G_{1} with respect to C_{a}, mapping every $z \in G_{1}$ to

$$
z^{*}=a+\frac{r^{2}}{\bar{z}-\bar{a}}
$$

being the symmetric (inverse) point of z in G_{1}, and

$$
f\left(z^{*}\right)=b+\frac{R^{2}}{\overline{f(z)}-\bar{b}},
$$

in G_{2} so that the new function is analytic in $G=G_{1} \cup \gamma \cup G_{2}$.

Proof. Let $z \in G_{1}$. Then we recall that the symmetric point z^{*} with respect to the circle C_{a} is given by

$$
z^{*}=a+\frac{r}{\bar{z}-\bar{a}} .
$$

Let $M_{C_{a}}$ be the Möbius transformation that maps the circle onto \mathbb{R} with the notaton $z \mapsto Z$. We also denote the inverse point of $w=f(z)$ with respect to the circle $|w-b|=R$ to be

$$
w^{*}=b+\frac{R}{f(z)-\bar{b}} .
$$

We also denote the Möbius transformation that maps the circle
$|w-b|=R$ onto \mathbb{R} by $M_{C_{b}}$ with the notaton $w \mapsto W$. Then we have

$$
\begin{aligned}
f\left(z^{*}\right) & =f \circ M_{C_{a}}\left(Z^{*}\right) \\
& =F\left(Z^{*}\right)=F(\bar{Z}) \\
& =\overline{F(\bar{Z})} \\
& =\bar{W}\left(=W^{*}\right) \\
& =M_{C_{b}}\left(w^{*}\right) \\
& =M_{C_{b}}\left(f(z)^{*}\right) \\
& =b+\frac{R^{2}}{f(z)-\bar{b}},
\end{aligned}
$$

where $F=f \circ M_{C_{a}}$.

Figure 3.8: Schwarz reflection with respect to circles
One can achieve a more general reflection below.
Theorem 3.7.3. Let G_{1} and G_{2} be two simply-connected domains such that

$$
\text { 1. } G_{1} \cap G_{2}=\emptyset \text {; }
$$

2. $\bar{G}_{1} \cap \bar{G}_{2}=\gamma$ where γ is a smooth curve such that every interior point int (γ) of γ has a neighbourhood lying entirely inside $G:=$ $G_{1} \cup \operatorname{int}(\gamma) \cup G_{2}$.

Let $f_{j}(z)$ be analytic in G_{j}, continuous in $G_{j} \cup \gamma, j=1,2$ such that for every point $\xi \in \gamma$

$$
\lim _{D_{1} \ni z \rightarrow \xi} f_{1}(z)=h(\xi)=\lim _{D_{2} \ni z \rightarrow \xi} f_{2}(z)
$$

for some complex-valued function $h: \gamma \rightarrow \mathbb{C}$. Then there exists an analytic function f in G such that $f(z)=f_{j}(z)$ for each $z \in G_{j}$, $j=1,2$.

3.8 Schwarz-Christoffel formulae

The Riemann mapping theorem that we discussed is an existence result. It is rather difficult to construct explicit formulae that actually realise the theorem for even reasonable shape simple-connected regions. But a given simply connected can be approximated by polygons, so it becomes of interest to find explicit formulae for conformal of polygons.
Theorem 3.8.1 (Schwarz (1869), Christoffel (1867)). Let f be a oneone conformal mapping that maps the upper half-plane \mathbb{H}^{+}onto the interior of the a polygon $D=\left[w_{1}, w_{2}, \cdots w_{n}\right]$ with the interior angles

$$
0<\alpha_{k} \pi:=\left(1-\nu_{k}\right) \pi<2 \pi,
$$

at each of the vertices $w_{k}, k=1, \cdots n$. Suppose $-\infty<a_{1}<a_{2}<\cdots<$ $a_{n}<\infty$ are real numbers on \mathbb{R} such that $f\left(a_{k}\right)=w_{k}, k=1, \cdots n$. Then f is given by

$$
\begin{align*}
f(z) & =\alpha \int_{0}^{z} \frac{d z}{\left(z-a_{1}\right)^{1-\alpha_{1}}\left(z-a_{2}\right)^{1-\alpha_{2}} \cdots\left(z-a_{n}\right)^{1-\alpha_{n}}}+\beta \\
& =\alpha \int_{0}^{z} \frac{d z}{\left(z-a_{1}\right)^{\mu_{1}}\left(z-a_{2}\right)^{\mu_{2}} \cdots\left(z-a_{n}\right)^{\mu_{n}}}+\beta \tag{3.5}
\end{align*}
$$

where α, β are two integration constants, where the $\nu_{k}, \quad k=1, \cdots, n$ are the corresponding exterior angles.

We recall that from elementary geometry that if the above polygon D is convex, that is, $0<\nu_{k}<1$, then

$$
\sum_{k=1}^{n} \nu \pi_{k}=2 \pi .
$$

Proof. Since the boundary of the proposed polygon D is certainly a Jordan curve, we immediately deduce from Theorem 3.5.9 that there is a conformal mapping f from the upper half-plane \mathbb{H}^{+}onto the D such that f can be extended continuously to the real-axis \mathbb{R} and $f(\mathbb{R})=\partial D$. Let us label

$$
f\left(a_{k}\right)=w_{k}, \quad k=1, \cdots, n
$$

$w_{n+1}=w_{1}$ that are the vertices of the polygon D. Let us denote $f\left(a_{k}, a_{k+1}\right)=L_{k}, k=1, \cdots n$. Then we can apply Schwarz's reflection principle (Theorem 3.7.2) to a chosen $\mathbb{H}^{+} \cup\left(a_{k}, a_{k+1}\right)$ for some $k \in$ $\{1, \cdots, n\}$ and reflect along $\left(a_{k}, a_{k+1}\right)$ to continue f to the lower halfplane \mathbb{H}^{-}. But this corresponds to a reflection image D^{\prime} obtained from D after a reflection of D along its side L_{k}. In fact, the $D^{\prime}=f\left(\mathbb{H}^{-}\right)$. where we have reused the notation for the extension of f onto the domain $\mathbb{H}^{+} \cup\left(a_{k}, a_{k+1}\right) \cup \mathbb{H}^{-}$. But the Riemann mapping theorem again asserts that there is a one-one conformal mapping \hat{f} that maps \mathbb{H}^{-}onto D^{\prime}. So we may apply the Schwarz reflection principle (Theorem 3.7.2) again to reflect \mathbb{H}^{-}along one of the other intervals $\left.\left(a_{k+1}, a_{k+2}\right)\right]^{2}$ say, to the upper half-plane \mathbb{H}^{+}. This again corresponds to the reflection of D^{\prime} along its side L_{k+1} to a symmetrical region. The resulting image, which we denote by $D^{\prime \prime}$ is of identical shape as D where we started off, but located in a different position. The Riemann mapping theorem again implies that there is a \tilde{f} that maps the upper half-plane \mathbb{H}^{+}onto the $D^{\prime \prime}$. Since we can superimpose the D to $D^{\prime \prime}$ by a translation and a rotation, so we have

$$
\begin{equation*}
\tilde{f}(z)=A f(z)+B \tag{3.6}
\end{equation*}
$$

in \mathbb{H}^{+}for some constants A, B,

[^2]

Figure 3.9: Even number of reflections
We deduce

$$
\tilde{f}^{\prime}(z)=A f^{\prime}(z) \neq 0
$$

throughout the \mathbb{H}^{+}since f is conformal there. Moreover,

$$
\begin{equation*}
g(z):=\frac{\tilde{f}^{\prime \prime}(z)}{\tilde{f}^{\prime}(z)}=\frac{f^{\prime \prime}(z)}{f^{\prime}(z)} \tag{3.7}
\end{equation*}
$$

in \mathbb{H}^{+}. This shows that the function g is analytic in \mathbb{H}^{+}. A similar consideration leads to a similar conclusion that g is analytic in \mathbb{H}^{-}, and hence on

$$
\mathbb{H}^{+} \cup_{k=1}^{n}\left(a_{k}, a_{k+1}\right) \cup \mathbb{H}^{-}
$$

by the Schwarz reflection principle. Hence g is analytic on \mathbb{C} except perhaps at $a_{k}, k=1, \cdots n$. Let us investigate what happens at these a_{k}. Let us consider the behaviour of f when z changing from the line segment $\left(a_{k-1}, a_{k}\right)$ to (a_{k}, a_{k+1}). We have

$$
f(z)=f\left(a_{k}\right)+\left(z-a_{k}\right)^{\alpha_{k}} h(z)
$$

where h is analytic in a neighbourhood at $z=a_{k}$ and $h\left(a_{k}\right) \neq 0$ (imagine that z lies on a line segment slight above the \mathbb{R}. Thus $f(z)-$
$f\left(a_{k}\right)$ changes an angle $\alpha_{k} \pi$ from L_{k-1} to L_{k} when z "passes through" a_{k}.

Figure 3.10: "Opening" an angle
Hence

$$
\begin{align*}
f^{\prime}(z) & =\alpha_{k}\left(z-a_{k}\right)^{\alpha_{k}-1} h(z)+\left(z-a_{k}\right)^{\alpha_{k}} h^{\prime}(z) \\
& =\left(z-a_{k}\right)^{\alpha_{k}-1}\left[\alpha_{k} h(z)+\left(z-a_{k}\right) h^{\prime}(z)\right] \tag{3.8}\\
& :=\left(z-a_{k}\right)^{\alpha_{k}-1} \phi(z),
\end{align*}
$$

where $\phi(z)$ is analytic at a_{k} and $\phi\left(a_{k}\right) \neq 0$. Thus,

$$
\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}=\frac{\alpha_{k}-1}{z-a_{k}}+\frac{\phi^{\prime}(z)}{\phi(z)} .
$$

This shows that the function g defined above is analytic in \mathbb{C} except at the $a_{k}, k=1, \cdots, n$ where it has a residue $\alpha_{k}-1$ at each simple pole a_{k}. Thus the function

$$
\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}-\sum_{k=1}^{n} \frac{\alpha_{k}-1}{z-a_{k}}
$$

is an entire function, and in fact including $z=\infty$. To see this we note that f and its analytic continuation are bounded at ∞, that is, we have the Laurent expansion at ∞ :

$$
f(z)=f(\infty)+O\left(\frac{1}{z^{m}}\right), \quad z \rightarrow \infty
$$

for some integer $m \geq 1$. We deduce that g has a simple pole at ∞. This shows that

$$
\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}-\sum_{k=1}^{n} \frac{\alpha_{k}-1}{z-a_{k}} \equiv 0
$$

by Liouville's theorem. The above formula implies that

$$
f^{\prime}(z)=\alpha \prod_{k=1}^{n}\left(z-a_{k}\right)^{\alpha_{k}-1} .
$$

integrating the above formula from 0 to z yields the desired formula.

Remark. We can continue the above reflection along one (a_{k}, a_{k+1}) from \mathbb{H}^{+}to \mathbb{H}^{-}and then from \mathbb{H}^{-}to \mathbb{H}^{+}via another interval $\left(a_{j}, a_{j+1}\right)$ any number of times for different k and j in the above construction. The upshoot is that evey time we complete a cycle we end up with a different function valued at the same point in the upper half-plane and similarly in the lower half-plane. This suggests that we should consider that these different values from different "reflected values" to be different branches of an analytic function $w=F(z)$ defined on $\mathbb{C} \backslash \cup_{k=1}^{n}\left(a_{k}, a_{k+1}\right)$. The above proof shows that the $g=f^{\prime \prime} / f^{\prime}(z)$ so constructed is independent of the branches chosen. In fact, we have shown that it is globally defined in $\widehat{\mathbb{C}}$.

Remark. The reader may have noticed that we did not discuss the actual locations of the real numbers $-\infty<a_{1}<a_{2}<\cdots<a_{n}<\infty$ and the constants α, β in the Schwarz-Christoffel formula above. This turns out to be a difficult unsolved problems. However, we can still prescribe a_{1}, a_{2}, a_{n} to w_{1}, w_{2}, w_{n} say after a suitably chosen Möbius transformation. However, given a polygon with more than three vertices, it
becomes a non-trivial problem to determine the other points a_{4}, \cdots, a_{n} on the real axis. This is partly due to the fact that the SchwarzChristoffel formula only precribes the angles α_{k}, but not the length of (a_{k}, a_{k+1}) (recall that conformal map does not preserve lenghts in general). The remaining unknowns are a_{4}, \cdots, a_{n} real numbers and two complex numbers α and β. We deduce from the formula (3.5) that when $z=x>a_{n}$, then

$$
\arg f^{\prime}(x)=\arg \alpha
$$

and the line segment $\left(a_{n}, a_{1}\right)$ (via $\left.\hat{\mathbb{C}}\right)$ corresponds to the side $L_{n}=$ $\left[w_{n}, w_{1}\right]$ of the polygon D. But $\arg f^{\prime}(x)=\arg \alpha$ corresponds to the angle that L_{n} makes with the real-axis \mathbb{R}. This shows that $\arg \alpha$ is known. On the other hand, putting $z=a_{1}$ in (3.5) yields $f\left(a_{1}\right)=\beta$. This implies $\beta=w_{1}$ is therefore also known. We are left with $n-2$ real unknown constants

$$
a_{4}, \cdots, a_{n},|\alpha|
$$

to be determined. On the other hand, we have a further $n-2$ equations

$$
\ell\left(\left[w_{k}, w_{k+1}\right]\right)=|\alpha| \int_{a_{k}}^{a_{k+1}}\left|\prod_{k=1}^{n}\left(z-a_{k}\right)^{\alpha_{k}-1}\right||d z|
$$

$k=4, \cdots, n$ (with $a_{n+1}=a_{n}$) that can be used to compute the $a_{4}, \cdots, a_{n},|\alpha|$. But the determination is generally difficult if not impossible.
Example 3.8.2. Find a conformal mapping from the upper half-plane onto an equilateral triangle of side lenght ℓ.

That is the three angles of the triangle are all equal to $\alpha_{k} \pi=$ $\pi / 3, k=1,2,3$. According to the last remark, the Schwarz-Christoffel formula completely determine the $a_{j}, w_{j}=f\left(a_{j}\right), k=1,2,3$. So let us choose

$$
a_{1}=-1, a_{2}=0, a_{3}=1
$$

Then the SC-formula (3.5) yields

$$
w=f(z)=\alpha \int_{0}^{z} \frac{d t}{(t-(-1))^{1-1 / 3} t^{1-1 / 3}(t-1)^{1-1 / 3}}+\beta
$$

Without loss of generality, we may choose $f\left(a_{2}\right)=f(0)=0$. Hence $\beta=0$. Moreover, we have

$$
\ell=\left|\alpha \int_{0}^{1} \frac{d t}{\sqrt[3]{t^{2}\left(t^{2}-1\right)}}\right|
$$

implying that

$$
\alpha=\frac{\ell}{\int_{0}^{1} \frac{d t}{\sqrt[3]{t^{2}\left(1-t^{2}\right)}}}
$$

Hence

$$
f(z)=\ell \frac{\int_{0}^{z} \frac{d t}{\sqrt[3]{t^{2}\left(t^{2}-1\right)}}}{\int_{0}^{1} \frac{d t}{\sqrt[3]{t^{2}\left(1-t^{2}\right)}}}
$$

is the desired mapping.

Figure 3.11: Schwarz equaliterial triangle

Exercise 3.8.1. Replace the above equilateral triangle with an isosceles right trangle with $\alpha_{2}=\frac{1}{2}, \alpha_{1}=\alpha_{3}=\frac{1}{4}$, with the length of the hypotenuse ℓ.

Example 3.8.3. Construct a one-one conformal map from the upper half-plane \mathbb{H}^{+}to a rectangle with coordinates $\left[-K, K, K+i K^{\prime},-K+\right.$ $\left.i K^{\prime}\right]$ for some $K>0$.

Figure 3.12: Elliptic function of the 1st kind
We recall that a slight variation of Riemann mapping theorem allows us to assert tht there is a one-one conformal mapping from the first quadrant of the z-plane to the rectangle with vertices $[0, K, K+$ $\left.i K^{\prime}, i K^{\prime}\right]$ such that the points 0,1 and ∞ in the z-plane are mapped onto the points $0, K, i K$ respectively. So we have the following correspondences:

$$
[0,1] \mapsto[0, K], \quad[1, \infty) \mapsto\left[K, K+i K^{\prime}\right] \cup\left[K+i K^{\prime}, i K^{\prime}\right] .
$$

So there is a $0<k<1$ so that the point $z=1 / k>1$ is mapped onto the point $K+i K^{\prime}$. This also implies that the positive imaginary axis $\{z=i y: y>0\}$ is being mapped onto the line segment $\left[0, i K^{\prime}\right]$.

So we obtain the desired mapping $\mathbb{H}^{+} \rightarrow\left[-K, K, K+i K^{\prime},-K+\right.$ $\left.i K^{\prime}\right]$ after reflecting the Riemann mapping obtained above with respect to the imaginary axis, so that the real-axis \mathbb{R} is mapped onto [$\left.-K, K, K+i K^{\prime},-K+i K^{\prime}\right]$, and the points $-1 / k,-1,1,1 / k$ are mapped onto the points $-K+i K^{\prime},-K, K, K+i K^{\prime}$ respectively. The
explicit formula is therefore given by

$$
\begin{aligned}
f(z) & =\alpha \int_{0}^{z}\left(z+\frac{1}{k}\right)^{\frac{1}{2}-1}(z-1)^{\frac{1}{2}-1}(z+1)^{\frac{1}{2}-1}\left(z-\frac{1}{k}\right)^{\frac{1}{2}-1}+\beta \\
& =\alpha^{\prime} \int_{0}^{z} \frac{d z}{\sqrt{\left(1-z^{2}\right)\left(1-k^{2} z^{2}\right)}}+\beta
\end{aligned}
$$

Let $z=0$ in the variable above. Then clearly $\beta=0$. We choose the branch of square root above in accord to positive value when z lies in $(0,1)$. But $f(1)=K$. So

$$
K=\alpha^{\prime} \int_{0}^{1} \frac{d z}{\sqrt{\left(1-z^{2}\right)\left(1-k^{2} z^{2}\right)}}
$$

This allows us to determine the constant $\alpha^{\prime}>0$ provided we know the value of k. Moreover, since $f\left(\frac{1}{k}\right)=K+i K^{\prime}$, so

$$
\begin{aligned}
K+i K^{\prime}= & \alpha^{\prime} \int_{0}^{1 / k} \frac{d z}{\sqrt{\left(1-z^{2}\right)\left(1-k^{2} z^{2}\right)}} \\
= & \alpha^{\prime} \int_{0}^{1} \frac{d z}{\sqrt{\left(1-z^{2}\right)\left(1-k^{2} z^{2}\right)}} \\
& +\alpha^{\prime} i \int_{1}^{1 / k} \frac{d z}{\sqrt{\left(z^{2}-1\right)\left(1-k^{2} z^{2}\right)}}
\end{aligned}
$$

since there is a change of $\arg (1-z)$, amongst all the factors of $(1-$ $\left.z^{2}\right)\left(1-k^{2} z^{2}\right)$, by $-\pi$. It follows that

$$
K^{\prime}=\alpha^{\prime} \int_{1}^{1 / k} \frac{d z}{\sqrt{\left(z^{2}-1\right)\left(1-k^{2} z^{2}\right)}} .
$$

Let

$$
z=\frac{1}{\sqrt{1-k^{\prime 2} t^{2}}}
$$

in the above integration, where $k^{\prime 2}=1-k^{2}$ and $0<k^{\prime}<1$. It is routine to check that the above substitution yields

$$
K^{\prime}=\alpha^{\prime} \int_{0}^{1} \frac{d t}{\sqrt{\left(1-t^{2}\right)\left(1-k^{\prime 2} t^{2}\right)}}
$$

We therefore deduce the relationship:

$$
\begin{equation*}
\frac{K^{\prime}}{2 K}=\frac{\int_{0}^{1} \frac{d z}{\sqrt{\left(1-z^{2}\right)\left(1-k^{\prime 2} z^{2}\right)}}}{2 \int_{0}^{1} \frac{d z}{\sqrt{\left(1-z^{2}\right)\left(1-k^{2} z^{2}\right)}}} \tag{3.9}
\end{equation*}
$$

We see that both the numerator and denominator have similar integrands. As k increases from 0 to 1 , the integral

$$
\int_{0}^{1} \frac{d z}{\sqrt{\left(1-z^{2}\right)\left(1-k^{\prime 2} z^{2}\right)}}
$$

increases from

$$
\int_{0}^{1} \frac{d z}{\sqrt{1-z^{2}}}=\frac{\pi}{2} \quad \text { to } \quad \int_{0}^{1} \frac{d z}{1-z^{2}}=+\infty
$$

That is the interval $(0,1)$ is being mapped onto $\left[\frac{\pi}{2},+\infty\right)$. While k increases from 0 to 1 , its complementary value k^{\prime} decreases from 1 to 0 . So the numerator

$$
2 \int_{0}^{1} \frac{d z}{\sqrt{\left(1-z^{2}\right)\left(1-k^{2} z^{2}\right)}}
$$

behaves in a similar behaviour but in the opposite direction, namely, it decreases monotonically from $+\infty$ to π. We deduce that the ratio $K^{\prime} / 2 K$, increases monotonically, as a function of k, from 0 to $+\infty$. So there is a unique $0<k<1$ such that (3.9) holds for a given K and K^{\prime}. This allows us to compute an approximate (and hopefully to know exactly) value of k, and hence α^{\prime}.

Definition 3.8.4. The above integral where $\alpha^{\prime}=1$,

$$
K(k)=\int_{0}^{z} \frac{d z}{\sqrt{\left(1-z^{2}\right)\left(1-k^{2} z^{2}\right)}}
$$

is called the (Legendre form) of complete elliptic integral of the first kind.

Figure 3.13: Modulus of an elliptic integral: Byrd and Friedman, p. 17

Theorem 3.8.5 (Schwarz-Christoffel: second version). Let f be a oneone conformal mapping that maps the upper half-plane \mathbb{H}^{+}onto the interior of the a polygon $D=\left[w_{1}, w_{2}, \cdots w_{n}\right]$ with the interior angles

$$
0<\alpha_{k} \pi:=\left(1-\nu_{k}\right) \pi<2 \pi,
$$

at each of the given vertex $w_{k}, k=1, \cdots n$. Suppose the corresponding points $-\infty<a_{1}<a_{2}<\cdots<a_{n-1}<\infty$ are real numbers on \mathbb{R} such that $f\left(a_{k}\right)=w_{k}, k=1, \cdots n-1$, and $a_{n}=\infty, f(\infty)=w_{n}$. Then f is given by

$$
\begin{equation*}
f(z)=\alpha \int_{0}^{z} \frac{d z}{\left(z-a_{1}\right)^{1-\alpha_{1}}\left(z-a_{2}\right)^{1-\alpha_{2}} \cdots\left(z-a_{n-1}\right)^{1-\alpha_{n-1}}}+\beta \tag{3.10}
\end{equation*}
$$

where α, β are two integration constants.
Proof. The transformation

$$
\left.z=a-\frac{1}{\zeta} \quad \text { (i.e., } \quad \zeta=-1 /(z-a)\right), \quad a<a_{1}
$$

transforms the upper half-plane \mathbb{H}^{+}onto itself such that the $a_{1}<\cdots<$ a_{n-1} are mapped onto $b_{1}<\cdots<b_{n-1}$ and $a_{n}=\infty$ to $b_{n}=0$. Hence
we may apply (3.5) to

$$
F(\zeta)=f\left(a-\frac{1}{\zeta}\right)
$$

and this yields

$$
\begin{aligned}
F(\zeta) & =\alpha^{\prime} \int_{0}^{\zeta} \frac{d \zeta}{\left(\zeta-b_{1}\right)^{1-\alpha_{1}} \cdots\left(\zeta-b_{n-1}\right)^{1-\alpha_{n-1}} \zeta^{\alpha_{n}-1}}+\beta^{\prime} \\
& =\alpha^{\prime} \int_{0}^{\zeta} \prod_{k=1}^{\zeta-1}\left(\zeta-b_{k}\right)^{\alpha_{k}-1} \zeta^{\alpha_{n}-1} d \zeta+\beta^{\prime} .
\end{aligned}
$$

Hence

$$
\begin{aligned}
f(z) & =F(\zeta)=\alpha^{\prime} \int_{z_{0}}^{z} \prod_{k=1}^{n-1}\left(\frac{-1}{z-a}+\frac{1}{a_{k}-a}\right)^{\alpha_{k}-1}\left(\frac{-1}{z-a}\right)^{\alpha_{n}-1} \zeta^{2} d z+\beta^{\prime} \\
& =\alpha^{\prime} \int_{z_{0}}^{z} \prod_{k=1}^{n-1}\left(\frac{a_{k}-z}{(z-a)\left(a_{k}-a\right)}\right)^{\alpha_{k}-1}\left(\frac{-1}{z-a}\right)^{\alpha_{n}-1} \frac{d z}{(z-a)^{2}}+\beta^{\prime} \\
& =\alpha^{\prime \prime} \int_{z_{0}}^{z} \prod_{k=1}^{n-1}\left(z-a_{k}\right)^{\alpha_{k}-1} \frac{1}{(z-a)^{\sum \alpha_{k}-n+2}} d z+\beta^{\prime} \\
& =\alpha^{\prime \prime} \int_{0}^{z} \prod_{k=1}^{n-1}\left(z-a_{k}\right)^{\alpha_{k}-1} d z+\beta^{\prime \prime}
\end{aligned}
$$

since $\sum_{k=1}^{n} \alpha_{k}=n-2$.
Example 3.8.6. Let us apply the above formula to obtain an equilateral triangle of side length ℓ. That is, we may assume the three points on the real axis to be

$$
a_{1}=0, a_{2}=1, a_{3}=\infty .
$$

Then $\alpha_{k}=\pi / 3, k=1,2,3$. The formula (3.10) yields

$$
f(z)=\alpha \int_{0}^{z} \frac{d z}{(z-1)^{\frac{2}{3}} z^{\frac{2}{3}}}+\beta .
$$

The side length ℓ can be expressed as integration of arc-lenght:

$$
\begin{aligned}
\ell & =|\alpha| \int_{0}^{1}\left|f^{\prime}(z)\right||d z| \\
& =|\alpha| \int_{0}^{1}\left|z^{\frac{1}{3}-1}(z-1)^{\frac{1}{3}-1}\right||d z| \\
& =|\alpha| \int_{0}^{1} t^{\frac{1}{3}-1}(t-1)^{\frac{1}{3}-1} d t \\
& =|\alpha| \frac{\Gamma\left(\frac{1}{3}\right) \Gamma\left(\frac{1}{3}\right)}{\Gamma\left(\frac{1}{3}+\frac{1}{3}\right)}=|\alpha| \frac{\Gamma\left(\frac{1}{3}\right)^{2}}{\Gamma\left(\frac{2}{3}\right)},
\end{aligned}
$$

where $\Gamma(z)$ denotes the Euler-Gamma function (see later) and it is known that

$$
B(\alpha, \beta)=\int_{0}^{1} t^{\alpha-1}(1-t)^{\beta-1} d t=\frac{\Gamma(\alpha) \Gamma(\beta)}{\Gamma(\alpha+\beta)}
$$

provided that $\Re \alpha>-1$ and $\Re \beta>-1$.
Example 3.8.7. In general, if we consider the image of $0,1, \infty$ to be the general triangle $A B C$ with angles $\alpha \pi, \beta \pi, \gamma \pi$ with side lengths a, b, c respectively, then we have the Schwarz-Christoffel map to be

$$
f(z)=\int_{0}^{a} z^{\alpha-1}(1-z)^{\beta-1} d z
$$

where we have chosen $C_{1}=1$ and C_{2} so that $f(0)=0$. Then we can compute the side length of, say,

$$
c=\int_{0}^{1}\left|f^{\prime}(z)\right||d z|=\frac{\Gamma(\alpha) \Gamma(\beta)}{\Gamma(\alpha+\beta)} .
$$

But since $\Gamma(x) \Gamma(1-x)=\frac{\pi}{\sin \pi x}$, so

$$
c=\frac{\Gamma(\alpha) \Gamma(\beta)}{\Gamma(1-\gamma)}=\frac{1}{\pi} \sin (\gamma \pi) \Gamma(\alpha) \Gamma(\beta) \Gamma(\gamma)
$$

since $\alpha+\beta+\gamma=1$. Similarly, the side lengths of the other two sides are given by

$$
a=\frac{1}{\pi} \sin (\alpha \pi) \Gamma(\alpha) \Gamma(\beta) \Gamma(\gamma)
$$

and

$$
b=\frac{1}{\pi} \sin (\beta \pi) \Gamma(\alpha) \Gamma(\beta) \Gamma(\gamma) .
$$

Example 3.8.8. Apply a SC-formula to show that the conformal mapping f that maps \mathbb{H}^{+}onto the half vertical strip:

$$
-\frac{\pi}{2}<\Re(w=f(z))<\frac{\pi}{2} ; \quad \Im(w)>0 .
$$

such that $-1 \mapsto-\frac{\pi}{2}, 1 \mapsto \frac{\pi}{2}, \infty \mapsto \infty$ is given by

$$
f(z)=\int_{0}^{z} \frac{d z}{\sqrt{1-z^{2}}}=\sin ^{-1} z
$$

Exercise 3.8.2. Show that the formula

$$
f(z)=\int_{0}^{z} \frac{d z}{\sqrt{z\left(1-z^{2}\right)}}
$$

maps the upper half-plane \mathbb{H}^{+}onto the interior of a square of side length

$$
\frac{1}{2 \sqrt{2 \pi}} \Gamma\left(\frac{1}{4}\right)^{2} .
$$

Exercise 3.8.3. Given a polygon D with vertices w_{1}, \cdots, w_{n} and interior angles $\alpha_{k} k=1, \cdots, n$, has one of its angles, $\alpha_{2}=0$, say. See the figure below. Derive a Schwarz-Christoffel formula mapping the upper half-plane to this polygon. (Hint: Consider the polygon with $n+1$ sides constructed from that of the original polygon with a line segment drawn from new vertices w_{21} and w_{22} each on the parallel sides of D with $\alpha_{2}=0$ and perpendicular to the parallel sides. Use the Schwarz-Christoffel formula of this polygon to approximate the desired mapping).

Figure 3.14: The second angle is 0

Bibliography

[1] L. V. Ahlfors, Complex Analysis, 3rd Ed., McGraw-Hill, 1979.
[2] P. F. Byrd and M. D. Friedman, Handbook of Elliptic Integrals for Engineers and Scientists, 2nd Ed. revised, Springer-Verlag, NY., Heidelberg, Berlin, 1971.
[3] J.B. Conway, Functions of One Complex Variable, 2nd Ed., Springer-Verlag, 1978.
[4] F. T.-H. Fong, Complex Analysis, Lecture notes for MATH 4023, HKUST, 2017.
[5] E. Hille, Analytic Function Theory, Vol. I, 2nd Ed., Chelsea Publ. Comp., N.Y., 1982
[6] E. Hille, Analytic Function Theory, Vol. II, Chelsea Publ. Comp., N.Y., 1971.
[7] Z. Nehari, Conformal Mapping, Dover Publ. New York, 1952.
[8] B. Palka, An Introduction to Complex Function Theory, SpringerVerlag, 1990.
[9] E. T. Whittaker \& G. N. Watson, A Course of Modern Analysis, 4th Ed., Cambridge Univ. Press, 1927

[^0]: ${ }^{1}$ Typesetting by CHEUNG, Tsz Yung and Edmund CHIANG

[^1]: ${ }^{1}$ H. A. Schwarz (1843-1921): advisor Karl Weierstrass

[^2]: ${ }^{2}$ Any other side will do.
 ${ }^{3}$ In fact, $A=e^{i \theta_{k}}$.

